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Abstract

Forest loss is a major environmental threat in the Anthropocene. Repercussions are rarely localised and often impacts adjacent

ecosystems. For example, forest loss is generally detrimental to freshwater biodiversity. There are however, some uncertainties

about its effects on food webs and ecosystem functioning. We tracked changes in the food webs of four tropical stream catchments

(two time points separated by a ˜20-year interval) affected by varying degrees of forest loss. Our data show that the proportion

of assimilated terrestrial organic matter (allochthony) remained largely invariant, but changes in food chain lengths inferred

from the trophic positions of apex predators (TP) differed between catchments. Here, we found that higher rates of forest loss

resulted in more significant reductions in TP. We speculate that the mechanisms involved are unrelated to diminished terrestrial

subsidies as allochthony values were low (˜7%) and did not shift in response to forest loss.

Introduction

Forest loss is one of the most critical threats to the biosphere in the Anthropocene (Ruddiman, 2013; Malhi
et al., 2014). Impacts of forest loss are extensive and far-reaching (Morris, 2010)—driving species extinctions
(Brook et al. 2003; Giam, 2017), climate change (Ramankutty et al., 2006; Lawrence & Vandecar, 2015), and
threatening the health of local human communities (Myers et al., 2013). The consequences of forest loss are
relatively well-documented (Gibson et al., 2011; Barlow et al., 2016) so our understanding of its impacts on
terrestrial ecosystems and biodiversity is fairly robust. However, these repercussions are rarely localised to
the immediate (terrestrial) area (Lawton et al., 2001; MacKenzie, 2008) and often affects adjacent ecosystems
(Maina et al., 2013). Forest streams, for example, are impacted by a reduction in terrestrial inputs (e.g., leaf
litter, woody debris) which are important for the creation and maintenance of microhabitats (Giam et al.,
2015; Naman et al., 2018). This results in simplified systems which lack niche diversity, and are hence less
speciose (Loke & Todd, 2016). Unsurprisingly, forest loss is generally detrimental to freshwater biodiversity
and commonly results in the extirpation of sensitive species (Liew et al., 2018a, Wilkinson et al., 2018).

In addition, allochthonous terrestrial inputs have, until recently, been thought of as constituting an important
resource subsidy for low-order forest streams (Lau et al., 2013). This seemed logical given the expected
abundance of such inputs (e.g., high standing stocks of leaf litter), and lower internal (aquatic) primary
productivity resulting from light attenuation under dense canopy cover. As such, it was generally assumed
that forest loss in catchments would result in resource limitations, thus impacting stream food webs from a
bottom-up (resource-driven) direction (Liew et al., 2018). Recent data appear to cofound these expectations,
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however. Stream consumers grow at a significantly lower rate on diets comprising exclusively of leaf litter
(Lau et al., 2013; Guo et al., 2016), suggesting that terrestrial resource subsidies may play a more peripheral
role in steam food webs than previously supposed (Lau et al., 2009; Brett et al., 2017).

Current uncertainties about the role of allochthonous terrestrial subsidies in stream food webs complicate
predictions about the effects of forest loss and its underlying mechanisms. It is perhaps for this reason that
studies investigating changes in aquatic food webs in response to anthropogenic impacts sometimes report
conflicting findings. For example, Takimoto et al. (2008) observed no significant links between disturbance
and food webs—or more specifically, food chain length—while McHugh et al. (2010) found disturbance
to be one of the primary predictors of food chain length. The lack of a clear consensus is critical from a
conservation perspective. Disrupted food webs are thought to impair ecosystem functions, especially those
related to energy flow (Holt & Loreau, 2001). Moreover, communities associated with functionally-impacted
ecosystems are also often more vulnerable to further species loss (Chua et al., 2019).

In this paper, we aim to clarify the relationship between forest loss and freshwater food webs using a longi-
tudinal (i.e., before and after) study design to help minimise potential confounders (e.g., baseline differences
in the communities surveyed). We do this by measuring changes in forest cover and food web structure
at two time points approximately two decades apart in tropical Southeast Asia, a region presently under-
going significant forest loss (Miettinen et al. 2012). We used a combination of state-of-the-art ecological
tracers—i.e., amino acid-specific Carbon-13 (Liew et al., 2019) and Nitrogen-15 (Chikaraishi et al., 2009)
stable isotopes—and high-resolution remote-sensing, as both methods are currently the most precise tools
for measuring food web indices and catchment forest cover in a longitudinal design.

At each time point, we measure two food web indices, namely, the proportion of consumer tissue comprising
assimilated terrestrial organic carbon (which we interpret as the extent of allochthony ) and trophic position
(TP ) of representative apex predators (Choy et al. 1996). Together, allochthony and TP provide information
about the role of terrestrial subsidies as a basal resource (Liew et al., 2019) and the vertical complexity of
food webs (Takimoto & Post, 2013; Digel et al., 2014). Conversely, we measured catchment forest cover
at both time points by generating raster data of cloud-free USGS Landsat mosaic images using machine-
learning algorithms. With this, we asked: (1) how have freshwater food webs changed over time?; and (2)
can these changes be predicted by the extent of forest loss in the respective catchments?

Methods

Survey sites

We surveyed four river catchments: i) Danum Valley (5°N, 118°E); ii) Endau (2°N, 103°E); iii) North Selangor
peat swamp forest (NSPSF) (4°N, 101°E); and iv) Nee Soon (1°N, 103°E) (Fig. 1). Each catchment was
sampled twice, once between 1990–1996 (before ) and once between 2015–2018 (after ).

Sampling protocol

Samples from the before time point were obtained from the archives of preserved fish specimens (usually
in 10% formalin) deposited in the Lee Kong Chian Natural History Museum of the National University of
Singapore. We filtered specimens by locality and taxonomy, selecting individuals from genera of predatory
fishes we encountered at the respective catchments in the after time point. Fin tissue was excised from
suitable specimens for subsequent laboratory analyses. We also measured the standard length of individuals
sample. We collected a total of 57 specimens from the before time point, comprising 13 individuals (one
species) from Danum, 10 individuals (six species in three genera) from Endau, 12 individuals (four species in
two genera) from Nee Soon, and 22 individuals (four species in three genera) from NSPSF (Supplementary
Table 1).

Samples from the after time point were collected during field excursions to each of the four river catchments
between 2015 and 2018. We used a combination of backpack electrofishing (Bretschneider Spezialelektronik
EFGI-650), cast nets (2.75 m diameter; 1 cm mesh) and rigid-frame push nets (60 × 45 cm; 2 mm mesh) to
maximise our catch-rate. Fin tissue was excised from all predatory fish taxa encountered and kept in 70%
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ethanol or 10% formalin (= 3.7% formaldehyde) solutions for subsequent laboratory analyses. Fish specimens
were also measured to determine their standard length. We collected a total of 39 specimens, comprising
three individuals (one species) from Danum, 18 individuals (four species in three genera) from Endau, seven
individuals (three species in two genera) from Nee Soon, and 11 individuals (five species in three genera)
from NSPSF (Supplementary Table 1).

Measuring food web indices

We measured allochthony using amino acid specific Carbon-13 profiles (δ13C) (Liew et al., 2019) while TP
was measured using amino acid specific Nitrogen-15 profiles (δ15N) (Chikaraishi et al., 2009). Importantly
for our study, amino-acid δ13C and δ15N profiles are both unaffected by ethanol or formalin preservation
(Hetherington et al., 2019, Chua et al., 2020). Fin clip samples from all 96 suitable specimens (57 from
the before period and 39 from the afterperiod) were rinsed in distilled water, dried over 48 hours at 70
°C, homogenised, and packed in 12 mL borosilicate tubes for laboratory analyses at the Stable Isotope
Facility at the University of California, Davis. There, amino acid δ13C and δ15N profiles were measured
using established protocols (Walsh et al., 2014).

We estimated allochthony using the methods described in Liew et al. (2019). Briefly, essential amino acid
(i.e., isoleucine, leucine, phenylalanine, and valine) δ13C profiles of our specimens were compared against
a global dataset of carbon source amino acid δ13C values reported in the study (Liew et al., 2019). Given
that the essential amino acid δ13C profiles of aquatic and terrestrial carbon sources (Liew et al., 2019) are
distinct, we estimated their relative contributions to consumer tissue using Bayesian stable isotope mixing
models (Parnell et al., 2013) on the simmr statistical package (Parnell, 2016).

We estimated TP using δ15N primarily, although allochthony(estimated with δ13C) were important for
improving the accuracy of our calculations (Choi et al., 2017). We calculate TP using the following formula
(after Chikaraishi et al., 2009):

TP =
δ15NΓλυ−δ15NΠηε+βμιξ

ΔΔΓλυ−ΔΔΠηε + 1. . . ..(eq. 1),

where δ15ΝΓλυ and δ15ΝΠηεrepresent the δ15N profiles of glutamic acid and phenylalanine of the fish spec-
imen, respectively, and ΔΔΓλυ andΔΔΠηε represent their respective trophic discrimination values, while
βμιξ represents the difference in the δ15ΝΓλυ andδ15ΝΠηε in carbon sources (i.e., primary producers) at the
bottom of the food web. We usedΔΔΓλυ and ΔΔΠηε values of +8.0asβμιξ differs between aquatic (-3.4 ±
0.9terrestrial (+8.4 +- 1.6our calculations using allochthony estimates on a per-individual basis (after Chua
et al. (2020)).

Measuring forest loss with remote-sense data

We quantified changes in forest cover for each river catchment between the before and after by comparing
year-matched (i.e., from 1 January to 31 December in the year fish specimens were collected) Landsat images
on Google Earth Engine (GEE) (codes in Supplementary Material 1).

First, we downloaded all raw images available of our sites taken in the sampling year by USGS Landsat 5
(before time point) and USGS Landsat 8 (after time point). These were used to create cloud-free mosaics
with the simple composite function on GEE. We delineated target river catchments using HydroSHEDS
polygons (Lehner & Grill, 2013). In order to classify land-cover in the images with GEE’s Random Forest
machine learning algorithm, we plotted ‘ground-truth’ polygons comprising pixels associated with forest and
non-forest land-cover types. Our ‘ground-truth’ polygons were plotted manually over areas which were clearly
associated with any of the above land-uses (e.g., residence complexes with urban land-use). We allocated
60% of our ‘ground-truth’ points to the training of the GEE Random Forest algorithm (or classifier) while
the remaining data points were allocated for classifier testing and validation. We included the following
spectral bands for land-cover classification: 1) RGB (red, green, and blue) bands; 2) near infrared; 3)
shortwave infrared 1 & 2; and 4) thermal infrared 1 & 2. Generally, trained classifiers comprise models
which have been parameterised with ‘ground-truth’ training data which can then be used to categorise all
remaining pixels in relevant satellite images into one of the three land-cover types of interest. We tested the
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trained classifiers against our testing data (i.e., 40% of ‘ground-truth’ points) in a validation error matrix.
Classification accuracy for all eight classifiers (two time points across four river catchments) were greater
than the 95% threshold we set a priori . Finally, we used the trained Random Forest classifiers to produce
land-cover raster layers of the catchments at both time points.

We quantified the following by comparing land-cover maps in thebefore and after time points:

1. Proportion of total catchment area associated with forest loss (ΔΦτοταλ ).
2. Net proportion of catchment area associated with forest loss (ΔΦνετ ).
3. Ratio of catchment area associated with forest loss versus forest gain (ΔΦρατιο ).

In addition to catchment-wide changes, we were also interested in quantifying change in land-use cover in
a sub-section of the overall catchment area, specifically, in the area upstream of our sampling points. To
this end, we delineated upstream areas by processing void-filled NASA Shuttle Radar Topographic (SRTM)
Digital Elevation Models (DEMs) (Jarvis et al., 2008) using watershed hydrological tools on Whitebox GAT
(Lindsay, 2016). We then quantified the following:

1. Proportion of catchment area associated with forest loss in the immediate upstream area of sampling
points (ΔΦσυβ.τοταλ ).

2. Net proportion of catchment area associated with forest loss in the immediate upstream are of sampling
points (ΔΦσυβ.νετ ).

3. Ratio of catchment area associated with forest loss versus forest gain in the immediate upstream area
of sampling points (ΔΦσυβ.ρατιο ).

Statistical analyses

We divided our analyses in two parts, each corresponding to one of our research questions. In the first
part, we assessed temporal trendsallochthony and TP (henceforth referred to collectively asW ) by fitting
11 models to our data set of 96 predatory fish specimens (13 species in 6 genera) (n =96, Supplementary
Table 1). Each model describes a competing hypothesis where allochthony andTP were tested separately
against combinations of the following predictors: 1) time (i.e., categorical predictor with two levels (before
or after ) representing temporal identity); 2)size (i.e., continuous predictor representing the scaled standard
length of fish individuals); and 3) catchment (i.e., categorical predictor with four levels representing river
catchment identity). In addition to these predictors, we also included taxonomic information (genus) as
random intercept and/or random slope terms to control for possible phylogenetic differences in W (allochthony
/TP ).

Our competing models and the hypotheses they describe are as follows (details of models in Supplementary
Table 2):

1. Intercept only model, where allochthony/TP does not vary with any predictor.
2. ‘Size’ only model, where allochthony/TP is best predicted by individual size.
3. ‘Location’ only model where allochthony /TP differs between catchments but shows no appreciable

change over time:
4. Univariate ‘Temporal’ model, where allochthony /TPchanged significantly over time across all catch-

ments.
5. ‘Size’ controlled ‘Temporal’ model, where changes inallochthony /TP over time is significant after

controlling for differences in individual body size.
6. ‘Location’ controlled ‘Temporal’ model, where changes inallochthony /TP over time is significant after

controlling for catchment identity.
7. ‘Size’ and ‘Location’ controlled ‘Temporal’ model, where changes inallochthony /TP over time is sig-

nificant after controlling for location and individual body size.
8. ‘Size’ interaction model where trends in allochthony /TPchange over time differs between individuals

of varying body sizes.
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9. ‘Location’ interaction model, where trends inallochthony /TP change over time differs across catch-
ments.

10. ‘Location’ controlled ‘Size’ interaction model, where trends inallochthony /TP change over time differs
across individuals of varying body sizes, after controlling for catchment identity.

11. ‘Size’ controlled ‘Location’ interaction model, where trends inallochthony /TP over time differs across
catchments, after controlling for individual body size.

All 11 competing models were parameterised with a Bayesian approach on the rjags *4.6 statistical package
(Plummer, 2016). For each model, we ran 100,000 iterations (burn-in=10,000) on four parallel chains (thin-
ning=1), with vaguely informative priors for both fixed and random effects. We compared the models using
the Widely Applicable Information Criterion (WAIC) and the Efficient Approximate Leave-One-Out (LOO)
indices (Vehtari et al., 2017) where lower values indicate greater parsimony.

In the second part of our analyses, we assessed the role of forest loss in driving food web changes. As
such, we focused on food web measures (i.e., allochthony and/or TP ) reflecting different temporal trends
across the catchments (i.e., if models (ix) or (xi) were best supported by the data in the first part of our
analyses). This portion of our analyses required the aggregation of our individual-level response variable,

W , because our forest loss metrics were measured at the catchment-basin scale. We calculatedΔ W ,

which represents the mean pairwise difference in allochthony(Δ allochthony) and/or ΤΠ (Δ TP) between
fish individuals of the same species (to control for potential phylogenic confounders) from respective time

points. We calculatedΔ W (n =4) from a total of 141 individual-level, species-specific pairwise comparisons
of W between the before and after time point (ΔΩ ). Considering the significant sample size restrictions,
we maximised the rigour of our community-level analyses by allocating 25% percent of the individual-level
pairwise data points for model-testing (described later) before the subsequent aggregation of the remaining
‘training’ data subset. The process was randomised and catchment-specific, meaning that we allocated an
equal percentage of individual-level data for model training/parameterisation (75%) and model testing (25%)

for every catchment. We tested Δ W against the following forest loss metrics described earlier:ΔΦτοταλ ;
ΔΦνετ ;ΔΦρατιο ; ΔΦσυβ.τοταλ ;ΔΦσυβ.νετ ; andΔΦσυβ.ρατιο .

In addition to forest loss metrics, we also testedΔ W against other ‘null’ predictors unrelated to forest loss.
These were: 1) Atotal , a continuous variable representing the total area of river catchments; 2) Asub.total , a
continuous variable representing the size of the catchment area immediately upstream of our sampling points;

and 3) Δ Q, a continuous variable representing the mean pairwise change in pH measurements between both
time points.

We had nine community-level models in total (i.e., three ‘null’ models and six predictive models using
forest-loss metrics) which can be summarised as follows:

Δ Wm = β0 + (β1)Xm. . . ..(eq. 2),

where β1 represents the fixed-slope term describing the relationship between ΔW and the predictor variables

which we collectively annotate here as X (i.e., Δ Q,Atotal , Asub.total ,ΔΦτοταλ , ΔΦνετ ,ΔΦρατιο , ΔΦσυβ.τοταλ
,ΔΦσυβ.νετ , andΔΦσυβ.ρατιο ), for the m -th river catchment. All predictors were scaled to facilitate model
convergence. We parameterised the models with a Bayesian approach using the same settings as with our
individual-level models. While Bayesian techniques are generally more robust to small sample sizes (Kery,
2010), we sought to improve the accuracy of our findings by repeating our parameterising procedure 100
times. We used a different random subset of individual-level pairwise data (i.e., 75% of total pairwise

comparisons) for the calculation of Δ Wby repeating the randomised draws at the start of every iteration.
We recorded the following indices for model comparison: 1) mean slope coefficients values (β1) describing the

relationship between Δ Wand the predictor variables; 2) WAIC and LOO as measures of model parsimony
(Vehtari et al., 2017); and 3) Root Mean Square Error (RMSE) as a measure of model error. We calculate
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(3) using residuals between predictions made using β1 coefficients (parameterised using the training data
subset) and observed values in the testing data subset.

Results

Forest cover change over two decades

Changes in forest cover over time were highly variable (Fig. 2; Table 1). Forest loss was most extensive in
the Endau catchment, occurring in approximately 23 percent of its total area. Conversely, the Nee Soon
catchment gained forest cover (0.2 km2 net gain) in the ˜25 years between sampling occasions.

Changes in freshwater food webs over time

Temporal trends in allochthony are best described by theunivariate ‘Temporal’ model (allochthony = 0.06−
0.01time) (Supplementary Table 2). While the model describes a decrease inallochthony over time (negative
slope term on time ), this relationship is not statistically important (95% Bayesian credible interval of slope
term overlaps with zero) (Supplementary Fig. 1, 2). Conversely, trends in TP are best described by ‘Size’
controlled ‘Location’ interaction model(TP = 1.79+0.14size+0.27drainage−0.44time+0.17drainage∗time).
The interaction coefficient between catchment and time is statistically different from zero (95% credible
interval: 0.08–0.21), suggesting that differences in TP over time was not consistent across catchments (Fig.
3, Supplementary Fig. 1).

Forest loss as a driver of food web change

The first part of our findings suggests that allochthony did not change over time, so we focussed on TP

for our second research question. We found that the mean pairwise difference in TP(Δ TP) was best
predicted by the ratio of forest loss:gain in the immediate upstream area( ΔΦsub.ratio) (Table 2). Further,

slope coefficients describing the relationships betweenΔ TP and candidate predictors were negative for all
six forest loss metrics, and positive for predictors unrelated to forest loss (Fig. 4).

Discussion

Overall, our findings suggest that catchment forest loss is associated with a reduction in the trophic position
of apex predators, which we interpret as a general shortening of food chain lengths (Wolkovich et al., 2014).
Decreases in food chain lengths are commonly driven by resource limitation because the number of viable
successive trophic steps (i.e., predator-prey interactions) are limited by the total metabolic energy in a food
web (Doi et al., 2009; Takimoto & Post, 2013). While terrestrial inputs into fresh waters have been shown
to diminish with forest loss (Tanentzap et al., 2014), we do not believe that limitation of terrestrial resource
subsidies is the primary driver of the changes observed. This is because average allochthony levels (˜7%)
and its temporal invariance (Supplementary Fig. 1, 2), both suggest that terrestrial inputs are a relatively
unimportant basal resource in the freshwater food webs that we studied, reinforcing shifting perceptions
about the subject (Takimoto et al., 2008).

Despite this, there are some plausible mechanisms through which reductions in terrestrial subsidies can result
in resource limitations. Firstly, the contribution of terrestrial inputs to overall resources may not necessarily
be commensurate with their importance as a direct food source. For example, Hobbs et al. (2006) found
growth rates to be higher in aquatic invertebrates feeding on a mix of leaf litter and algae when compared
to individuals subsisting exclusively on either. The experimental data also show that the proportion of
terrestrial carbon assimilated remained low in the mixed-diet treatment, at a value similar to those recorded
in our study (˜6%), despite the apparent positive effect on consumer growth (Hobbs et al., 2006). Secondly,
terrestrial organic matter can also serve functions which are unrelated to nutrition. For example, terrestrial
detritus adds mechanical structure and refugia to freshwater ecosystems—both beneficial to aquatic primary
(Brothers et al., 2013) and secondary (Sass et al., 2006) production.

Although we found forest loss to be predictive of changes in food webs over time, the relative performance
of the different forest loss metrics (Table 2; Fig. 4) suggests intricacies in our generalised conclusion. Here,
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we found that food web changes were better predicted by forest loss in the upstream catchment area than
by overall forest loss across the entire catchment basin. This is unsurprising, as a majority of terrestrial
subsidies are likely to enter stream systems with groundwater/runoff from the upstream catchment. We also
found that the ratio between forest loss and forest gain (i.e., net change in forest cover) was a better predictor
of food web changes than total forest lost (Table 2), suggesting that the impacts of deforestation may be
attenuated by re-forestation. However, an increase in TP was recorded only in the Danum catchment, where
upstream forest cover comprised part of a protected conservation area and was relatively unchanged over
time (Fig. 2; Table 1). While sample size is limiting, it seems that as with most measures of environmental
health (e.g., species diversity), freshwater food webs benefit more from forest preservation than from forest
restoration (Hobbs et al., 2006), at least within the time interval (˜20 years) of our study (Chazdon, 2008).

We note two possible confounding factors in our study, specimen body-size and substantial differences in
catchment basin areas. The susceptibility of larger individuals to anthropogenic disturbances (Walters &
Post, 2008) and a strong positive correlation between trophic position and body size (Brose et al., 2005)
means that there may be a feasible alternative driving mechanism to the one we proposed. Specifically, forest
loss could result in the loss of larger individuals (Walters & Post, 2008), hence lowering trophic positions of
apex predators overall (Brose et al., 2005). While this may be the case where loss or similar anthropogenic
impacts causes a reduction in trophic positions (Wilkinson et al., in revision), it is not likely to be relevant to
our study. Here, our data show that fish individuals collected from both before and after were of comparable
sizes (Supplementary Fig. 3).

Another factor likely to complicate the interpretation of our findings is the influence of ecosystem (or catch-
ment) size on food web structure (Takimoto & Post, 2013). This is partially accounted for by our longitudinal
study design because unlike cross-sectional studies, our primary response variable is less prone to conflation
with baseline variations between survey locations. Thus, we were able to determine if observed trends in a
response variable (e.g., food web structure) were driven by differences in the intensity of a disturbance regime
(e.g., forest loss) independently of ecosystem size driven starting conditions (Takimoto & Post, 2013). We
also found that when tested as predictors of food web change, ecosystem size performed more poorly than
forest loss metrics measured at an equivalent spatial scale (i.e., whole catchment or immediate upstream
area of catchment; Table 2).

Conclusion

We show with a novel combination of approaches that forest loss affects freshwater food webs via indirect
resource limitations. Our observations also add to a growing body of evidence indicating that terrestrial
subsidies are a less important basal resource than autochthonous aquatic production. From a conservation
perspective, our findings reinforce the conventional wisdom advocating the preservation of intact forests
(Gibson et al., 2011). While this ideal may appear unfeasible in the face of rapid urbanisation and expanding
human populations, our observations suggest that we may be able to limit the impacts of anthropogenic
development within river catchments by prioritising the preservation (or restoration) of forest cover upstream
of more sensitive freshwater habitats. More importantly, our study reveals the impacts of forest loss on food
webs at a decadal temporal scale which may not be apparent in the short term because of compensatory
effects of buffering mechanisms (e.g., trophic redundancy (Chua et al., in revision), food web complexity
(Brose et al., 2005)). It is paramount that we do not underestimate the importance of responsible land-use
planning as longer-term impacts can sometimes be overlooked.
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Table captions

Table 1 Summary of changes in forest cover over time across river catchments surveyed.

Table 2 Summary of predictive model parsimony (mean WAIC and LOO) and accuracy (RMSE) of forest
loss metrics as well as ‘null’ variables (i.e., predictor variables unrelated to forest loss). Lower values (denoted
by asterisks) suggest greater parsimony (WAIC and LOO) or predictive accuracy (RMSE).

Figure captions

Figure 1 Four river catchments surveyed in Southeast Asia (Malaysia and Singapore). Catchment bound-
aries are highlighted in blue. Inset depicts Singapore and its surrounding areas.

Figure 2 Changes in land-use cover over time across the four catchments surveyed: Danum (top-left);
Endau (top-right); Nee Soon (bottom-left); and NSFPF (bottom-right). Red pixels represent catchment
area associated with forest loss while green pixels represent catchment area associated with forest gain.
Black circles represent the exact sites where fish specimens were collected. All sites were sampled in both
the before and after time points.

Figure 3 Probability distribution of pair-wise intra-specific differences in TP between the before and after
time points.

Figure 4 Distribution (average and standard deviation) of mean slope coefficients describing the relationship

between mean intra-specific change in TP over time (Δ TP) and various ‘null’ variables (filled circles) as
well as forest loss metrics (empty circles). Mean slope coefficients were parameterised over 100 iterations of
generalised linear models using a Bayesian approach (see Methods).

Tables

Table 1

Catchment

Total
Area
(km2)

Temporal
Range
(dura-
tion
[years])

Forest
Cover
Lost
(km2)

Forest
Cover
Gained
(km2)

Catchment
Area
upstream
of
sampling
points
(km2)

Forest
cover
lost
upstream
of
sampling
points
(km2)

Forest
cover
gained
upstream
of
sampling
points
(km2)

Danum 4066 1996–2015
(19)

487.0 299.0 539 1.70 6.30

Endau 4482 1998–2018
(20)

1042.0 155.0 106 34.90 3.60

Nee Soon 5 1990–2015
(25)

0.2 0.4 1 0.06 0.04

NSPSF 2607 1991–2018
(27)

278.0 89.0 37 3.50 0.40

Table 2
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Predictors Mean WAIC Mean LOO Mean Model Fit (RMSE)

Catchment area (Atotal) 9.4 10.0 0.38
Upstream area (Asub.total) 5.9* 6.7 0.36

Water quality change (ΔQ) 8.8 9.4 0.35
Total catchment forest loss (ΔΦtotal) 9.1 9.5 0.35
Net catchment forest loss (ΔΦnet) 9.0 9.4 0.35
Catchment forest-cover change ratio (ΔΦratio) 8.9 9.5 0.35
Total upstream forest loss (ΔΦsub.total) 8.8 9.5 0.33
Net upstream forest loss (ΔΦsub.net) 8.8 9.5 0.33
Upstream forest-cover change ratio (ΔΦsub.ratio) 6.2 6.4* 0.29*

Figures

Fig. 1
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Fig. 2

Fig. 3

Fig. 4
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