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Abstract

A universal attribute of species is that their distributions are limited by numerous factors that may be difficult to quantify.

Furthermore, climate change-induced range shifts have been reported in many taxa, and understanding the implications of

these shifts remains a priority and a challenge. One approach is to employ species distribution models which correlates species

presence data with a set of predictor variables. Here, we use MAXENT to predict current suitable habitat and to project

future distributions of two closely related Phymata species in light of anthropogenic climate change. Using species occurrence

data from museum databases and environmental data from WorldClim, we identified environmental variables maintaining the

distribution of Phymata americana and Phymata pennsylvanica, and created binary suitability maps of current distributions

for both species on ArcMap. We then predicted future distributions using the same environmental variables under different

Representative Concentration Pathways (RCP), created binary suitability maps for future distributions, and calculated the

degree of overlap between the two species. We found that the strongest predictor to P. americana ranges was precipitation

seasonality, while precipitation of the driest quarter and mean temperature of the coldest quarter were strong predictors of

P. pennsylvanica ranges. Future ranges for P. americana are predicted to increase northwestward and southward at higher

CO2 concentrations. Suitable ranges for P. pennsylvanica are initially predicted to increase, but eventually decrease with

slight fluctuations around range edges. There is an increase in overlapping ranges in all future predictions. These differences

in optima provide evidence for different environmental requirements for P. americana and P. pennsylvanica, accounting for

their distinct ranges. Because these species are ecologically similar and can hybridize, climate change has potentially important

eco-evolutionary ramifications. Overall our results are consistent with effects of climate change that is highly variable across

species, geographic regions and over time.

INTRODUCTION

A universal attribute of all species is that their geographic distributions are limited. The abiotic and biotic
factors that jointly determine this distribution are expected to be numerous, posing a serious empirical
challenge to their identification and quantification. One approach is to employ species distribution models
(SDM), which attempt to explain species presence data with a large set of predictor variables (Elith &
Leathwick, 2009). Although the approach is generally limited to the use of environmental variables (or their
proxies) as predictors of suitable habitat, SDM have provided new insights into species requirements that are
akin to the “fundamental niche” (Hutchinson, 1957) by incorporating constraints set by biotic interactions
(Leach, Montgomery, & Reid, 2016).

Geographic distributions are, of course, dynamic and dependent upon changing environmental conditions.
Species also vary in their sensitivity to shifting environmental conditions, and will respond differently to
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the same changes (Hickling, Roy, Hill, Fox, & Thomas, 2006; Malcolm, Markham, Neilson, & Garaci,
2002), including the possibility of failure to track new conditions altogether (Loarie et al., 2009). While
there is growing evidence of climate change-induced range shifts in many taxa, predicting its ecological
and evolutionary implications remains a central challenge (Parmesan, 2006) For example, climatic variation
is undoubtedly linked to natural changes in community composition over geological timescales, and there
is growing evidence of rapid changes in climate being linked to the invasion and expansion of alien species
(Guo, Sax, Qian, & Early, 2012). Changing climatic conditions has also led to more frequent contact between
historically separate species, and this can result in hybridisation (Vallejo-Maŕın & Hiscock, 2016) and, in
some cases, species collapse (Njiru, Mkumbo, & van der Knaap, 2010). For these reasons, the responses
of hybridizing species to environmental change has been touted as a particularly important “window” on
climate change (Taylor, Larson, & Harrison, 2015).

In the present paper, we took the opportunity to evaluate potential range shifts in a parapatric pair of
insect species that appear to hybridize in overlapping regions of their respective ranges.Phymata americana
Melin and P. pennsylvanicaHandlirsch are two of the most common North American species in the genus
(Family: Reduviidae), with the former more northerly in distribution, extending west across the American
Midwest and Canadian prairies, and the latter mostly concentrated in the northeastern United States. Hy-
bridisation in wild populations has been suspected or inferred (Punzalan & Rowe, 2017; Swanson, 2013);
consistent with this, current molecular phylogenetic data fail to distinguish between the two (Masonick,
Michael, Frankenberg, Rabitsch, & Weirauch, 2017; Masonick & Weirauch, 2020), despite substantial mor-
phological divergence (Punzalan & Rowe, 2017). Both species are generalist predators occurring in temperate
habitats, where they utilize a wide range of plant species as hunting sites (Balduf, 1939, 1941; Yong, 2005),
suggesting considerable niche overlap. In at least one of the species, climatic variables (e.g., environmental
temperature) play a key role in thermoregulation, which is linked to mating activity (Punzalan, Rodd, &
Rowe, 2008a).Thermoregulatory abilities have been linked to melanic traits, and within- and between-species
latitudinal variation in these traits (Punzalan & Rowe, 2015) indirectly supports the importance of clima-
tic variables in the ecology of Phymata . Although there is evidence that their ecological requirements are
consequential to their life histories, there is a shortage of knowledge regarding their ecology. Thus, there
is value in understanding their habitat requirements and predicting their current and future ranges. We
used biogeographic climate data and SDM to characterize the current and recent historical range of these
two species, and forecast future distributions under several scenarios of anthropogenic climate change. We
hypothesized that different sets of candidate abiotic factors are limiting the respective ranges of the two
species, resulting in their current distributions; given anthropogenic climate warming, we hypothesized that
their future overlapping ranges would increase.

MATERIALS AND METHODS

Ambush bug distribution data was compiled from specimens examined by one of the authors (DP) at the
American Museum of Natural History (AMNH), Carnegie Museums of Pittsburgh, Canadian National Col-
lection of Insects, Arachnids, and Nematodes, Royal Ontario Museum, Smithsonian National Museum, Uni-
versity of Guelph Insect Collection, and the University of Michigan Museum of Zoology. Identifications
considered questionable by DP were excluded from subsequent analyses. These data were supplemented
with information available from museum databases provided by the Spencer Entomological Collection, at
the Beaty Biodiversity Museum (https://www.zoology.ubc.ca/entomology/) and the Plant Bug Inventory
maintained by the AMNH (http://research.amnh.org/pbi/). We also gathered data from two citizen science
websites, iNaturalist.org and BugGuide.net. Data collected from iNaturalist.org was included if the species
identity was verified by Paul Masonick (UC Riverside), an authority on Phymata systematics and curator
of the iNaturalist project “Uncovering the ambush bugs” (https://www.inaturalist.org/projects/uncovering-
the-ambush-bugs). Data collected from BugGuide.net requires secondary identification verification before
publishing on the Phymata webpage and was assumed to be accurate.

For accessions lacking latitude and longitude data, we supplemented these data manually using Google Earth.
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Given that bug sightings occurred at a specific point, but its accuracy was not reflected on Google Earth,
coordinates were rounded to include degree and hour only (i.e., minutes and seconds were not used). This is
because locality data were only accurate down to the city level, and, in some cases, were accurate down to
the location of the field station, research station, or building. For the present purposes, degrees and hours
should be sufficient. The localities of all sightings are mapped in Figure 1.

Although museum and citizen science databases go to lengths to confirm species identifications, the possibility
of misidentifying individuals is inevitable, as is heterogeneity in sampling methods and reporting. To mitigate
the effects of such errors, the datasets were inspected, and we removed any data points that were outside of
the range of North America that were a result of errors in the data entry of latitudes or longitudes, as well as
any species identifications that were unreliable (i.e. indicated as uncertain by the collector/photographer).

Locality data was also divided into two subsets, according to: “historical”, referring to sightings before 1970,
and “current” referring to sightings from 1970-present. Preliminary inspection of the “current” and “histori-
cal” distributions of each species suggests that median latitudes of P. americana were decreasing, indicating
a southward shift (Mann-Whitney U = 109360 , n = 1075 ,p -value = 0.00019), while P. pennsylvanica
median latitudes were increasing, indicating a northward shift (U = 127290, n = 970, p -value = 0.00076).
This was consistent with our suspicion that there are opposing changes in the ranges of both species, and
motivated the current study. Additionally, visual comparisons of the historical and current distributions
suggested an increase in the overlap of P. americana and P. pennsylvanica distributions (Figure S1.1 in
Appendix 1). For subsequent analyses, we restricted the data from 1970-2000 (see Table S1.1, Appendix 1 in
Supporting Information), and we refer to this as the current distribution. This was done in order to prevent
temporal mismatch with the bioclimatic data which contained environmental data from 1970-2000.

We obtained climate data in raster form from the WorldClim database (Fick & Hijmans, 2017), which
covered all global land areas except for Antarctica. The grid data was in 2.5 arcminutes (approximately
4.5 square kilometers). The updated (2.0) version of Worldclim’s current environmental data was used to
investigate the influence of environmental variables on ambush bug distributions. This environmental data
ranged from 1970 to 2000 and included 19 bioclimatic variables (Table S1.2, Appendix 1) derived from
monthly temperature and precipitation measurements. For any pair of variables with Pearson’s r > 0.8, one
variable was removed to minimize problems due to collinearity, based on numerous MAXENT runs (see
below). This resulted in 11 bioclimatic variables used for each species. To map future distributions, data
from future climate variables were collected from Worldclim’s original (1.4) version (as there is currently
no updated 2.0 version), using the same 11 bioclimatic variables. Future data were downscaled from data
created using the Community Climate System Model (CCSM4) global climate model (GCM) from the
Fifth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC). Climate variables
were projected into 2050 and 2070, with four Representative Concentration Pathways (RCP) trajectories
representing four possible climate change scenarios dependent on atmospheric greenhouse gas concentration.
The best-case scenario for atmospheric greenhouse gases is represented by the lowest RCP of 2.6. As RCP
increases, the atmospheric greenhouse gas concentration increases as well, up to RCP8.5, the business-as-
usual scenario. Each bioclimatic variable was scaled to each of the four RCPs; the distributions from these
models are mapped.

MAXENT

We used maximum entropy modeling of species’ geographic distributions (MAXENT), an approach often
favoured when restricted to presence data and considered robust even when data is limited. In the absence
of information about environmental conditions, we assumed the probability of a species’ occurrence within
a grid was 0.5 (the default). When a species was found within a grid for which there is information about
environmental conditions, MAXENT improves the model using the environmental variables.

We randomly set aside 25% of the data for the ‘training’ phase, and assumed a logistic model in all runs,
which gives an estimate of the probability of ambush bug presence within a grid. Our subsequent analyses
were based on the averaged values for 10 runs. A preliminary run was conducted using all 19 bioclimatic
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variables to identify variables that contributed 0% gain to the model. If these variables were correlated with
other variables that contributed to the model, the variables with 0% gain were removed.

We inspected response curves and jackknife plots to evaluate the effect of different continuous environmental
variables, and to determine the relative importance of these variables. Response curves were generated
for each individual predictor while all other predictors were set at their average. Geographical projections
of the models in the form of heat maps were used to visualize the predicted probability of ambush bug
occurrence under current and future environmental conditions. Heat maps were then converted to binary
presence/absence maps using thresholds on ArcMap (ESRI 10.6.1). The threshold used to create binary
maps was “10th percentile training presence logistic threshold”. This threshold was selected as it assumes
that 90% of the predicted occurrences will accurately predict the potential range, while 10% of the predicted
occurrences may be erroneous. This results in a more conservative threshold and is more commonly used
with species distribution data collected over a longer period of time by different observers (Rebelo & Jones,
2010).

Raster math calculations were drawn from methods used to calculate the “suitability status change index”
(SSCI), adopted from (Ceccarelli & Rabinovich, 2015). In order to compare the change in suitable habitat, the
future predicted distribution was subtracted from the current predicted distribution. For both P. americana
and P. pennsylvanica , current suitable habitat was assigned “1” and current unsuitable habitat was assigned
“0”, while future suitable habitat was assigned “2” and future unsuitable habitat was assigned “0”. The
difference between current and future predicted distributions resulted in: “-1” = suitable habitat will become
unsuitable; “0” = unsuitable habitat remains unsuitable; “1” = suitable habitat remains suitable”; “2” =
unsuitable habitat becomes suitable.

We calculated the percent of overlap between P. americana andP. pennsylvanica, projected for 2070, to
assess changes in potential contact zones. The predicted ranges of P. americana was subtracted from the
predicted ranges of P. pennsylvanica and the same method was used to calculate the change in suitable
habitats. The suitable habitat of P. pennsylvanica was reclassified to be “0” for unsuitable habitat, and “2”
for suitable habitat, while the current suitable habitat and current unsuitable habitat remained “1” and “0”
respectively for P. americana . Subtracting rasters resulted in: “-1” = suitable habitat for P. americana
only; “0” = unsuitable habitat for both species; “1” = suitable habitat for both species, indicating potential
overlap; “2” = suitable habitat for P. pennsylvanica only. The attributes table for each generated map gives
the total number of grids for suitable and unsuitable habitat. Using these ratios, the percent change in future
predicted distributions under different RCP trajectories and the degree of overlap between the two species
was quantified.

RESULTS

A total of 226 observations were available within the interval for which climate data was available, 104 for
P. americana and 122 forP. pennsylvanica (Table S1.1, Appendix 1). Using these data, the models produced
by the MAXENT approach were statistically well supported, as the ratio of true positives (i.e., sensitivity)
to false positives (i.e., 1–specificity) was maximized. Inspection of the Receiver Operating Curves (ROC),
and the Area Under the Curve (AUC) for both training and test data were greater than 0.90, indicating
excellent model performance (Araújo, Pearson, Thuiller, & Erhard, 2005).

For both species, precipitation and temperature were identified as the strongest predictor of occurrence (see
Appendix 2). Precipitation Seasonality (BIO15), the deviation of monthly precipitation from the annual
average, was the environmental variable with the largest relative percent contribution to the P. americana
ranges. Response curves indicate that the highest probability of P. americana occurrence was at a lower
precipitation seasonality, or localities with low variation in monthly precipitation (Figure 2). Isothermality,
defined as a ratio of the diurnal temperature range to the annual temperature range, was the variable
with the greatest permutation importance. ForP. pennsylvanica , precipitation was also implicated as an
important factor as indicated in the response curves (Figure 2), though in this case it was Precipitation of
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the Driest Quarter (BIO17). The models suggest an optimal precipitation of about 200 millimeters during
the driest quarter, in which P. pennsylvanica has the highest probability of occurrence. Below precipitation
levels of 140 millimeters and above precipitation levels of 300 millimeters, the probability ofP. pennsylvanica
occurrence decreases drastically to less than half of the probability of occurrences at optimal precipitation.
Additionally, there was support for the Mean Temperature of the Coldest Quarter (BIO11) as it was the
variable with the greatest permutation importance. The probability of P. pennsylvanica occurrences was
greatest at a temperature of about -2°C during the coldest quarter. Above a temperature of 3°C and below
a temperature of -6°C, the probability of P. pennsylvanica occurrences decrease to less than half of the
probability of occurrences at optimal temperatures.

Predicted future distributions were mapped as habitat suitability models for P. americana and P. pennsyl-
vanica at RCP8.5 (Figure 3), and the predicted changes in suitable habitats are summarized as percentages
(Table 1). Generally, the percentage of suitable habitats is predicted to increase for P. americana . The grea-
test percent increase of suitable habitats occurs at RCP6.0, with a 2.7% increase in 2050 and a 2.0% increase
in 2070, compared to current suitable habitats. The direction of the range increase is mostly northwestward
and southward. The increase in the percentage of suitable habitats forP. pennsylvanica occurs at a lesser
extent when projected for 2050 and 2070. Similar to P. americana , the greatest percent increase of suitable
habitats for P. pennsylvanica is a 0.8% increase which occurs at RCP6.0 in 2050, and the direction of the
predicted range expansion is southward. Notably, there is no change in the percentage of suitable habitats
at an RCP of 4.5 predicted in 2050. However, predictions for 2070 indicate that the percentage of suitable
habitat either will decrease at an RCP2.6 and RCP4.5 or remain constant at RCP6.0 and RCP8.5 relative
to current suitable habitats. Although there is no predicted change in the percentage of suitable habitats,
there are some fluctuations around range edges where suitable habitat is expected to become unsuitable and
vice versa.

At all RCP trajectories, there is a slight increase in overlapping ranges of the two species (Figure 4 ). The
largest increase in overlap is 0.7%, which occurs at RCP6.0 and RCP8.5. This translates to a contraction
of regions that contain only a single species. ForP. pennsylvanica the largest reduction in predicted range
area of 2.8% occurs at RCP6.0. However, at an RCP6.0, habitats that currently only contain P. americana
is predicted to increase. This suggests that the changes in the amount of suitable habitat will result in the
range shift of P. americana towards the range of P. pennsylvanica , resulting in a larger degree of overlap.
Additionally, at RCP2.6, 4.5 and 8.5, the amount of unsuitable habitat decreases, with the greatest decrease
of 0.4% at RCP8.5 This indicates that a small amount of habitat that was previously unsuitable is now an
area where either one or both species can inhabit. Conversely, at RCP6.0, there is a 0.1% increase of habitat
unsuitable for both species.

DISCUSSION

Distributions in a changing world

Our models predict different responses of P. americana andP. pennsylvanica to anthropogenic climate change,
which may correspond to their respective niche requirements. Our forecasts predict range expansions of both
species is forecasted into 2050, but with a larger range expansion for P. americana (see Appendix 3). This
suggests that the ranges of both species may be able to keep up with short-term predicted climate change. But
by 2070, the range expansion ofP. americana is predicted to be more modest, while P. pennsylvanica ranges
were predicted to remain the same or contract. It should be noted that the occurrence and environmental
data used in this study spans 1970 to 2000, which we referred to as the “current” range. Naturally, validating
the predictions derived from the models will require observation and updating as the movement (presumably)
proceeds.

A sometimes underappreciated underlying assumptions of the models is that species are currently in equi-
librium with the environment, and that species ranges are expected to shift as a consequence of changing
environmental conditions (Elith, Kearney, & Phillips, 2010; Guisan & Thuiller, 2005). For example, despite
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our data suggesting that P. pennsylvanica has a relatively restricted range, it is possible that both Phy-
mata species are still responding to a recent climatic event, or have already begun responding to recent
climate change at the time that occurrence and climatic data was collected. The predicted distributions
for P. pennsylvanica indicates particularly prominent variation around this species’ range edges, possibly
indicating that P. pennsylvanica is near its climatic optimum (Araujo & Pearson, 2005; Hutchinson, 1957).
In comparison, there appears to be more habitat that satisfies the niche of P. americana given different
climate change scenarios. Although it seems contradictory, at first, that the range of suitable habitat for
P. pennsylvanica is not predicted to shift northward in response to forecasted environmental conditions, we
propose several explanations. As suitable habitats for P. pennsylvanica are predicted to be strongly depen-
dent on winter temperature and precipitation, it is possible that future winter conditions do not change as
drastically as other environmental variables that have lesser effects, as predicted by the model. Although it
remains to be seen whether the forecasted changes in climatic conditions are realized, the predicted range
expansions (and potential range overlap) suggest increased hybridisation opportunities and a larger arena
for competition. The potential consequences are difficult to predict, and depend on a number of factors
including rates of dispersal, the fitness of hybrids, and the possibility of character displacement (Goldberg &
Lande, 2007; Pfennig, Kelly, & Pierce, 2016). Such biotic interactions are not accounted for in our models,
but will almost certainly have important influence on realized distributions (Hof, Jansson, & Nilsson, 2012).
This also highlights a critical limitation of SDM in that they typically omit biotic interactions (Bulgarella,
Trewick, Minards, Jacobson, & Morgan-Richards, 2014), and the integration of biological interactions with
abiotic information remains one of the frontiers in modeling species distributions (Anderson, 2017; Elith &
Leathwick, 2009). Furthermore, the models only make projections of potentially suitable habitats, but do
not exclude the possibility that some populations may successfully persist at or beyond the predicted range
margins of the ‘preferred’ habitat (e.g. due to local adaptation and/or metapopulation dynamics). There
is also no guarantee that populations will always successfully track spatial shifts in environmental regimes,
in which case the models may underestimate the possibility and rate of local extirpation. Nevertheless, our
models provide a starting point for generating hypotheses, and adds to a growing recognition that the current
trajectory of climate warming can have important eco-evolutionary ramifications.

Overall, our results are consistent with effects of climate change that is highly variable across species,
geographic regions and over time (Menzel et al., 2002). In other taxa, a diverse spectrum of range shifts have
been well documented (Chen, Hill, Ohlemüller, Roy, & Thomas, 2011). Variability in responses to different
climate change scenarios at different timepoints in the future is seen in studies that have investigated both
individual species (Dowling, 2015; Ning, Wei, & Feng, 2017) and groups of species (Rebelo, Tarroso, & Jones,
2010; Urbani, D’Alessandro, & Biondi, 2017). Different emissions scenarios (i.e., different RCPs) may have
opposite effects on distributions, where a lower RCP induces range expansions and higher RCP projections
lead to range contractions (Wang et al., 2018). Temporal variation has also been reported, where species were
predicted to face extinction due to climate change at the end of the century, even though current distributions
were predicted to expand (Rebelo et al., 2010). Additionally, predicted trends of range shifts may also be
dependent on the amount of uncertainty incorporated in climate data sets (Parra & Monahan, 2008). For
instance, our present study used four climate change projections in order to capture several potential future
distributions, but there are several other projected concentration pathways that encompass a wider range
of possible future greenhouse gas emissions. Due to the variability present in these predictions, modelled
scenarios should be used as guides that are ultimately supplemented by additional sampling or modelling;
any long-term trends may be obscured by short-term range expansions or contractions. The use of SDM
such as MAXENT are critical tools for predicting range shifts but these distributions are contingent upon
the emission scenarios used.

Abiotic determinants of a niche

Species that inhabit the same geographic range may exhibit high ecological similarity, but imperfect niche
overlap will permit coexistence (Darwell & Althoff, 2017). The distinct yet overlapping distributions of P.
americana and P. pennsylvanicasuggests that different bioclimatic variables act to limit ranges. Here, we
identify the variables that are candidates for determining the ranges of P. americana and P. pennsylvanica .
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Our analyses consistently implicate precipitation as an important determinant of the abiotic limits of both
species, whereby P. americana and P. pennsylvanica have different optima. Our results highlight the possi-
bility that natural selection mediated by abiotic factors may be specific to life stage (Arnold & Wade, 1984).
For example, the driest quarter corresponds to the period when eggs of both species are dormant in winter
diapause. During this period, eggs, which are laid on plant material at the end of summer, are likely to be
near the ground, and the amount of precipitation might translate to potentially vulnerability to flooding
or inundation in the following spring. Previous work in one species (Mason, 1976) has also invoked winter
conditions during the egg stage as an important period for triggering phenotypically plastic responses later
in life. For many organisms, strong fluctuations in the environment can be the source of severe selection,
possibly explaining why our analyses also recovered variability in precipitation (during the summer, when
juvenile and adult bugs are present) as important in predicting occurrences (i.e., exclusion).

Mirroring the results for precipitation, our analyses also identified mean and variability of temperature as
potentially important determinants of geographic distribution. The distribution of P. pennsylvanica was
particularly dependent upon the mean temperature of the coldest quarter, possibly pointing to challenges
in the overwintering of eggs as a mechanism restricting P. pennsylvanicato southern latitudes. Although
identification of specific mechanisms is beyond the scope of the present work, the importance of temperature
and fluctuating environmental conditions is consistent with an extensive body of literature on thermal ecology
in insects, including a series of studies demonstrating fluctuating and temperature-dependent selection in
ambush bugs (Punzalan et al., 2008a; Punzalan, Rodd, & Rowe, 2008b, 2010).

Spatial errors in species distribution models

Errors in species occurrence data is virtually inevitable, resulting from inaccuracies in georeferencing, im-
precision in latitude and longitude co-ordinates, or uncertainty in locality descriptions. However, relative
to other species distribution modelling methods based on occurrence data, MAXENT has been found to
maintain predictive accuracy even with locational errors. MAXENT is also less sensitive to a limited sample
compared to other SDM (Wisz et al., 2008), and performs well, so long as the data is comprised of widely
distributed localities. If, however, the subset of the data used is spatially biased, it may exacerbate bias
in estimates. Citizen science data may be particularly prone to opportunistic collection, and hence, biased
occurrence data. However, in the present study, the contributions of citizen science data limited to only three
data points retained in any of the model; the subset of the observations that temporally overlapped with
the available environmental data happened to be comprised mostly of museum data. The data used in the
models originated from multiple sources and databases and consist of samples across much of the previously
assumed range ofPhymata .

A potentially more pressing concern is the potential errors arising from species misidentification (i.e., mi-
sidentifying P. pennsylvanicaindividuals as P. americana or vice versa), as it may result in seemingly robust
but inaccurate models (Lozier, Aniello, & Hickerson, 2009). MAXENT has been found to be robust against
these systematic biases relative to other SDM, but nevertheless, it is for this reason that we attempted
to remove data corresponding to questionable identifications, which included a large portion of the citizen
science data. Future studies involving species distribution modelling could surely benefit from the addition
of citizen science data (Tiago, Pereira, & Capinha, 2017), as these databases improve and provided that
species occurrence data are sufficiently widely distributed.

FIGURE LIST

Figure 1. Locations of P. americana sightings in red and P. pennsylvanica sightings in blue; this includes
both museum and citizen science data and spans a time frame from 1864-2018.

Figure 2. Response curves of P. americana (top) and P. pennsylvanica (bottom) to their strongest respective
predictors. Red indicates the mean response averaged over the 10 replicate MAXENT runs, while blue indi-
cates one standard deviation. For P. americana, BIO15 (Precipitation Seasonality) had the largest percent
contribution, while BIO3 (Isothermality) had the largest permutation importance. For P. pennsylvanica,
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BIO17 (Precipitation of the Driest Quarter) had the largest percent contribution, and BIO11 (Mean Tem-
perature of the Coldest Quarter) had the largest permutation importance.

Figure 3. Distributions of P. americana in red and P. pennsylvanica in blue. The top row depicts predicted
current (1970-2000) distributions with points. The second and third row shows projected for 2050 and 2070
respectively at RCP8.5, with the lighter shades of blue and red indicate previously suitable habitats becoming
unsuitable, and the darker shade of blue and red indicate previously unsuitable habitats becoming suitable.

Table 1. The percentage of change of suitable habitat under different RCP trajectories in comparison to
current predicted distributions.

Figure 4. Projected overlap of distributions of P. americana and P. pennsylvanica in 2050 at RCP2.6 (top
left), RCP4.5 (top right), RCP6.0 (bottom left), and RCP8.5 (bottom right). Red indicates locations that
are only suitable for P. americana, blue indicates locations that are only suitable for P. pennsylvanica, and
purple indicates locations that are suitable for both taxa.

Figure 1. Locations of P. americana sightings in red and P. pennsylvanica sightings in blue; this includes
both museum and citizen science data and spans a time frame from 1864-2018.
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Figure 2. Response curves of P. americana (top) and P. pennsylvanica (bottom) to their strongest respec-
tive predictors. Red indicates the mean response averaged over the 10 replicate MAXENT runs, while
blue indicates one standard deviation. For P. americana, BIO15 (Precipitation Seasonality) had the largest
percent contribution, while BIO3 (Isothermality) had the largest permutation importance. For P. pennsyl-
vanica, BIO17 (Precipitation of the Driest Quarter) had the largest percent contribution, and BIO11 (Mean
Temperature of the Coldest Quarter) had the largest permutation importance.

Figure 3. Distributions of P. americana in red and P. pennsylvanica in blue. The top row depicts predicted
current (1970-2000) distributions with occurrence points. The second and third row shows projected for
2050 and 2070 respectively at RCP8.5, with the lighter shades of blue and red indicate previously suitable
habitats becoming unsuitable, and the darker shade of blue and red indicate previously unsuitable habitats
becoming suitable.

Table 1. The percentage of change of suitable habitat under different representative concentration pathway
(RCP) trajectories in comparison to current predicted distributions.

Year RCP2.6 RCP4.5 RCP6.0 RCP8.5

P. americana 2050 + 1.7% + 1.2% + 2.7% + 2.3%
2070 + 1.6% + 1.1% + 2.0% + 0.7%

P. pennsylvanica 2050 + 0.5% 0 + 0.8% + 0.4%
2070 – 0.4% – 0.4% 0 0

9
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Figure 4. Projected overlap of distributions of P. americana and P. pennsylvanica in 2050 at RCP2.6 (top
left), RCP4.5 (top right), RCP6.0 (bottom left), and RCP8.5 (bottom right). Red indicates locations that
are only suitable for P. americana, blue indicates locations that are only suitable for P. pennsylvanica, and
purple indicates locations that are suitable for both taxa.

Data Accessibility:

The data used in this study have been uploaded to the Open Science Framework, and can be accessed at
the following doi: https://doi.org/10.17605/OSF.IO/B5H3A.
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