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Abstract

Third generation sequencing technologies, such as Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio), have
gained popularity over the last years. These platforms can generate millions of long read sequences. This is not only advantageous
for genome sequencing projects, but also for amplicon-based high-throughput sequencing experiments, such as DNA barcoding.
However, the relatively high error rates associated with these technologies still pose challenges for generating high quality
consensus sequences. Here we present NGSpeciesID, a program which can generate highly accurate consensus sequences from
long-read amplicon sequencing technologies, including ONT and PacBio. The tool includes clustering of the reads to help
filter out contaminants or reads with high error rates and employs polishing strategies specific to the appropriate sequencing
platform. We show that NGSpeciesID produces consensus sequences with improved usability by minimizing preprocessing and
software installation and scalability by enabling rapid processing of hundreds to thousands of samples, while maintaining similar
consensus accuracy as current pipelines
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Summary

Third generation sequencing technologies, such as Oxford Nanopore Technologies (ONT) and Pacific Bio-
sciences (PacBio), have gained popularity over the last years. These platforms can generate millions of long
read sequences. This is not only advantageous for genome sequencing projects, but also for amplicon-based
high-throughput sequencing experiments, such as DNA barcoding. However, the relatively high error rates
associated with these technologies still pose challenges for generating high quality consensus sequences. Here
we present NGSpeciesID, a program which can generate highly accurate consensus sequences from long-read
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amplicon sequencing technologies, including ONT and PacBio. The tool includes clustering of the reads to
help filter out contaminants or reads with high error rates and employs polishing strategies specific to the
appropriate sequencing platform. We show that NGSpeciesID produces consensus sequences with improved
usability by minimizing preprocessing and software installation and scalability by enabling rapid processing
of hundreds to thousands of samples, while maintaining similar consensus accuracy as current pipelines

Keywords: DNA barcoding, amplicon sequencing, third generation sequencing, sequence clustering

Introduction

We are in the middle of a biodiversity crisis, in which anthropogenic change is driving many species to
extinction, often faster than they can be characterized (see e.g. Ceballos et al., (2020)). The identification of
species in our environments is paramount to informing conservation policy and practice. The development of
DNA barcoding (Hebert et al., 2003) was a major step towards large-scale characterizations of biodiversity.
This technique utilizes amplification of standardized genetic regions to characterize species present within
biological samples. Besides the documentation of biodiversity, this method and other amplicon-sequencing
technologies have been widely used for monitoring of invasive species, detection of pathogens in environmental
samples, and many other applications in taxonomy, medicine or evolutionary biology (e.g. reviewed in Kress
et al., (2015)).

Third-generation sequencing is able to sequence millions of single molecules up to several Mbs in lengths
(Jain et al., 2018). Currently, two platforms are readily available for DNA barcoding efforts, PacBio’s
Sequel II and ONT’s MinION. These platforms offer the advantage of longer reads, at the cost of sequencing
errors. While ONT’s MinION still shows higher error rates >5% (Wick et al., 2018), the new PacBio
HiFi mode allows for the generation of read with <1% error (Wenger et al., 2019), which will greatly
improve the generation of accurate DNA barcodes. Early on, researchers identified the potential of third-
generation sequencing platforms for sequencing much longer DNA barcodes than previously possible (see e.g.
Krehenwinkel et al., (2019a); Tedersoo et al., (2018); Wurzbacher et al., (2019)). Beside the longer amplicon
length, ONT’s MinION also offers the advantage that sequencing can be carried out almost anywhere in
the world, due to its small size and affordability (reviewed in Krehenwinkel et al., 2019b). While there has
been a considerable software development effort to assemble high-quality amplicon consensus sequences from
error-prone ONT MinION reads (see e.g. Maestri et al., 2019; Seah et al., 2020; Srivathsan et al., 2019;
reviewed in Krehenwinkel et al., 2019b), only a few software solutions are available for PacBio-based DNA
barcodes (see e.g. Wurzbacher et al., 2019). To our knowledge, of these, only the pipeline presented in
Wurzbacher et al., 2019 is able to handle both PacBio and ONT sequencing reads.

Here, we present NGSpeciesID a one-software solution for reconstructing high-quality amplicon consensus se-
quences for both PacBio and ONT sequencing reads. We also investigate the performance of ONT’s Medaka
polishing software compared to Racon (Vaser et al., 2017) for MinION based DNA barcoding. Compared
to other programs, NGSpeciesID can be easily installed with conda, does not require any specific file name
structures, can handle data from both third-generation sequencing types, includes different consensus pol-
ishing options and only needs fastq files as input. We show that our tool produces consensus sequences of
a similar quality than other software solutions, while reducing the burden to users by requiring little to no
additional tools or data reformatting.

Software description

NGSpeciesID is a program developed in python that wraps a set of tools for read clustering, consensus
forming, and consensus polishing (Figure 1). It is a one-software solution and extension of the Saiga pipeline,
we developed previously (Seah et al., 2020). It can be easily installed using the free and open-source
Anaconda distribution. Briefly, NGSpeciesID clusters amplicon sequencing reads (in fastq format) and forms
a consensus sequence for each cluster. Next, it merges reverse complement clusters. Finally, the remaining
consensus sequence(s) is/are polished. Optionally, the tool can also remove primer sequences from the
consensus after the polishing step. In the following sections we describe the workflow of NGSpeciesID, which
is freely available athttps://github.com/ksahlin/NGSpeciesID . For more details see Supplementary File 1
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and Figure 1.

Clustering of reads

NGSpeciesID first clusters the reads based on expected sequence similarity for ONT or PacBio reads. The
clustering algorithm used in NGSpeciesID is the isONclust algorithm which is described in detail in Sahlin
and Medvedev (2019).

Forming draft consensus

Next, a draft consensus is formed for each cluster that contains more reads than an abundance threshold
(default: 10% of the total number of reads). The draft consensus sequences are formed with spoa (Vaser et
al., 2017).

Reverse complement detection and removal

NGSpeciesID then detects and merges any consensus sequences classified as reverse complement sequences
using pairwise alignment with parasail (Daily, 2016). All consensus sequences are aligned to the reverse
complements of the other sequences, and the respective raw read clusters are combined. Finally, all draft
consensus sequences passing this step, together with the original reads, are sent to polishing.

Polishing

The remaining consensus sequences are polished with either Medaka
(https://github.com/nanoporetech/medaka) or Racon (Vaser et al., 2017). The polished consensus
sequences are the final output of NGSpeciesID.

Primer detection and removal

Many basecalling and de-multiplexing tools do not remove primers from the amplicon sequences (but see
Minibar (Krehenwinkel et al., 2019a)). NGSpeciesID, therefore, implements an optional primer removal step
by searching the forward and reverse complement of each primer within a window at each end of the read.
This is carried out for the polished sequences. If no primer is found, the polished consensus sequence(s)
remain the final output of NGSpeciesID. If primer(s) have been detected and trimmed, NGSpeciesID reruns
the reverse-complement removal and polishing steps to identify any remaining redundant consensus sequences
that were not removed due to primers.

Use cases and comparison to other tools

We tested our software on publicly available data from Maestri et al. (2019) and Wurzbacher et al. (2019),
and compared the accuracy of respective consensus sequences generated in the two studies to those recon-
structed with NGSpeciesID. To measure accuracy, we aligned the consensus sequences to the Sanger sequence
using BLAST (Altschul et al., 1990) and calculated accuracy as the sum of all matches in the alignment
divided by the alignment length. We chose the software solution presented in Wurzbacher et al., (2019) for
our comparison as it is currently, to our knowledge, the only one that can handle both PacBio and ONT
sequencing reads. We further compared our result to the ONTrack software (Maestri et al., 2019) developed
for ONT data specifically. In both comparisons we carried out polishing within NGSpeciesID using Medaka
(https://github.com/nanoporetech/Medaka) and Racon (Vaser et al., 2017).

Comparison to Mothur + Consension

We randomly selected five out of the 61 fungi datasets from Wurzbacher et al., (2019), ranging from 201
to 447 reads per dataset (Supplementary Table 1). These cover five fungi species of the genus Inocybe for
ribosomal DNA (rDNA) and the full ribosomal tandem repeat region (TR). We provide alignments of the
corresponding Sanger sequences with our consensus sequences in the Supplementary (Supplementary files
2-6). In their approach, Wurzbacher et al., (2019) first perform operational taxonomic unit (OTU) clustering
on the read data using Mothur (Schloss et al., 2009). Next, they create consensus sequences using Consension
(Wurzbacher et al., 2019).
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In general, we see that for both ONT and PacBio data NGSpeciesID and the Mothur + Consension pipeline
perform equally well, generating consensus sequences with 98.6% to 100% accuracy (Table 1). In three out
of the five cases, the two pipelines produced consensus sequences with the same accuracy, while in one case
each software slightly outperformed the other (Table 1). Medaka polishing outperformed Racon polishing in
four out of five cases (Table 1).

Comparison to ONTrack

Next, we compared the performance of NGSpeciesID to the pipeline ONTrack from Maestri et al. (2019).
This pipeline first clusters all reads using VSEARCH (Rognes et al., 2016), then randomly selects 200
reads, aligns those with Mafft (Katoh and Standley, 2013), calls the consensus with EMBOSS cons
(http://emboss.sourceforge.net/apps/cvs/emboss/apps/cons.html), and lastly carries out polishing with 200
randomly selected reads using Nanopolish (https://github.com/jts/nanopolish.). We generated consensus
sequences for all seven DNA barcodes from Maestri et al. (2019), which comprise Cytochrome C Oxidase
Subunit 1 (COI) sequences of two snails and five beetles (Supplementary Table 1). We provide the respective
alignments in the Supplementary (Supplementary files 7-13).

Previously, Krehenwinkel et al., (2019a) showed that consensus accuracy can decrease when too many reads
(in the realm of a few hundred reads, depending on the error rate of the individual reads) are selected for the
consensus generation, likely due to an increase in the signal to noise ratio. We thus randomly subsampled
300 reads using seqtk (https://github.com/lh3/seqtk), a number which has been shown to work well with
Nanopore data (Krehenwinkel et al., 2019a). We see that the consensus quality is comparable between the
two tools (Table 2), with accuracy of 99.8% to 100%. In five out of the seven DNA barcode sets both tools
performed equally well, while in one each the two tools outperformed each other, however, differing by only
1 basepair (Table 2).

Mixed samples

We tested NGSpeciesID’s performance on mixed samples in silico by combining 300 reads of each of the seven
barcodes from Maestri et al. (2019). To do so, we set the cluster abundance ratio to 5% (–abundance_-
ratio 0.05). We recovered seven consensus sequences corresponding to the seven DNA barcodes, ranging
from 99.3% to 100% similarity to the corresponding Sanger sequence (Table 2). In four out of the seven
cases, we recovered the same percentage similarity to the Sanger sequence in the mixed analysis as in the
respective single barcode processing. In three cases the accuracy was slightly lower with two and four basepair
differences, respectively.

Discussion

Consensus Quality

Here we present NGSpeciesID, an easy-to-use, one-software solution for the generation of high-quality consen-
sus sequences for the long-read sequencing technologies from ONT and PacBio. We compared NGSpeciesID
against results obtained with Mothur + Consension and ONTrack. In general, all three software solutions
produced consensus sequences of a very high quality, reaching 99-100% accuracy in almost all cases. We
show that NGSpeciesID performs comparably to the other tools. Throughout all comparisons, we see that
consensus sequences based on ONT data polished with Racon usually show lower percent similarities to
the Sanger sequence than consensus sequences polished with Medaka. NGSpeciesID carries out 2 rounds of
Racon polishing by default. Increasing or decreasing the number of rounds might increase the consensus
quality. We chose Medaka as the default error corrector in NGSpeciesID as it includes up to date error
models. We did not include an option to use Nanopolish in NGSpeciesID, which is used in ONTrack, as this
tool requires fast5 files, which are often not available for published Oxford Nanopore data. Furthermore, it
requires preprocessing to generate the appropriate header structure in the corresponding fastq files, which
makes it much more time consuming to use.

As the generation of consensus sequences for DNA barcoding takes only a few seconds for each sample
(depending on the number of reads), we did not compare run times between the different pipelines.
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Easy-use

NGSpeciesID was designed to be straightforward to use. It works on individual read files, outputted either
directly from the basecalling or after demultiplexing (e.g. using Minibar (Krehenwinkel et al. 2019a) or qcat
(https://github.com/nanoporetech/qcat)), but can quickly be adjusted to run in a loop over multiple fastq
files using a bashscript (see Supplementary File 14). It only requires fastq files as input. In contrast, ONTrack
requires the input reads in three formats (fast5, fasta and fastq), which requires additional preprocessing
of the sequencing data. Furthermore, NGSpeciesID allows fastq files to have any naming structure, thus
making it easy for the user to run and to identify samples and replicates. This saves time on preprocessing
of the read data compared to other software solutions.

NGSpeciesID employs quality filtering of the reads based on read phred scores. However, we recommend
also removing reads much shorter or longer than the intended target, which often represent chimeras or
contaminations using NanoFilt (De Coster et al., 2018) before running NGSpeciesID. While our tool can
handle unfiltered data, this might result in the generation of multiple consensus sequences. NGSpeciesID also
offers the option to remove priming sites from the amplicon sequences. As many universal primers include
ambiguity codes, primer regions can potentially include incorrect bases, and should thus be removed. We
further found that primer regions can cause issues for the reverse-complement matching. We thus included
an additional reverse-complement matching step after primer removal, in case NGSpeciesID outputs multiple
consensus sequences. Our tool outputs multiple consensus sequences in case the clustering results in multiple
clusters over a certain percentage of the total reads (by default this is set to 10%). Each consensus sequence
is only polished with the corresponding reads from the clustering. This feature is very useful as it allows the
user to explore potential contaminant reads or mixed samples through the generating of multiple consensus
sequences.

NGSpeciesID and the Mothur + Consension software solution both can handle ONT and PacBio long-read
data. While both tools produce consensus sequences of similar accuracy, Mothur + Consension requires an
in-depth knowledge of the pipeline requiring (i) preprocessing of the input data, (ii) individual components
of the pipeline to be run separately and (iii) has parameter settings that are difficult to interpret, while
NGSpecies is designed to be user friendly and packaged as a one command solution.

Mixed samples

While NGSpeciesID was not designed specifically for metabarcoding data, the flexibility of the algorithmic
steps in the pipeline enables the tool to handle mixed samples. We recovered seven consensus sequences
corresponding to the seven DNA barcodes pooled in the mixed sample analysis. NGSpeciesID generated
highly accurate consensus sequences for all barcodes, ranging from 99.2% to 100%. For the mixed sample
test we adjusted the read abundance ratio for the clusters to 5%, since the seven barcodes at equal abundance
are each present in only 14% of the reads in the sample. Therefore, the default abundance cutoff of 10%
would require 210 out of the 300 reads to be used per cluster, which might not be the case. Three out of
seven barcodes showed a slightly lower consensus accuracy than in the respective single species analysis,
which is likely due to the presence of some reads from other barcodes in the clusters that might have affected
the polishing accuracy, and the random selection of the 300 reads for each barcode (as individual read error
rates can differ). We expect some cross-contamination (reads assigned to the wrong cluster), especially for
closely related species. However, this should improve with the continued improvement of third-generation
sequencing read accuracy. This experiment shows that NGSpeciesID, even though it was not developed for
mixed samples, can recover highly accurate consensus sequences from metabarcoding data. However, its
performance on metabarcoding data will need to be investigated separately with mock datasets of varying
ratios and sample relationships (taxonomic divergences).

Conclusion and Future directions

We present NGSpeciesID, an easy-to-use and flexible one-software solution to generate high-quality consensus
sequences for both ONT and PacBio sequencing data. It performs equally well as other pipelines and software
solutions tested here, but offers advanced usability as it is simple to use and does not require pre-processing
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of the data before running. Portable devices such as the inexpensive MinION sequencer have started to
democratize the process of molecular biodiversity monitoring (see eg. Krehenwinkel et al., (2019b). Here we
add to this, by the development of a simple to install and run bioinformatic software, that should further
enable students and citizen-scientists without a formalized bioinformatic training to carry out biodiversity
monitoring and assessment studies.
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Figure Legend

Figure 1. Steps involved in DNA barcode consensus calling of long-read data. The respective
software tools used in the different steps are provided in brackets. In the first step long-read data is usually
demultiplexed. After demultiplexing, the reads are filtered for read length and quality. This step can also
be carried out before demultiplexing if the respective amplicons do not differ in length. Next, consensus
sequences for the individual read files can be generated using NGSpeciesID. If multiple read files need to be
processed, NGSpeciesID can be run in a pipeline (see Supplementary File 14). Within the tool, reads are
first clustered according to similarity. Next, consensus sequences are generated for each cluster larger than
an abundance threshold (default: > 10% of all reads). In the third step NGSpeciesID checks the generated
consensus sequences for reverse complementary. If consensus sequences are reverse complement, then the
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respective clusters are merged. In step four, the consensus sequences are polished using the reads from the
respective clusters (this step is optional). In the last optional step, primers can be removed if this was not
already carried out by the demultiplexing or basecalling tools. If primers are removed, NGSpeciesID will
carry out step 3 - 4 again.

Tables

17075 17078 16416 16427 16483
NGSpeciesID ONT

Medaka
98.6%
(10/726)

99.2%
(6/741)

99.5% (4/731) 99.6%
(3/790)

100%
(0/709)

ONT Racon 98.5%
(11/726)

99.1% (7/741) 99.7% (2/731) 99.1% (7/790) 99.9% (1/709)

PB Racon 98.6%
(10/726)

99.1% (7/741) 99.9%
(1/731)

99.6%
(3/790)

100%
(0/709)

Mothur +
Consension

ONT 98.6%
(10/726)

99.2%
(6/741)

99.9%
(1/731)

99.5% (4/790) 100%
(0/709)

PB 98.6%
(10/726)

99.2%
(6/741)

99.7% (2/731) 99.6%
(3/790)

100%
(0/709)

Table 1. Percent similarity to the respective Sanger sequence for the datasets 17075, 17078,
16416, 16427 and 16483 from Wurzbacher et al. (2019). The highest similarity scores are highlighted
in bold.

BC1* BC2 BC3 BC4* BC5 BC6* BC7*
NGSpeciesIDONT

Medaka
100%
(0/651)

100%
(0/658)

99.9%
(1/649)

100%
(0/606)

100%
(0/658)

99.8%
(1/576)

100%
(0/536)

ONT
Racon

99.5%
(3/651)

99.5%
(3/658)

98.9%
(7/649)

99.2%
(5/606)

99.8%
(1/658)

99.7%
(2/576)

99.4%
(3/536)

ONTrack ONT 99.9%
(1/651)

100%
(1**/658)

100%
(2**/649)

100%
(0/606)

100%
(2**/658)

99.8%
(1/576)

100%
(0/536)

Mixed
NGSpeciesIDONT

Medaka
100%
(0/651)

100%
(0/658)

99.7%
(2/649)

99.3%
(4/606)

100%
(0/658)

99.8%
(1/576)

99.6%
(2/536)

Table 2. Percent similarity to the respective Sanger sequence for the datasets B1 to BC7
from Maestri et al. (2019). For the mixed samples, 300 reads of each of the seven DNA barcodes were
combined into a single file, from which NGSpecesID generated multiple consensus sequences. NGSpeciesID
was run using Medaka polishing. * Here the Sanger sequence from Maestri et al. 2019 was shorter than the
expected fragment length and all the consensus sequences. In these cases we only calculated the percentage
similarity for the region covered by the respective Sanger sequence. ** The consensus sequences from Maestri
et al. 2019 are missing one or two bases at the start, which could be due to a consensus calling error, or
deletion of one additional base during the primer removal. For the percentage accuracy we assumed them
to be incorrectly trimmed. The highest similarity scores are highlighted in bold.
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Read clustering  
(isONclust) 

   Consensus sequence generation 
 (SPOA) 

   Reverse complement merging 
(Parasail) 

   Consensus sequence polishing 
    (ONT: Medaka; ONT & PB: Racon) 

(optional) 

     Primer detection and 

removal 

(optional) 
5 

1 

2 

3 

4 

NGSpeciesID 

Final consensus sequence 

MinION/PacBio raw read data  

Demultiplexing raw read data 
(minibar or qcat) 

Quality and size filtering 
(Nanofilt) 
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