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Abstract

The first-order relativistic corrections to the non-relativistic energies of hydrogen-like atom embedded in plasma screening

environments are calculated in the framework of direct perturbation theory by using the generalized pseudospectral method. The

standard Debye-Hückel potential, exponential cosine screened Coulomb potential, and Hulthén potential are employed to model

different screening conditions and their effects on the eigenenergies of hydrogen-like atoms are investigated. The relativistic

corrections which include the relativistic mass correction, Darwin term, and the spin-orbit coupling term for both the ground

and excited states are reported as functions of screening parameters. Comparison with previous theoretical predictions shows

that both the relativistic mass correction and spin-orbit coupling obtained in this work are in good agreement with previous

estimations, while significant discrepancy and even opposite trend is found for the Darwin term. The overall relativistic-corrected

system energies predicted in this work, however, are in good agreement with the fully relativistic calculations available in the

literature. We finally present the scaling law of the first-order relativistic corrections and discuss the validity of the direct

perturbation theory with respect to both the nuclear charge and the screening parameter.

E-mail address: lgjiao@jlu.edu.cn

Introduction

Investigation of the plasma screening effect on the embedded atoms has been of considerable interest in
the interdisciplinary areas of atomic and molecular physics, plasma physics, condensed matter physics, and
astrophysics (Margenau & Lewis, 1959; Ichimaru, 1982; Murillo et al., 2013; Stanton & Murillo, 2015). In
the past few decades, several models have been proposed and widely used to simulate the structure variation,
response, and reaction dynamics of atomic systems in different types of plasmas. The most representative
and also simplest screening model is the Debye-Hückel or Yukawa model (Debye & Hückel, 1923; Ugalde
et al., 1997; Sil et al., 2009; Janev et al., 2016; Zan et al., 2017; Zhu et al., 2020), where the charged
particles are interacted through an exponential screened Coulomb potential (SCP). Such a model has been
extensively used to simulate the collective electronic screening effects of weakly-coupled classical plasmas on
the charged particle interactions. Its significance in describing the shielding effects of charged mobile carriers
on the impurity ion in the semiconductor or quantum dot has also been revealed (Kwon, 2006; Genkin &
Lindroth, 2010). On the other hand, the strongly-coupled dense quantum plasmas can be effectively modeled
by an exponential cosine screened Coulomb potential (ECSCP) or cosine-Debye-Hückel potential (Shukla
& Eliasson, 2008; Shukla & Eliasson, 2010; Shukla & Eliasson, 2012). It has also been well-known for
a long time that the ECSCP has wide applications in modeling the screening environment in solid-state
physics (McIrvine, 1960; Hall, 1962; Krieger, 1969). Another important and simplified short-range potential
applied to model the screening effect in plasmas and other environments is the Hulthén potential (HP)
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. (Hulthén, 1942; Varshni, 1990; Bahar et al., 2016). It shows similar behavior as the SCP in short range
but is systematically weaker than both the SCP and ECSCP. It can also be employed to perturbatively
approximate the SCP in weak screening conditions (Lam & Varshni, 1971) due to the fact that charged
particles interacting with HP in s-wave symmetry are analytically solvable.

In the past few years, there has been a wealth of theoretical studies on the abundant physical properties
of atoms interacting with the three types of model potential. The variation of system energies has been
thoroughly investigated by many numerical methods such as the variational method (Roussel & O’Connell,
1974; Greene & Aldrich, 1976; Stubbins, 1993), 1/N expansion method (Roy, 1986; Chatterjee, 1987; Sever
& Tezcan, 1987), the asymptotic iteration method (Ciftci et al., 2003; Bayrak & Boztosun, 2007), the
perturbation method (McEnnan et al., 1976; Lai, 1982), the generalized pseudospectral method (Roy, 2005;
Roy, 2013; Roy, 2016), etc. Other interesting properties of the screened atom include the state radiative
transition and lifetime (Qi et al., 2008; Qi et al., 2016), static and dynamic polarizabilities (Qi et al.,
2009; Das, 2012; Kar et al., 2018), multiphoton excitation and ionization (Qi et al., 2009; Qi et al., 2017),
classical and quantum information-theoretic investigations (Isonguyo et al., 2018; Abdelmonem et al., 2017),
resonances (Bylicki et al., 2007; Nasser et al., 2011), and electron-atom scattering processes (Qi et al.,
2013; Karmakar & Ghoshal, 2019). Reviewing these works one may find that most of the researches were
performed in the framework of non-relativistic theory, i.e. the solution of Schrödinger equation. Some fully
relativistic calculations on specific physical properties are also available in the literature (see, for example,
Refs. (Filippin et al., 2014; Krauthauser & Hill, 2002)) which, by necessity, rely on the accurate solution
of the relativistic Dirac equation. On the other hand, for light atoms or ions with relatively small nuclear
charge, the relativistic effects can be efficiently and also accurately taken into account by using the direct
perturbation theory. For the one-electron system eigenenergies investigated in this work, these effects reduce
to the well-known three terms including the relativistic mass correction, the Darwin term, and the spin-orbit
coupling term (Bethe & Salpeter, 2008; Zhu et al., 2020).

The systematic investigation on the relativistic effects in hydrogen-like ions embedded in Debye plasmas
modeled by SCP has been performed by Bielińska-Wa̧ż et al. (Bielińska-Wa̧ż et al., 2004). The authors
presented the analytical first-order perturbative corrections to the system energies for several lower-lying
bound states and verified that the first-order perturbation theory gives a very good approximation to the
locations of energy levels for ionized atoms in plasmas. The variation of fine-structure splittings and the
relativistic effects on excitation transition rates were also examined for different ions in various screening
conditions. The subsequent work of Poszwa (Poszwa, 2012), based on the expansion of wave function
into Sturmian functions, focused on the accurate computation of relativistic corrections for the screened
hydrogen-like atoms in SCP and HP models. Non-relativistic and the overall (three-term summed) first-
order relativistic corrections for bound states with n ≤ 4 and j = l− 1/2 were reported with high accuracy.
The effectiveness of the direct perturbation theory is then confirmed by the same author (Poszwa & Bahar,
2015) for hydrogen-like ions with nuclear charge up to 40, through a comparison with the fully relativistic
calculations of the Dirac equation. The most recent work of Chaudhuri et al. (Chaudhuri et al., 2017)
solved the non-relativistic energies and the first-order relativistic corrections by expanding the system wave
function in terms of Slater-type orbitals which, to the best of our knowledge, is the first investigation on
the individual contribution of the three relativistic terms on atomic structure under screening confinements.
The variations of relativistic mass correction, Darwin term, and spin-orbit splitting for the ground as well
as the first two p-wave excited states of hydrogen-like ions (from C5+ to Ti21+) embedded in both SCP and
ECSCP are provided for a wide range of screening parameters. After careful examining the numerical values
reported by the authors, however, we find that there exist quite large discrepancies between the authors’
calculations and the predictions by Poszwa (Poszwa, 2012), especially at large screening parameters. The
aims of our present work are therefore three folds: (1) we would like to provide, in the framework of first-order
direct perturbation theory, a systematic investigation on the three relativistic correction terms for screened
hydrogen-like ions with SCP, ECSCP, and HP models, in both the ground and excited states, (2) resolve the
discrepancies between previous predictions by providing fully converged, highly accurate calculations based
on a different theoretical method, and (3) discuss the applicability of the direct perturbation theory with
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. respect to both the nuclear charge and the screening parameter.

This paper is organized as follows. In Sec. II, we briefly outline the theoretical method in accurately solving
the Schrödinger equation and formulate the first-order relativistic corrections in different screened Coulomb
potentials, followed by the derivation of scaling laws with respect to the nuclear charge. In Sec. III, we
present comprehensive comparison of our numerical calculations with previous predictions and some general
discussions about the validity of the direct perturbation treatment of relativistic effects. Sec. IV is devoted
to the summary and conclusion. Atomic units are used throughout the paper (~ = me = e = 1) and the
speed of light c = 137.035999084 is adopted according to the recommendation of CODATA2018 (Mohr et
al., 2016).

Theoretical method

Generalized pseudospectral method

In this section, we present an overview of the GPS method for accurately solving the Schrödinger equation of
hydrogen-like ions in the non-relativistic framework. Only essential steps will be introduced and more details
can be found in Refs. (Roy, 2005; Roy, 2013; Roy, 2016; Zhu et al., 2020; Yao & Chu, 1993; Chu & Telnov,
2004) and references therein. The radial Schrödinger equation for one-electron system can be written as

[
−1

2

d2

dr2
+
l(l + 1)

2r2
+ V (r)

]
ψnl(r) = Enlψnl(r),

(1)

where

V (r) =
−Ze

−λr

r , for SCP,

−Ze
−λr

r cos(λr), for ECSCP,

−Zλe
−λr

1−e−λr , for HP,

(2)

in which λ denotes the characteristic screening parameter, n and l refer to, respectively, the principle and
orbital angular quantum numbers, and Z the atomic nuclear charge. All three types of screened Coulomb
potential reduce to the Coulomb potential at the limit of λ = 0. Except for the special case of Hulthén
potential in s-wave symmetry (with eigenenergy En0 = −(2Z − λn2)2/(8n2) (Varshni, 1990)), there are no
analytical solutions for Eq. 1 with potential in Eq. 2 and some numerical approximations must be made.

The GPS method solves the differential equation in the scheme of discretized variable representation. The
semi-infinite domain r ∈ [0,∞] is firstly mapped onto a finite one x ∈ [−1, 1] through the following non-linear
mapping function

r ≡ f(x) = L
1 + x

1− x
,

3
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. (3)

where L is an adjustable mapping parameter. The radial wave function is then transformed by φ(x) =√
f ′(x)ψ(f(x)) and substituted into Eq. 1. The transformed radial Schrödinger equation now reads

[
− 1

2f ′(x)

d2

dx2
1

f ′(x)
+
l(l + 1)

2f(x)2
+ V (f(x))

]
φ(x) = Eφ(x).

(4)

The key step in performing the GPS method is to approximate the smooth, unknown function φ(x) by a
N -th order polynomial φN (x) (Yao & Chu, 1993; Chu & Telnov, 2004), i.e.

φ(x) ≈ φN (x) =

N∑
j=0

φ(xj)gj(x),

(5)

where xj are the collocation points with x0 = −1, xN = 1,and xj,(j=1,...,N−1) are roots of the first derivative
of Legendre polynomial LN (x), and gj(x) are cardinal functions fulfilling the delta-like relation gj(xi) = δij .

The Dirichlet boundary condition ψ(0) = ψ(∞) = 0 for physical bound states leads to φ(−1) = φ(1) = 0,
which further simplifies the (N + 1)-dimensional eigenvalue problem into a (N − 1)-dimensional one. After
performing a symmetric procedure, Eq. 4 is finally converted into a standard and symmetric eigenvalue
problem

N−1∑
j=1

HijAj = EAi,

(6)

where

Aj =

√
f ′(xj)ψ(f(xj))

LN (xj)
,

(7)

and

Hij = −1

2

1

f ′(xi)
(d2)ij

1

f ′(xj)
+
l(l + 1)

2f(xi)2
δij + V (f(xi))δij ,

4
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. (8)

with the second-order differential matrix given by (Canuto et al., 2006)

(d2)ij ={
−N(N+1)

3(1−x2
i )
, i = j ∈ [1, N − 1],

− 2
(xi−xj)2 , i 6= j, i, j ∈ [1, N − 1].

(9)

Relativistic corrections

According to the direct perturbation theory (Bethe & Salpeter, 2008), the first-order relativistic correction
to the non-relativistic energy of one-electron system is give by

E(1) =
1

4c2

(
−2〈(V − E(0))2〉+

1

2
〈∇2V 〉+

〈
σ ·L1

r

dV

dr

〉)
.

(10)

Here we use the notation 〈O〉 ≡ 〈Ψ|O |Ψ〉 as the expectation value of an operator O with respect to the non-
relativistic (zero-order) wave function Ψ. Therefore, the zero-order energy E(0) is exactly the eigenenergy
of the Schrödinger equation solved by Eq. 1. The three terms on the right-hand side of the above formula
is known as the relativistic mass correction (or the relativistic correction to kinetic energy) Em, the Darwin
term ED, and the spin-orbit coupling term Eso, respectively. The more concrete form of these terms are
given by (Poszwa, 2012; Chaudhuri et al., 2017)

Em = − 1

2c2
(E(0))2 +

1

c2
E(0)〈V 〉 − 1

2c2
〈V 2〉,

(11)

ED =
1

8c2
〈∇2V 〉 =


−λ

2Z
8c2

〈
e−λr

r

〉
+ Z

8c2 〈
δ(r)
r2 〉, for SCP,

−λ
2Z
4c2

〈
e−λr sin(λr)

r

〉
+ Z

8c2 〈
δ(r)
r2 〉, for ECSCP,

λ2Z
8c2

〈
e−λr

(1−e−λr)2

(
2
r −

λ(1+e−λr)
1−e−λr

)〉
+ Z

8c2 〈
δ(r)
r2 〉, for HP,

(12)

5
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.

and

Eso =
1

4c2

(
j(j + 1)− l(l + 1)− 3

4

)〈
1

r

dV

dr

〉
,

(13)

where j =
∣∣l ± 1

2

∣∣ is the quantum number of the spin-orbit coupled angular momentum and

dV

dr
=


λr+1
r2 Ze−λr, for SCP,

(λr+1) cos(λr)+λr sin(λr)
r2 Ze−λr, for ECSCP,

λ2

(1−e−λr)2Ze
−λr, for HP.

(14)

The calculation of expectation values in the framework of GPS is quite straightforward. Taking the radial
expectation value in m-th power (m ≥ −2l − 1) as an example, the integration is conveniently transformed
into a finite summation

〈rm〉 =

∫ 1

−1
|φ(x)|2f(x)mdx =

N−1∑
j=1

A2
jf(xj)

m,

(15)

where Aj are available directly from the eigenvectors of eigenvalue problem shown in Eq. 6. However, due
to the Dirichlet boundary condition for bound states has been explicitly incorporated into the GPS method,
one cannot obtain the value of radial wave function at the origin. Such a fact causes significant effect in
the calculations of quantities such as 〈r−2(l+1)〉 and 〈δ(r)〉. In Ref. (Zhu et al., 2020), we have successfully
introduced an extrapolation technique (Press et al., 1992) to extract the information of wave function at
the origin and applied it to calculate various expectation values of physical quantities for confined atoms.
The numerical accuracy are generally in the same level as those obtained directly from the GPS method.
Such a technique is used in the present work to calculate the relativistic mass correction and Darwin term
on account of, respectively, the contributions from 〈V 2〉 and 〈δ(r)〉. The spin-orbit coupling term is only
applicable for non-s states and, therefore, there is no need to supplement the contributions from the origin.

6
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. Z-scaling law

Recalling the fact that one can always introduce the Z-scaling transformations of radial variable and screening
parameter (Poszwa, 2012)

ρ = Zr, µ =
λ

Z
,

(16)

into the Schrödinger equation, so as to express the non-relativistic system energy in a Z-independent form

ε(0)(µ) =
E(0)(Z, λ)

Z2
,

(17)

the scaling law for the first-order relativistic corrections shown in Eqs. 10–13 can correspondingly be derived
as

ε(1)(µ) =
E(1)(Z, λ)

Z4
.

(18)

The relativistic-corrected energy for a hydrogen-like ion with nuclear charge Z is immediately obtained by

Erel(Z, λ) = Z2ε(0)(µ) + Z4ε(1)(µ).

(19)

In what follows, we will focus on the system with Z = 1, i.e. the hydrogen atom, rewriting µ and ε(0,1) by
λ and E(0,1) for convenience.

The Z-scaling laws shown in Eqs. 17 and 18 can be utilized to test the accuracy of numerical calculations.
This is done in our following discussion about the accuracy of the GPS method employed in this work. From
Eq. 19 we can easily find that the contribution of the first-order relativistic effect increases two times faster
than the non-relativistic energies when the atomic number Z is increased. Therefore, the direct perturbation
theory should not be applicable for highly charged ions. Another aspect that we would like to emphasis and
discuss later is that, for a screening parameter being close to the critical value λc where the bound state
acquires zero non-relativistic energy and then merges into the continuum (Varshni, 1990; Roy, 2016; Varshni,
2001; Diazt et al., 1991), the corresponding relativistic corrections might not be zero. In such a situation,
the direct perturbation theory does not work as well.

7
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. Results and discussion

Non-relativistic energies

Table 1: Scaling law of the non-relativistic energy and the first-order relativistic correction for the ground
state of hydrogen-like ions with SCP. The calculations on systems with extremely high Z are included just
for illustrative purposes.
µ Z λ E(0) E(1)c2

0.1 1 0.1 -0.407058030613403156754507070360 -0.122754284918530966315649559192
0.1 10 1 -0.407058030613403156754507070361(+2) -0.122754284918530966315649559191(+4)
0.1 100 10 -0.407058030613403156754507070361(+4) -0.122754284918530966315649559190(+8)
1.0 1 1 -0.102857899900176968047742153144(-1) -0.199226874870901285487229982705(-1)
1.0 10 10 -0.102857899900176968047742153143(+1) -0.199226874870901285487229982705(+3)
1.0 100 100 -0.102857899900176968047742153144(+3) -0.199226874870901285487229982706(+7)

figures/fig1/fig1-eps-converted-to.pdf

Figure 1: Variation of the non-relativistic energies for some lower-lying bound states (n ≤ 5, l ≤ 3) of H
atom in various screening environment as functions of screening parameter. In each group of states in the
same n shell, the orbital angular momentum l increases from right to left. (a) SCP, (b) ECSCP, and (c) HP.

The robustness of GPS method in solving the radial Schrödinger equation has been well-established and here
we show some examples on the accuracy of numerical calculations. In Table 1, the non-relativistic energy

8
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. and the first-order relativistic correction for the ground state of one-electron systems are shown for scaled
screening parameter µ = 0.1 and 1.0. A total number of N = 600 points are used, the mapping parameter
is adjusted by setting L = 〈r〉, and all calculations are performed in quadruple precision (∼ 34 significant
digits). It is found that both E(0) and E(1)c2 follow very well the Z-scaling laws defined in Eqs. 17 and 18
(∼ 30 significant digits). The increasing of N would slightly increase the convergence because the utilization
of N = 600 is large enough for us to have access to the quadruple-precision arithmetic limit. The calculations
are somewhat less sensitive with respect to L. The highly accurate results shown in Table 1 also demonstrate
that the extrapolation technique introduced in Sec. II. C is quite effective.

The non-relativistic spectra of hydrogen atom in the three types of screened Coulomb potential, i.e. SCP,
ECSCP, and HP, are illustrated in Fig. 1 (a), (b), and (c), respectively. Numerical results at some
selected values of λ are provided in the Supplementary Material. The variation of spectrum in the screening
environment has been extensively discussed by many authors, we present some general trends as follows: (1)
the screened Coulomb potentials with non-zero values of screening parameter only support finite number of
bound states due to their short-range character, (2) the l degeneracy of bound states in the same n shell is
destroyed and the spectrum is systematically lifted up when the screening strength is enhanced, and (3) with
continuously increasing the screening parameter to specific critical values, the bound states would eventually
acquire zero eigenenergies and then merge into the continuum. It is worth mentioning here that very accurate
critical screening parameters for a variety of bound states of hydrogen atom in SCP, ECSCP, and HP are
available in the literature (Varshni, 1990; Roy, 2016; Varshni, 2001; Diazt et al., 1991). The present GPS
calculations implemented in quadruple precision can successfully reproduce the benchmark values with more
than 9 digits.
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. Relativistic corrections

figures/fig3/fig3-eps-converted-to.pdf

Figure 2: Relativistic mass correction for some lower-lying bound states (n ≤ 5, l ≤ 3) of H atom in various
screening environment as functions of screening parameter. In each group of states with same l symmetry,
the principle quantum number n increases from top to bottom. (a) SCP, (b) ECSCP, and (c) HP.
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figures/fig4a/fig4a-eps-converted-to.pdf

Figure 3: Same as Fig. 2 but for the Darwin term. They are positive and negative for s- and non-s-wave
states, respectively. (a, d) SCP, (b, e) ECSCP, and (c, f) HP.
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.

figures/fig5/fig5-eps-converted-to.pdf

Figure 4: Same as Fig. 2 but for the spin-orbit splitting which is defined by ∆Eso = Eso, j=l+1/2 −
Eso, j=l−1/2 for non-s-wave states only. (a) SCP, (b) ECSCP, and (c) HP.

The relativistic corrections for one-electron system include the relativistic mass correction Em, the Darwin
term ED, and the spin-orbit coupling term Eso. From Eqs. 10–13 we know that the relativistic mass
correction exists in all bound states, while the spin-orbit coupling only shows up in non-s-wave states. The
Darwin term comes from two components, one from the screened character of interaction potential and the
other from the amplitude of wave function at the origin. Therefore, it is expected that the Darwin terms
are non-zero for all s-wave states, while for non-s-wave states they only exist in the screened situation where
λ 6= 0. Considering the Z-scaling laws shown in Eqs. 17–19, we explicitly show in the Supplementary
Material a complete list of the non-relativistic energy E(0) and the overall first-order relativistic correction
E(1)c2 for the bound states (n ≤ 4, l ≤ 3) of H atom embedded in SCP, ECSCP, and HP. For SCP and HP,
the calculations of Poszwa (Poszwa, 2012) by using an expansion method based on Sturmain functions are
included for comparison. For ECSCP, there are no predictions available in the literature and we compare
with the fully relativistic calculations of Poszwa and Bahar (Poszwa & Bahar, 2015) by solving the Dirac
equation. Input parameters of N = 400 and L = 〈r〉 are used in the present GPS calculations and the
reported numerical values are fully converged in all digits shown in the tables. It is found that our results
are in excellent agreement with the previous predictions when they are available and, furthermore, the
agreement in ECSCP demonstrates that the first-order direct perturbation approximation is well applied for
low-Z hydrogen-like ions (Poszwa, 2012; Poszwa & Bahar, 2015).

The individual variation of relativistic mass correction, the Darwin term, and spin-orbit coupling as functions
of screening parameter are illustrated in Figs. 2, 3, and 4, respectively, for H atom in the three screening

12
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. potentials. The calculations for each bound state are performed for screening parameters starting from zero
up to corresponding critical value. It is clear that the relativistic mass correction takes negative values whose
magnitude decreases continuously when the potential screening strength is increased. The same trend is
followed by the spin-orbit splitting term except that they are positive. The Darwin term, as discussed above,
shows significant discrepancies between s- and non-s-wave states. From Fig. 3 (a–c), it is shown that the
Darwin term for s-wave states decreases monotonically from its unscreened value. Such a trend is expected
from Eq. 12 on account of the fact that, as increasing λ the wave function become more diffused in the radial
distribution and, as a result, its amplitude at the origin decreases. The other component which stems from
the screened character of potential takes a negative value, and its contribution is generally enlarged. The
Darwin term for non-s-wave states shown in Fig. 3 (d–f) solely comes from the first component and they
are always negative. For relatively small values of λ where the radial density distribution of wave function
does not change much under the influence of screened potential, the Darwin term follows approximately a
quadratic law with respect to λ, i.e. ED ∝ −Cλ2, as we can simply derive from Eq. 12. With continuously
increasing λ the expectation-value term decreases drastically because of the delocalization of radial wave
function. The competition of these two effects leads to a maximum of Darwin term located at screening
parameter close to the corresponding critical value.

From Figs. 2–4, it is interestingly found that, at critical screening parameters λc where the “bound” states
have zero non-relativistic energies, the three relativistic corrections are actually non-zero in spite of their
extremely small quantities. This is understood as follows. The Dirichlet boundary conditions ψ(0) = ψ(∞) =
0 holds only for bound states with E(0) < 0. When λ = λc and E(0) = 0 where the bound state transforms
into a quasi-bound or continuum state, the boundary conditions in such cases are known to be ψ(0) = 0 and
ψ(∞) = constant = 1 (normalized condition) (Diazt et al., 1991; Varshni & Kesarwani, 1978). Therefore,
all three terms are non-zero and the overall relativistic corrections to eigenenergies are correspondingly non-
zero (with very small magnitude). We further comment that the above discussion are ideal cases on the
assumption of the applicability of direct perturbation theory. For practical purposes, the fully relativistic
calculations based on Dirac equation would shed more light on such critical phenomena.
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figures/fig6/fig6-eps-converted-to.pdf

Figure 5: Comparison of the non-relativistic energy E(0), the relativistic mass correction Em, and the
Darwin term ED for the ground state energies of C5+ ion in SCP, ECSCP, and HP. Lines are present
calculations and dots are from Chaudhuri et al. (Chaudhuri et al., 2017). (a) E(0), (b) Em, and (c) ED.

In the following discussion, we would like to take a detailed comparison with the predictions of Chaudhuri
et al. (Chaudhuri et al., 2017) who employed the basis-set expansion method based on Slater-type orbitals.
The authors presented systematic investigations on individual relativistic correction terms for hydrogen-like
ions with Z = 6–22, in both SCP and ECSCP. Keeping in mind that the Z-scaling law is applicable for
the iso-electronic sequence, we only show in Table 2 the comparison of Em and ED for the ground state of
C5+ in SCP. Also included in the table are the calculations of relativistic-corrected energy E = E(0) + E(1)

by Poszwa (Poszwa, 2012) using a similar method but on Sturmian functions. The comparisons of E(0),
Em, and ED for all three types of screened Coulomb potential are demonstrated in Fig. 5 for an overview.
It is interestingly found that although our calculations on E(0) and Em are in good agreement with the
predictions of Chaudhuri et al. (Chaudhuri et al., 2017), the Darwin term ED, however, show opposite
changes as varying the screening parameter. Similar situation is found on the Darwin term for all the
ground states of H iso-electronic sequence with both SCP and ECSCP.

It is noted from Table 2 and comparison in the Supplementary Material that the present results show excellent
agreement with the calculations of Poszwa (Poszwa, 2012). For further comparison, we list in Table 3 the
present and Chaudhuri et al. (Chaudhuri et al., 2017)’s first-order relativistic corrections and the fully
relativistic calculation of Poszwa and Bahar (Poszwa & Bahar, 2015) for the ground state of Ca19+ in
ECSCP. The present relativistic-corrected energies are in better agreement with the fully relativistic results
of Poszwa and Bahar (Poszwa & Bahar, 2015) in all cases. The divergence with respect to the Darwin term

14
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. accounts for the main part of discrepancies in the total system energy. It is also noted that the relativistic
mass corrections show larger discrepancies at relatively large screening parameters. We keep in mind that
both the present and Chaudhuri et al. (Chaudhuri et al., 2017)’s calculations successfully reproduce the
analytical result of Darwin term at λ = 0 where the wave function at the origin contributes solely. Hence, it is
reasonably conjectured that the divergence would come from the estimation of expectation-value contribution
with respect to the screened Coulomb potentials.

Table 4 presents the comparison of non-relativistic energy E(0) and separate relativistic correction terms,
i.e. Em, ED, and Eso, for the 2p excited state of C5+ in both SCP and ECSCP. Good agreement is found
between the present estimations and those in Chaudhuri et al. (Chaudhuri et al., 2017), except for the cases
when the screening parameters are close to λc(2p). We also notice that at λ = 1.4 and 0.9 for SCP and
ECSCP, respectively, the authors predicted a positive energy for 2p state as well as finite values for the three
relativistic terms. Such calculations are not feasible in the present GPS method due to they are not bound
states.

Relativistic effect on charged ions

figures/fig7/fig7-eps-converted-to.pdf

Figure 6: Ratios of the first-order relativistic correction E(1) to the non-relativistic energy E(0) as functions
of λc-scaled screening parameter for the ground state of hydrogen-like ions with Z = 1–40 in SCP. The gray
area represents the parameter space where the direct perturbation theory is not applicable.
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figures/z20/z20-eps-converted-to.pdf

Figure 7: Non-relativistic energy and the first-order relativistic correction for the ground state of Ca19+ as
functions of screening parameter in SCP, ECSCP, and HP. E(0) and E(1) refer to left and right ordinates,
respectively.

In Table 3 we have shown that the non-relativistic energy combined with the first-order relativistic correction
approximates very well to the fully relativistic energy of hydrogen-like ion with Z = 20 in a wide range of
screening parameters. On the other hand, the scaling law shown in Eq. 19 reveals a fact that the relativistic
correction increases much faster than the non-relativistic energy as increasing Z. Therefore, it would be of
great interest to investigate the applicability of the direct perturbation theory in the combined parameter
space of λ and Z. Fig. 6 displays the ratio of the first-order relativistic correction to the non-relativistic
energy defined by σ = E(1)/E(0) as functions of re-scaled screening parameter λ/λc for some selected nuclear
charge Z. For all ions investigated here, the modification of system energy by relativistic effects is smallest
in the pure Coulomb situation. It is found that σ would increase monotonically for increasing the screening
strength, and eventually approach to infinity at λc due to E(0) = 0 but E(1) 6= 0. Taking σ < 0.1 as the
tentative criteria for the validity of the direct perturbation theory, it is generally concluded that the first-
order relativistic correction applies very well for low- and intermediate-Z ions, with the range of screening
parameter λ diminishing slightly for increasing Z.

We finally show in Fig. 7 a comparison of the non-relativistic energy and the relativistic corrections in
different screened Coulomb potentials for the ground state of Ca19+. The critical screening parameters are
40.0, 23.812, and 14.410 for HP, SCP, and ECSCP, respectively. For a one-electron system, in virtue of
the relation VCP ≤ VHP ≤ VSCP ≤ VECSCP and the comparison theory (Stubbins, 1993; Wang, 1992)

for Schrödinger equation, we can immediately obtain the inequality of energy as E
(0)
CP ≤ E

(0)
HP ≤ E

(0)
SCP ≤
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. E
(0)
ECSCP . However, as one can see from Fig. 7, the first-order relativistic correction does not have such a

relationship, especially between E
(1)
SCP and E

(1)
ECSCP . The same behavior can also be found in Fig. 5 for

the ground state of C5+, where both the relativistic mass correction and Darwin term cross each other at a
specified screening parameter. Nevertheless, the relativistic-corrected energies E = E(0) + E(1) (not shown
in Fig. 7 because they are indistinguishable from the curves of E(0)) still follow the prediction of comparison
theory due to the fact that E(1) are several orders of magnitude smaller than E(0).

Conclusion

In this work, we have applied the GPS method to solve the radial Schrödinger equation for various bound
states of hydrogen-like ions in SCP, ECSCP, and HP. The obtained highly accurate non-relativistic energies
and wave functions are then employed to calculate the first-order relativistic corrections in the framework
of direct perturbation theory. It has been shown that the magnitude of relativistic mass correction and
spin-orbit coupling for all bound states and the Darwin term for s-wave states decreases monotonically if the
screening effect is enhanced continuously. The Darwin term for non-s-wave states, however, increases rapidly
from zero, reaching to the maximum at a relatively large screening parameter, and then decreases to a finite
value at the corresponding critical screening parameter. Our numerical results are thoroughly compared with
previous basis-set expansion predictions. Excellent agreement is found between the present results with those
available in the literature obtained by utilizing Sturmian functions, while quite large discrepancies exist in the
comparison with the one using Slater-type orbitals. The possible reason for such a disagreement is discussed.
The applicability of the direct perturbation theory with respect to the screening parameter and nuclear
charge is analyzed in detail. We generally conclude that the perturbation theory can be reasonably applied
to low- and intermediate-Z hydrogen-like ions, with the effective range of screening parameters diminishing
for increasing Z. In the vicinity of critical screening parameters where the bound states tend to merge into
the continuum, as well as for the systems of highly-charged ions immersed in screening environments, the
perturbation theory fails and one needs to explicitly deal with the fully relativistic Dirac equation. Such
researches will be investigated in our future work.
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Table 2: Comparison of the non-relativistic energy E(0), the relativistic mass correction Em, the Darwin
term ED, and the relativistic-corrected energy E = E(0) + E(1) for the ground state of hydrogen-like C5+

with SCP. “a” and “b” refer to the calculations by Chaudhuri et al. (Chaudhuri et al., 2017) and Poszwa
(Poszwa, 2012), respectively. Numbers in parentheses represent the power of ten.

λ E(0) Em ED E = E(0) + E(1)

0.0 -0.18000000000000000000(+2) -0.43133597161550642224(-1) 0.34506877729240513779(-1) -0.18008626719432310128(+2)
a -0.180000(+2) -0.4313(-1) 0.3451(-1) -0.1800862(+2)

0.1 -0.17407418517859090871(+2) -0.43112444917501392016(-1) 0.34490427288445192949(-1) -0.17416040535488147070(+2)
a -0.174074(+2) -0.4311(-1) 0.3452(-1) -0.1741599(+2)

0.2 -0.16829362081766378936(+2) -0.43050561624145300164(-1) 0.34442303677742497180(-1) -0.16837970339712781739(+2)
a -0.168294(+2) -0.4305(-1) 0.3455(-1) -0.1683790(+2)

0.4 -0.15715101482992056018(+2) -0.42813164327018026177(-1) 0.34257706769099032732(-1) -0.15723656940549975011(+2)
a -0.157151(+2) -0.4282(-1) 0.3468(-1) -0.1572324(+2)

0.5 -0.15178117029475488390(+2) -0.42641471270731927347(-1) 0.34124203338026577242(-1) -0.15186634297408193740(+2)
a -0.151781(+2) -0.4265(-1) 0.3477(-1) -0.1518598(+2)

0.6 -0.14654089102082513643(+2) -0.42436745027905181196(-1) 0.33965010827056979440(-1) -0.14662560836283361845(+2)
a -0.146540(+2) -0.4245(-1) 0.3488(-1) -0.1466157(+2)
b -0.1465408910207(+2) -0.1466256083618(+2)

0.8 -0.13643620698402448000(+2) -0.41934353818183206077(-1) 0.33574323307114359136(-1) -0.13651980728913516847(+2)
a -0.136435(+2) -0.4195(-1) 0.3514(-1) -0.1365031(+2)

1.0 -0.12681326565304625861(+2) -0.41317343122697589289(-1) 0.33094404292349440904(-1) -0.12689549504134974010(+2)
a -0.126810(+2) -0.4134(-1) 0.3548(-1) -0.1268686(+2)

1.2 -0.11765106409290961856(+2) -0.40595764499564403897(-1) 0.32532980720480535149(-1) -0.11773169193070045725(+2)
a -0.117645(+2) -0.4062(-1) 0.3587(-1) -0.1176925(+2)
b -0.1176510640928(+2) -0.1177316919298(+2)

1.4 -0.10893080955511220025(+2) -0.39778645256743239076(-1) 0.31896965355137331897(-1) -0.10900962635412825933(+2)
a -0.108921(+2) -0.3979(-1) 0.3632(-1) -0.1089557(+2)

2.4 -0.71415390010266077979(+1) -0.34525461981316201479(-1) 0.27799789441365590867(-1) -0.71482646735665584085(+1)
a -0.7141539001032(+1) -0.7148264673506(+1)

3.6 -0.38208926702093109480(+1) -0.26455253257739239858(-1) 0.21467308855074859869(-1) -0.38258806146119753280(+1)
b -0.3820892670216(+1) -0.3825880614569(+1)

4.8 -0.16093549619049478752(+1) -0.17433144967559004267(-1) 0.14306597985346782278(-1) -0.16124815088871600972(+1)
b -0.1609354961906(+1) -0.1612481508858(+1)

5.4 -0.87531097779007397595 -0.12824215760358025646(-1) 0.10600711044238809214(-1) -0.87753448250619319238
b -0.875310977790 -0.877534482484

6.0 -0.37028843964063708497 -0.82672198448711382312(-2) 0.68922803625613602059(-2) -0.37166337912294686300
b -0.370288439640 -0.371663379108
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Table 3: Same as Table 2 but for the ground state of hydrogen-like Ca19+ with ECSCP. “a” and “b”
refer to the calculations by Chaudhuri et al. (Chaudhuri et al., 2017) and Poszwa and Bahar (Poszwa &
Bahar, 2015), respectively, where the latter ones are obtained by solving the fully relativistic Dirac equation.
Numbers in parentheses represent the power of ten.
λ E(0) Em ED E = E(0) + E(1)

0.0 -0.20000000000000000000(+3) -0.53251354520432891634(+1) 0.42601083616346313307(+1) -0.20106502709040865783(+3)
a -0.200000(+3) -0.53251(+1) 0.42601(+1) -0.2010650(+3)

0.2 -0.19600039503136935897(+3) -0.53251131189026585046(+1) 0.42600909158327130301(+1) -0.19706541723443930445(+3)
b -0.1960003950(+3) -0.1970761076(+3)

0.4 -0.19200312104371877076(+3) -0.53249598328355965886(+1) 0.42599711899914902937(+1) -0.19306810968656287705(+3)
b -0.1920031208(+3) -0.1930788004(+3)

0.5 -0.19000605792932006636(+3) -0.53247953775786249438(+1) 0.42598427530875260666(+1) -0.19107101055381116524(+3)
a -0.190006(+3) -0.53247(+1) 0.42621(+1) -0.1910686(+3)
b -0.1900060580(+3) -0.1910817008(+3)

1.0 -0.18004698656827506722(+3) -0.53225283888140899257(+1) 0.42580727261140756551(+1) -0.18111144223097508149(+3)
a -0.180047(+3) -0.53219(+1) 0.42753(+1) -0.1810936(+3)
b -0.1800469864(+3) -0.1811221316(+3)

1.3 -0.17410135310514757452(+3) -0.53195504065903856260(+1) 0.42557481684604100911(+1) -0.17516515534327755006(+3)
a -0.174101(+3) -0.53183(+1) 0.42924(+1) -0.1751269(+3)

1.4 -0.17212582171205500669(+3) -0.53182177570785344407(+1) 0.42547080630489434021(+1) -0.17318933140608459773(+3)
a -0.172126(+3) -0.53167(+1) 0.43000(+1) -0.1731427(+3)

1.5 -0.17015382277680726707(+3) -0.53166972601173756517(+1) 0.42535214265594278971(+1) -0.17121699861036521482(+3)
a -0.170154(+3) -0.53149(+1) 0.43087(+1) -0.1711602(+3)

2.0 -0.16035390985579127672(+3) -0.53059333726936709971(+1) 0.42451227343786806374(+1) -0.16141472049410626707(+3)
a -0.160354(+3) -0.53019(+1) 0.43701(+1) -0.1612858(+3)
b -0.1603539096(+3) -0.1614253936(+3)

2.5 -0.15067144207573046925(+3) -0.52890860543166390618(+1) 0.42319811817388894001(+1) -0.15172854694830821891(+3)
a -0.150671(+3) -0.52818(+1) 0.44660(+1) -0.1514868(+3)

2.9 -0.14302459108217906024(+3) -0.52705662224665402346(+1) 0.42175382740719889228(+1) -0.14407761903057361155(+3)
a -0.143024(+3) -0.52598(+1) 0.45718(+1) -0.1437120(+3)

3.0 -0.14112797618986065528(+3) -0.52651774542539057041(+1) 0.42133362381038127074(+1) -0.14217981740601074828(+3)
a -0.141128(+3) -0.52534(+1) 0.46027(+1) -0.1417787(+3)
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Table 4: Comparison of the non-relativistic energy E(0), the relativistic mass correction Em, the Darwin
term ED, and the spin-orbit splitting Eso for the 2p state of hydrogen-like C5+ with SCP and ECSCP. At
each λ, the upper and lower values refer to the present calculations and Chaudhuri et al. (Chaudhuri et al.,
2017), respectively. Numbers in parentheses represent the power of ten.

λ E(0) Em ED Eso
0.0 -0.45000000000000000000(+1) -0.12580632505452270649(-2) -0.00000000000000000000 0.21566798580775321112(-2)

-0.45000(+1) -0.1258(-2) -0.0000 0.2157(-2)
0.1 -0.39242267001422700080(+1) -0.12478898413572424103(-2) -0.55918705306759162530(-6) 0.21413979812525624639(-2)

-0.39242(+1) -0.1248(–2) -0.5592(–6) 0.2141(–2)
0.2 -0.33942172396060618738(+1) -0.12195100307229144321(-2) -0.20781441014818062612(-5) 0.20986234129871593718(-2)

-0.33943(+1) -0.1220(–2) -0.2078(–5) 0.2099(–2)
0.4 -0.24589405220019876749(+1) -0.11185170520181424280(-2) -0.70631924555678937946(-5) 0.19449332332871531418(-2)

-0.24590(+1) -0.1119(–2) -0.7063(–5) 0.1945(–2)
0.5 -0.20490146715875436710(+1) -0.10500847643452042140(-2) -0.10077949239901002996(-4) 0.18395141345720073696(-2)

-0.20490(+1) -0.1050(–2) -0.1008(–4) 0.1839(–2)
0.6 -0.16752380575220859019(+1) -0.97203547572531580993(-3) -0.13149539475119555527(-4) 0.17179731667236160845(-2)

-0.16752(+1) -0.9720(–3) -0.1315(–4) 0.1718(–2)
0.8 -0.10313731553375941372(+1) -0.79289305787062678061(-3) -0.18610193283461030680(-4) 0.14332500956406870311(-2)

-0.10314(+1) -0.7929(–3) -0.1861(–4) 0.1433(–2)
1.0 -0.52140885352455732283 -0.59052812949063395702(-3) -0.21695607348129916682(-4) 0.11001501387911662724(-2)

-0.5214 -0.5905(–3) -0.2170(–4) 0.1100(–2)
1.2 -0.14765927510822725398 -0.36646087402336680263(-3) -0.20103782163487558959(-4) 0.71183576885273532956(-3)

-0.1645 -0.3849(–3) -0.2088(–4) 0.7515(–3)
1.3 -0.19680162034544718227(-1) -0.22833705379400729870(-3) -0.15313499392818844637(-4) 0.45663020789966732921(-3)

-0.193(-1) -0.2325(–3) -0.1560(–4) 0.4642(–3)
1.4 (unbound)

0.1302 -0.1055(-3) -0.8097(-5) 0.2195(-3)
0.1 -0.39015727784159449991(+1) -0.12568517722808661373(-2) -0.73439462363078043700(-7) 0.21548866072884358518(-2)

-0.39016(+1) -0.1257(-2) -0.7344(-7) 0.2155(-2)
0.2 -0.33118997825494852702(+1) -0.12490978719965065086(-2) -0.53928072146042060141(-6) 0.21433967350898309146(-2)

-0.33119(+1) -0.1249(-2) -0.5393(-6) 0.2143(-2)
0.3 -0.27381244479023177048(+1) -0.12299276429699153419(-2) -0.16664881845511531356(-5) 0.21149136637965910490(-2)

-0.27381(+1) -0.1230(-2) -0.1666(-5) 0.2115(-2)
0.4 -0.21861782834415849767(+1) -0.11956538394992060253(-2) -0.36027172442188614905(-5) 0.20637372768064714506(-2)

-0.21862(+1) -0.1196(-2) -0.3603(-5) 0.2064(-2)
0.5 -0.16613519901275354255(+1) -0.11431549086017646826(-2) -0.63786731190958691494(-5) 0.19847294884235098557(-2)

-0.16614(+1) -0.1143(-2) -0.6379(-5) 0.1985(-2)
0.6 -0.11688769865085986738(+1) -0.10692019631213785634(-2) -0.98966999531319766759(-5) 0.18721308434984849105(-2)

-0.11688(+1) -0.1069(-2) -0.9897(-5) 0.1872(-2)
0.7 -0.71472293543211057030 -0.96922107054971645195(-3) -0.13885513573889145060(-4) 0.17172883844795937723(-2)

-0.7147 -0.9692(-3) -0.1389(-4) 0.1717(-2)
0.8 -0.30737616937856374699 -0.83285869514776562125(-3) -0.17724872249838974423(-4) 0.15004416896477121992(-2)

-0.3073 -0.8328(-3) -0.1772(-4) 0.1500(-2)
0.9 (unbound)

0.0307 -0.5512(-3) -0.1735(-4) 0.1018(-2)
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