References
  1. Carvani-farahani A, shirazi A. A Fatigue Damage Model for (0/90) FRP Composites based on Stiffness Degradation of 0° and 90° Composite Plies. J. Reinf. Plast. Compos. 2007; 26 (13).
  2. Hosoi A, Sato N, Kusumoto Y, Fujiwara K, Kawada H. High-cycle fatigue characteristics of quasi-isotropic CFRP laminates over 108 cycles (Initiation and propagation of delamination considering interaction with transverse cracks). Int J of Fatigue. 2010; 32:29–36.
  3. Degrieck J, Van Paepegem W. Fatigue damage modeling of fibre-reinforced composite materials: Review. Appl Mech Rev.2001; 54(4).
  4. Mohammadi B, Fazlali B, Salimi-Majd D. Development of a continuum damage model for fatigue life prediction of laminated composites. Composites: Part A 93. 2017:163–176.
  5. Sendeckyj GP. Life prediction for resin-matrix composite materials. In: Reifsnider KL Ed: Fatigue of composite materials. Composite Material Series 4. Elsevier. 1990; 431–483.
  6. Shirazi A, Varvani-Farahani A. A Stiffness Degradation Based Fatigue Damage Model for FRP Composites of (0/θ) Laminate Systems. Appl Compos Mater. 2010; 17:137–150.
  7. Berthelot J, ElMahi A, LeCorre DJF. Development of transverse cracking in cross-ply laminates during fatigue tests. Compos Sci Technol. 2001; 61:1711–1721.
  8. Poursartip A. The Fatigue Damage Mechanics of a Carbon Fibre Composite Laminate: I–Development of the Model. Compos. Sci. Technol. 1986;25:193-218
  9. Reifsnider KL, Case S, Duthoit J. The mechanics of composite strength evolution. Comp Sci Tech.2000;60: 2539-2546.
  10. Ogin SL, Smith PA, Beaumont PWR. Matrix Cracking and Stiffness Reduction during the Fatigue of a (0/90)s GFRP Laminate. Compos. Sci. Technol. 1985;22:23-31.
  11. Stens C, Middendorf P. Computationally efficient modelling of the fatigue behaviour of composite materials. Int J of Fatigue. 2015;80:69–75.
  12. Schaff JR, Davidson BD. Life prediction methodology for composite structures. Part I – constant amplitude and two-stress level fatigue. J Compos Mater. 1997;31(2):128–57.
  13. Reifsnider KL, Henneke EG, Stinchcomb W, Duke JC. Damage mechanics and NDE of composite laminates. Mechanics of composite mater. New York: Pergamon Press. 1983. p. 399–420.
  14. Highsmith A, Reifsnider KL. Stiffness-reduction mechanisms in composite laminates. Damage in composite materials. Philadelphia and PA: ASTM; 1982. p. 103–17.
  15. Daniel IM, Lee JW, Yaniv G. Damage Mechanisms and stiffness degradation in grahite/epoxy composites. In: proc. 6th International Conference on Composite Materials and 2nd European Conference on Composite Materials, 1987, pp. 4.129-4.138.
  16. Kashtalyan M, Soutis C. Stiffness degradation in cross-ply laminates damaged by transverse cracking and splitting Composites: Part A. 2000;31:335–351.
  17. Ospina Cadavid M, Al-Khudairi O, Hadavini H, Goodwin D, Liaghat GH. Experimental Studies of Stiffness Degradation and Dissipated Energy in Glass Fibre Reinforced Polymer Composite under Fatigue Loading. Polymers and Polymer Composites.2017;25(6):435-446.
  18. Okabe T, Onodera S, Kumagai Y, Nagumo Y. Continuum damage mechanics modeling of composite laminates including transverse cracks. Int. J Damage Mechanics. 2017; 0(0): 1–19.
  19. Allen DH, Harris CE and Groves SE . A thermomechanical constitutive theory for elastic composites with distributed damage – Part I: Theoretical development. International Journal of Solids and Structures. 1987; 23(9): 1301–1318.
  20. Allen DH, Harris CE and Groves SE .A thermomechanical constitutive theory for elastic composites with distributed damage – Part II: Application to matrix cracking in laminated composites. International Journal of Solids and Structures. 1987; 23(9): 1319–1338.
  21. Berthelot JM . Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: Static and fatigue loading. App Mech Rev. 2003; 56(1): 111–147.
  22. Gudmundson P, Zang W. An analytic model for thermoelastic properties of composite laminates containing transverse matrix cracks. Int. J Solids Struct. 1993; 30(23): 3211–3231.
  23. O’Brien TK, Reifsnider KL. Fatigue damage evaluation through stiffness measurements in boron-epoxy laminates. J. Compos. Mater. 1981;15: 55–70.
  24. Kobayashi S, Ogihara S and Takeda N. Damage mechanics analysis for predicting mechanical behaviour of general composite laminates containing transverse cracks. Advances in Composite Materials. 2000; 9(4): 363–375.
  25. Nairn JA, Hu S. The Initiation and Growth of Delaminations Induced by Matrix Microcracks in Laminated Composites. Int. J Fracture. 1992; 57:1-24.
  26. Han YM, Hahn HT. Ply cracking and property degradations of symmetric balanced laminates under general in-plane loading. Composites Science and Technology 1989;35:377–97.
  27. Lee JW, Daniel IM. Progressive cracking of crossply composite laminates. Journal of Composite Materials 1990; 24:1225–43.
  28. Dharani LR, Tang H. Micromechanics characterization of sublaminate damage Int. J. Fract.1990; 46:123.
  29. Carraro PA, Quaresimin M.A stiffness degradation model for cracked multidirectional laminates with cracks in multiple layers. Int J Solids Struct. 2015; 58:34–51
  30. Gagel A, Lange D, Schulte K. On the relation between crack densities, stiffness degradation, and surface temperature distribution of tensile fatigue loaded glass-fibre non-crimp-fabric reinforced epoxy. Composites: Part A. 2006; 37: 222–228
  31. Crammond G, Boyd SW, Dulieu-Barton JM. Evaluating the localised through-thickness load transfer and damage initiation in a composite joint using digital image correlation. Composites: Part A.2014; 61:224–234.
  32. Goidescu C, Welemane H, Garnier C, Fazzini M, Brault R, et al. Damage investigation in CFRP composites using fullfield measurement techchniques: combination of digital image stereo-correlation, infrared thermography and X-ray tomography. Composites Part B: Engineering. 2013;48:95-105.
  33. Montesano J, Bougherara H, Fawaz Z. Application of infrared thermography for the characterization of damage in braided carbon fiber reinforced polymer matrix composites. Composites: Part B. 2014;60:137–143
  34. Pakdel H, Mohammadi B. Stiffness degradation of composite laminates due to matrix cracking and induced delamination during tension-tension fatigue. Eng Fract Mech. 2019;216.
  35. Poursartip A. The Characterisation of delamination growth in laminates under fatigue loading. In: Proc. ASTM Symposium on Toughened Composites. Houston, March, 1985.
  36. Chen X. Experimental observation of fatigue degradation in a composite wind turbine blade. Comp Struct. 2019; 212: 547–551.
  37. Emery TR, Dulieu-Barton JM. Thermoelastic Stress Analysis of damage mechanisms in composite materials. Composites: Part A.2010; 41:1729–1742
  38. Emery TR, Dulieu-Barton JM, Earl JS, Cunningham PR. A generalised approach to the calibration of orthotropic materials for thermoelastic stress analysis. Comp Sci Tech. 2008; 68: 743-752.
  39. Palumbo D, De Finis R, Demelio PG, Galietti U. A new rapid thermographic method to assess the fatigue limit in GFRP composites. Composites Part B: Engineering. 2016;103: 60-67.
  40. De Finis R, Palumbo D, Galietti U. A multianalysis thermography-based approach for fatigue and damage investigations of ASTM A182 F6NM steel at two stress ratios. Fatigue Fract Eng Mater. Struct.2019; 42, (1):267-283.
  41. Huanga J. Pastor MJ, Garnier C, Gonga XJ. A new model for fatigue life prediction based on infrared thermography and degradation process for CFRP composite laminates. Int J Fatigue.2019; 120:87–95.
  42. De Finis R, Palumbo D, Galietti U. Mechanical behaviour of stainless steels under dynamic loading: An investigation with thermal methods. J of Imaging, 2016;2(4):32
  43. Nijssen RPL. Fatigue Life Prediction and Strength Degradation of Wind Turbine Rotor Blade Composites. The Netherlands: Knowledge Centre Wind turbine Materials and Constructions (KC-WMC), 2006, p. 93.
  44. Whitworth HA. Evaluation of the residual strength degradation in composite laminates under fatigue loading. Composite Structures.2000;48:261-264.
  45. Pitarresi G, Found MS, Patterson EA. An investigation of the influence of macroscopic heterogeneity on the thermoelastic response of fibre reinforced plastics. Comp Sci Tech.2005; 65: 269–280
  46. Belnoue, JPH, Mesogitis T.Understanding the buckling behaviour of steered tows in Automated Dry Fibre Placement (ADFP) placement pre-preg laminates. Composites: Part A. 2017; 102:196–206.
  47. Belhaj M, Deleglise M. Dry fiber automated placement of carbon fibrous preforms. Composites: Part B 50.2013:107–111.
  48. Standard test method for tension-tension fatigue of polymer matrix composite materials D3479M-96