References
- Carvani-farahani A, shirazi A. A Fatigue Damage Model for (0/90) FRP
Composites based on Stiffness Degradation of 0° and 90° Composite
Plies. J. Reinf. Plast. Compos. 2007; 26 (13).
- Hosoi A, Sato N, Kusumoto Y, Fujiwara K, Kawada H. High-cycle fatigue
characteristics of quasi-isotropic CFRP laminates over 108 cycles
(Initiation and propagation of delamination considering interaction
with transverse cracks). Int J of Fatigue. 2010; 32:29–36.
- Degrieck J, Van Paepegem W. Fatigue damage modeling of
fibre-reinforced composite materials: Review. Appl Mech Rev.2001;
54(4).
- Mohammadi B, Fazlali B, Salimi-Majd D. Development of a continuum
damage model for fatigue life prediction of laminated composites.
Composites: Part A 93. 2017:163–176.
- Sendeckyj GP. Life prediction for resin-matrix composite materials.
In: Reifsnider KL Ed: Fatigue of composite materials. Composite
Material Series 4. Elsevier. 1990; 431–483.
- Shirazi A, Varvani-Farahani A. A Stiffness Degradation Based Fatigue
Damage Model for FRP Composites of (0/θ) Laminate Systems. Appl Compos
Mater. 2010; 17:137–150.
- Berthelot J, ElMahi A, LeCorre DJF. Development of transverse cracking
in cross-ply laminates during fatigue tests. Compos Sci Technol. 2001;
61:1711–1721.
- Poursartip A. The Fatigue Damage Mechanics of a Carbon Fibre Composite
Laminate: I–Development of the Model. Compos. Sci. Technol.
1986;25:193-218
- Reifsnider KL, Case S, Duthoit J. The mechanics of composite strength
evolution. Comp Sci Tech.2000;60: 2539-2546.
- Ogin SL, Smith PA, Beaumont PWR. Matrix Cracking and Stiffness
Reduction during the Fatigue of a (0/90)s GFRP Laminate. Compos. Sci.
Technol. 1985;22:23-31.
- Stens C, Middendorf P. Computationally efficient modelling of the
fatigue behaviour of composite materials. Int J of Fatigue.
2015;80:69–75.
- Schaff JR, Davidson BD. Life prediction methodology for composite
structures. Part I – constant amplitude and two-stress level fatigue.
J Compos Mater. 1997;31(2):128–57.
- Reifsnider KL, Henneke EG, Stinchcomb W, Duke JC. Damage mechanics and
NDE of composite laminates. Mechanics of composite mater. New York:
Pergamon Press. 1983. p. 399–420.
- Highsmith A, Reifsnider KL. Stiffness-reduction mechanisms in
composite laminates. Damage in composite materials. Philadelphia and
PA: ASTM; 1982. p. 103–17.
- Daniel IM, Lee JW, Yaniv G. Damage Mechanisms and stiffness
degradation in grahite/epoxy composites. In: proc. 6th International
Conference on Composite Materials and 2nd European Conference on
Composite Materials, 1987, pp. 4.129-4.138.
- Kashtalyan M, Soutis C. Stiffness degradation in cross-ply laminates
damaged by transverse cracking and splitting Composites: Part A.
2000;31:335–351.
- Ospina Cadavid M, Al-Khudairi O, Hadavini H, Goodwin D, Liaghat GH.
Experimental Studies of Stiffness Degradation and Dissipated Energy in
Glass Fibre Reinforced Polymer Composite under Fatigue Loading.
Polymers and Polymer Composites.2017;25(6):435-446.
- Okabe T, Onodera S, Kumagai Y, Nagumo Y. Continuum damage mechanics
modeling of composite laminates including transverse cracks. Int. J
Damage Mechanics. 2017; 0(0): 1–19.
- Allen DH, Harris CE and Groves SE . A thermomechanical constitutive
theory for elastic composites with distributed damage – Part I:
Theoretical development. International Journal of Solids and
Structures. 1987; 23(9): 1301–1318.
- Allen DH, Harris CE and Groves SE .A thermomechanical constitutive
theory for elastic composites with distributed damage – Part II:
Application to matrix cracking in laminated composites. International
Journal of Solids and Structures. 1987; 23(9): 1319–1338.
- Berthelot JM . Transverse cracking and delamination in cross-ply
glass-fiber and carbon-fiber reinforced plastic laminates: Static and
fatigue loading. App Mech Rev. 2003; 56(1): 111–147.
- Gudmundson P, Zang W. An analytic model for thermoelastic properties
of composite laminates containing transverse matrix cracks. Int. J
Solids Struct. 1993; 30(23): 3211–3231.
- O’Brien TK, Reifsnider KL. Fatigue damage evaluation through stiffness
measurements in boron-epoxy laminates. J. Compos. Mater. 1981;15:
55–70.
- Kobayashi S, Ogihara S and Takeda N. Damage mechanics analysis for
predicting mechanical behaviour of general composite laminates
containing transverse cracks. Advances in Composite Materials. 2000;
9(4): 363–375.
- Nairn JA, Hu S. The Initiation and Growth of Delaminations Induced by
Matrix Microcracks in Laminated Composites. Int. J Fracture. 1992;
57:1-24.
- Han YM, Hahn HT. Ply cracking and property degradations of symmetric
balanced laminates under general in-plane loading. Composites Science
and Technology 1989;35:377–97.
- Lee JW, Daniel IM. Progressive cracking of crossply composite
laminates. Journal of Composite Materials 1990; 24:1225–43.
- Dharani LR, Tang H. Micromechanics characterization of sublaminate
damage Int. J. Fract.1990; 46:123.
- Carraro PA, Quaresimin M.A stiffness degradation model for cracked
multidirectional laminates with cracks in multiple layers. Int J
Solids Struct. 2015; 58:34–51
- Gagel A, Lange D, Schulte K. On the relation between crack densities,
stiffness degradation, and surface temperature distribution of tensile
fatigue loaded glass-fibre non-crimp-fabric reinforced epoxy.
Composites: Part A. 2006; 37: 222–228
- Crammond G, Boyd SW, Dulieu-Barton JM. Evaluating the localised
through-thickness load transfer and damage initiation in a composite
joint using digital image correlation. Composites: Part A.2014;
61:224–234.
- Goidescu C, Welemane H, Garnier C, Fazzini M, Brault R, et al. Damage
investigation in CFRP composites using fullfield measurement
techchniques: combination of digital image stereo-correlation,
infrared thermography and X-ray tomography. Composites Part B:
Engineering. 2013;48:95-105.
- Montesano J, Bougherara H, Fawaz Z. Application of infrared
thermography for the characterization of damage in braided carbon
fiber reinforced polymer matrix composites. Composites: Part B.
2014;60:137–143
- Pakdel H, Mohammadi B. Stiffness degradation of composite laminates
due to matrix cracking and induced delamination during tension-tension
fatigue. Eng Fract Mech. 2019;216.
- Poursartip A. The Characterisation of delamination growth in laminates
under fatigue loading. In: Proc. ASTM Symposium on Toughened
Composites. Houston, March, 1985.
- Chen X. Experimental observation of fatigue degradation in a composite
wind turbine blade. Comp Struct. 2019; 212: 547–551.
- Emery TR, Dulieu-Barton JM. Thermoelastic Stress Analysis of damage
mechanisms in composite materials. Composites: Part A.2010;
41:1729–1742
- Emery TR, Dulieu-Barton JM, Earl JS, Cunningham PR. A generalised
approach to the calibration of orthotropic materials for thermoelastic
stress analysis. Comp Sci Tech. 2008; 68: 743-752.
- Palumbo D, De Finis R, Demelio PG, Galietti U. A new rapid
thermographic method to assess the fatigue limit in GFRP composites.
Composites Part B: Engineering. 2016;103: 60-67.
- De Finis R, Palumbo D, Galietti U. A multianalysis thermography-based
approach for fatigue and damage investigations of ASTM A182 F6NM steel
at two stress ratios. Fatigue Fract Eng Mater. Struct.2019; 42,
(1):267-283.
- Huanga J. Pastor MJ, Garnier C, Gonga XJ. A new model for fatigue life
prediction based on infrared thermography and degradation process for
CFRP composite laminates. Int J Fatigue.2019; 120:87–95.
- De Finis R, Palumbo D, Galietti U. Mechanical behaviour of stainless
steels under dynamic loading: An investigation with thermal methods. J
of Imaging, 2016;2(4):32
- Nijssen RPL. Fatigue Life Prediction and Strength Degradation of Wind
Turbine Rotor Blade Composites. The Netherlands: Knowledge Centre Wind
turbine Materials and Constructions (KC-WMC), 2006, p. 93.
- Whitworth HA. Evaluation of the residual strength degradation in
composite laminates under fatigue loading. Composite
Structures.2000;48:261-264.
- Pitarresi G, Found MS, Patterson EA. An investigation of the influence
of macroscopic heterogeneity on the thermoelastic response of fibre
reinforced plastics. Comp Sci Tech.2005; 65: 269–280
- Belnoue, JPH, Mesogitis T.Understanding the buckling behaviour of
steered tows in Automated Dry Fibre Placement (ADFP) placement
pre-preg laminates. Composites: Part A. 2017; 102:196–206.
- Belhaj M, Deleglise M. Dry fiber automated placement of carbon fibrous
preforms. Composites: Part B 50.2013:107–111.
- Standard test method for tension-tension fatigue of polymer matrix
composite materials D3479M-96