References

[1] I. Kimber, D.A. Basketter, G.F. Gerberick, R.J. Dearman, Allergic contact dermatitis, Int. Immunopharmacol., 2 (2002) 201-211.
[2] R. Luebke, Immunotoxicant screening and prioritization in the twenty-first century, Toxicologic pathology, 40 (2012) 294-299.
[3] G. Schaafsma, E.D. Kroese, E.L.J.P. Tielemans, J.J.M. Van de Sandt, C.J. Van Leeuwen, REACH, non-testing approaches and the urgent need for a change in mind set, Regul Toxicol Pharm, 53 (2009) 70-80.
[4] M. Divkovic, C.K. Pease, G.F. Gerberick, D.A. Basketter, Hapten–protein binding: from theory to practical application in the in vitro prediction of skin sensitization, Contact dermatitis, 53 (2005) 189-200.
[5] D.W. Roberts, G. Patlewicz, P.S. Kern, F. Gerberick, I. Kimber, R.J. Dearman, C.A. Ryan, D.A. Basketter, A.O. Aptula, Mechanistic applicability domain classification of a local lymph node assay dataset for skin sensitization, Chem. Res. Toxicol., 20 (2007) 1019-1030.
[6] T. Maurer, I. Kimber, Draining lymph node cell activation in guinea pigs: comparisons with the murine local lymph node assay, Toxicology, 69 (1991) 209-218.
[7] I. Kimber, C. Weisenberger, A murine local lymph node assay for the identification of contact allergens. Assay development and results of an initial validation study, Arch Toxicol, 63 (1989) 274-282.
[8] A. Natsch, R. Emter, H. Gfeller, T. Haupt, G. Ellis, Predicting skin sensitizer potency based onin vitro data from KeratinoSens and kinetic peptide binding: global versus domain-based assessment, Toxicological Sciences, 143 (2014) 319-332.
[9] D.W. Roberts, A. Natsch, High Throughput Kinetic Profiling Approach for Covalent Binding to Peptides: Application to Skin Sensitization Potency of Michael Acceptor Electrophiles, Chemical Research in Toxicology, 22 (2009) 592-603.
[10] F. Gerberick, M. Aleksic, D. Basketter, S. Casati, A.T. Karlberg, P. Kern, I. Kimber, J.P. Lepoittevin, A. Natsch, J. Ovigne, C. Rovida, H. Sakaguchi, T. Schultz, Chemical Reactivity Measurement and the Predictive Identification of Skin Sensitisers, Altern Lab Anim., 36 (2008) 215-242.
[11] D.W. Roberts, A.O. Aptula, G. Patlewicz, C. Pease, Chemical reactivity indices and mechanism-based read-across for non-animal based assessment of skin sensitisation potential, Journal of Applied Toxicology, 28 (2008) 443-454.
[12] A.O. Aptula, G. Patlewicz, D.W. Roberts, Skin Sensitization:  Reaction Mechanistic Applicability Domains for Structure−Activity Relationships, Chem. Res. Toxicol., 18 (2005) 1420-1426.
[13] G.F. Gerberick, J.D. Vassallo, R.E. Bailey, J.G. Chaney, S.W. Morrall, J.-P. Lepoittevin, Development of a peptide reactivity assay for screening contact allergens, Toxicological Sciences, 81 (2004) 332-343.
[14] N. Andreas, B. Caroline, F. Leslie, G. Frank, N. Kimberly, H. Allison, I. Heather, L. Robert, O. Stefan, R. Hendrik, The intra-and inter-laboratory reproducibility and predictivity of the KeratinoSens assay to predict skin sensitizersin vitro : results of a ring-study in five laboratories, Toxicology in Vitro , 25 (2011) 733-744.
[15] S. Hoffmann, N. Kleinstreuer, N. Alépée, D. Allen, A.M. Api, T. Ashikaga, E. Clouet, M. Cluzel, B. Desprez, N. Gellatly, Non-animal methods to predict skin sensitization (I): the Cosmetics Europe database, Critical reviews in toxicology, 48 (2018) 344-358.
[16] N.C. Kleinstreuer, S. Hoffmann, N. Alépée, D. Allen, T. Ashikaga, W. Casey, E. Clouet, M. Cluzel, B. Desprez, N. Gellatly, Non-animal methods to predict skin sensitization (II): an assessment of defined approaches, Critical reviews in toxicology, 48 (2018) 359-374.
[17] J. Fitzpatrick, D. Roberts, G. Patlewicz, An evaluation of selected (Q) SARs/expert systems for predicting skin sensitisation potential, SAR and QSAR in Environmental Research, 29 (2018) 439-468.
[18] S.J. Enoch, J.C. Madden, M.T. Cronin, Identification of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach, SAR QSAR Environ Res, 19 (2008) 555-578.
[19] G. Patlewicz, N. Jeliazkova, A. Gallegos Saliner, A.P. Worth, Toxmatch-a new software tool to aid in the development and evaluation of chemically similar groups, SAR QSAR Environ Res, 19 (2008) 397-412.
[20] D. Roberts, D. Williams, The derivation of quantitative correlations between skin sensitisation and physio-chemical parameters for alkylating agents, and their application to experimental data for sultones, Journal of Theoretical Biology, 99 (1982) 807-825.
[21] V.M. Alves, S.J. Capuzzi, E.N. Muratov, R.C. Braga, T.E. Thornton, D. Fourches, J. Strickland, N. Kleinstreuer, C.H. Andrade, A. Tropsha, QSAR models of human data can enrich or replace LLNA testing for human skin sensitization, Green Chemistry, 18 (2016) 6501-6515.
[22] J.C. Dearden, M. Hewitt, D.W. Roberts, S. Enoch, P. Rowe, K. Przybylak, G. Vaughan-Williams, M. Smith, G.G. Pillai, A.R. Katritzky, Mechanism-based QSAR modeling of skin sensitization, Chemical research in toxicology, 28 (2015) 1975-1986.
[23] C. Braeuning, A. Braeuning, H. Mielke, A. Holzwarth, M. Peiser, Evaluation and improvement of QSAR predictions of skin sensitization for pesticides, SAR and QSAR in Environmental Research, 29 (2018) 823-846.
[24] A. Wilm, J. Kühnl, J. Kirchmair, Computational approaches for skin sensitization prediction, Critical reviews in toxicology, 48 (2018) 738-760.
[25] M. Hirota, T. Ashikaga, H. Kouzuki, Development of an artificial neural network model for risk assessment of skin sensitization using human cell line activation test, direct peptide reactivity assay, KeratinoSens™ and in silicostructure alert parameter, Journal of Applied Toxicology, 38 (2018) 514-526.
[26] J.W. van der Veen, E. Rorije, R. Emter, A. Natsch, H. van Loveren, J. Ezendam, Evaluating the performance of integrated approaches for hazard identification of skin sensitizing chemicals, Regul Toxicol Pharm, 69 (2014) 371-379.
[27] G. Patlewicz, M.W. Chen, C.A. Bellin, Non-testing approaches under REACH – help or hindrance? Perspectives from a practitioner within industry, SAR QSAR Env. Res., 22 (2011) 67-88.
[28] D.W. Roberts, R. Fraginals, J.P. Lepoittevin, C. Benezra, Refinement of the relative alkylation index (RAI) model for skin sensitization and application to mouse and guinea-pig test data for alkyl alkanesulphonates, Arch Dermatol Res., 286 (1991) 387-394.
[29] D.W. Roberts, A.O. Aptula, G. Patlewicz, Electrophilic Chemistry Related to Skin Sensitization. Reaction Mechanistic Applicability Domain Classification for a Published Data Set of 106 Chemicals Tested in the Mouse Local Lymph Node Assay, Chem. Res. Toxicol., 20 (2007) 44-60.
[30] D.W. Roberts, T.W. Schultz, E.M. Wolf, A.O. Aptula, Experimental Reactivity Parameters for Toxicity Modeling: Application to the Acute Aquatic Toxicity of SN2 Electrophiles to Tetrahymena pyriformis, Chem. Res. Toxicol., 23 (2009) 228-234.
[31] D.W. Roberts, A.O. Aptula, G.Y. Patlewicz, Chemistry-based risk assessment for skin sensitization: quantitative mechanistic modeling for the S(N)Ar domain, Chem. Res. Toxicol., 24 (2011) 1003-1011.
[32] D.W. Roberts, A.O. Aptula, G. Patlewicz, Mechanistic Applicability Domains for Non-Animal Based Prediction of Toxicological Endpoints. QSAR Analysis of the Schiff Base Applicability Domain for Skin Sensitization, Chem. Res. Toxicol., 19 (2006) 1228-1233.
[33] Y. Li, Y.J. Tseng, D. Pan, J. Liu, P.S. Kern, G.F. Gerberick, A.J. Hopfinger, 4D-Fingerprint Categorical QSAR Models for Skin Sensitization Based on the Classification of Local Lymph Node Assay Measures, Chem. Res. Toxicol., 20 (2007) 114-128.
[34] M.D. Miller, D.M. Yourtee, A.G. Glaros, C.C. Chappelow, J.D. Eick, A.J. Holder, Quantum Mechanical Structure−Activity Relationship Analyses for Skin Sensitization, J. Chem. Inf. Model., 45 (2005) 924-929.
[35] S. Weaver, M.P. Gleeson, The importance of the domain of applicability in QSAR modeling, J Mol Graph Model, 26 (2008) 1315-1326.
[36] M.P. Gleeson, Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis, J. Med. Chem., 50 (2007) 101-112.
[37] H. Kubinyi, QSAR and 3D QSAR in drug design Part 1: methodology, Drug Discov. Today, 2 (1997) 457-467.
[38] M. Clark, R.D. Cramer Iii, D.M. Jones, D.E. Patterson, P.E. Simeroth, Comparative molecular field analysis (CoMFA). 2. Toward its use with 3D-structural databases, Tetrahedron Comput. Methodol., 3 (1990) 47-59.
[39] R.D. Cramer, D.E. Patterson, J.D. Bunce, Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc., 110 (1988) 5959-5967.
[40] P. Labute, A widely applicable set of descriptors, J. Mol. Graph. Model., 18 (2000) 464-477.
[41] M. Pastor, G. Cruciani, I. McLay, S. Pickett, S. Clementi, GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors., J. Med. Chem., 43 (2000) 3233-3243.
[42] L.B. Kier, An index of flexibility from molecular shape descriptors, Prog. Clin. Biol. Res., 291 (1989) 105-109.
[43] A.R. Leach, B.K. Shoichet, C.E. Peishoff, Prediction of protein-ligand interactions. Docking and scoring: successes and gaps, J. Med. Chem., 49 (2006) 5851-5855.
[44] G.L. Warren, C.W. Andrews, A.M. Capelli, B. Clarke, J. LaLonde, M.H. Lambert, M. Lindvall, N. Nevins, S.F. Semus, S. Senger, G. Tedesco, I.D. Wall, J.M. Woolven, C.E. Peishoff, M.S. Head, A critical assessment of docking programs and scoring functions, J. Med. Chem., 49 (2006) 5912-5931.
[45] N.D. Yilmazer, M. Korth, Comparison of Molecular Mechanics, Semi-Empirical Quantum Mechanical, and Density Functional Theory Methods for Scoring Protein–Ligand Interactions, J. Phys. Chem. B., 117 (2013) 8075-8084.
[46] D.L. Mobley, M.K. Gilson, Predicting Binding Free Energies: Frontiers and Benchmarks, Annu. Rev. Biophys., 46 (2017) 531-558.
[47] E. Stjernschantz, C. Oostenbrink, Improved ligand-protein binding affinity predictions using multiple binding modes., Biophys. J., 98 (2010) 2682-2691.
[48] M.P. Gleeson, D. Gleeson, QM/MM Calculations in Drug Discovery: A Useful Method for Studying Binding Phenomena?, J. Chem. Inf. Model., (2009).
[49] T. Zhou, D.Z. Huang, A. Caflisch, Quantum Mechanical Methods for Drug Design, Curr. Top. Med. Chem., 10 (2010) 33-45.
[50] Y.Q. Jing, K.L. Han, Quantum mechanical effect in protein-ligand interaction, Expert Opin. Drug. Discov., 5 (2010) 33-49.
[51] K. Raha, M.B. Peters, B. Wang, N. Yu, A.M. WollaCott, L.M. Westerhoff, K.M. Merz, The role of quantum mechanics in structure-based drug design, Drug Discov. Today, 12 (2007) 725-731.
[52] M.B. Peters, K. Raha, K.M. Merz, Quantum mechanics in structure-based drug design, Curr. Opin. Drug Discov. Dev., 9 (2006) 370-379.
[53] K.E. Shaw, C.J. Woods, A.J. Mulholland, D.J. Abraham, QM and QM/MM Approaches to Evaluating Binding Affinities, Burger’s Medicinal Chemistry and Drug Discovery, John Wiley & Sons, Inc.2003.
[54] M. Promkatkaew, D. Gleeson, S. Hannongbua, M.P. Gleeson, Skin Sensitization Prediction Using Quantum Chemical Calculations: A Theoretical Model for the SNAr Domain, Chemical Research in Toxicology, 27 (2014) 51-60.
[55] S.J. Enoch, D.W. Roberts, Predicting Skin Sensitization Potency for Michael Acceptors in the LLNA Using Quantum Mechanics Calculations, Chem. Res. Toxicol., 26 (2013) 767-774.
[56] J. Kostal, A. Voutchkova-Kostal, CADRE-SS, an in Silico Tool for Predicting Skin Sensitization Potential Based on Modeling of Molecular Interactions, Chemical Research in Toxicology, 29 (2016) 58-64.
[57] ICCVAM, LLNA Database: http://iccvam.niehs.nih.gov/methods/immunotox/rLLNA.htm.
[58] P.S. Kern, F. Gerberick, C.A. Ryan, I. Kimber, A. Aptula, D. Basketter, Local Lymph Node Data for the Evaluation of Skin Sensitization Alternatives: A second Compilation, Dermatitis, 21 (2010) 8-32.
[59] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J. Montgomery, J. A., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian, inc, Wallingford CT, 2004.
[60] Y. Zhao, D.G. Truhlar, Applications and validations of the Minnesota density functionals, Chem Phys Lett, 502 (2011) 1-13.
[61] R. Valero, J.R.B. Gomes, D.G. Truhlar, F. Illas, Good performance of the M06 family of hybrid meta generalized gradient approximation density functionals on a difficult case: CO adsorption on MgO(001), J Chem Phys, 129 (2008) -.
[62] ChemAxon JChem: www.chemaxon.com, ChemAxon JChem: www.chemaxon.com.
[63] Statistica 12. www.statistica.com.
[64] S.E. Anderson, P.D. Siegel, B.J. Meade, The LLNA: A Brief Review of Recent Advances and Limitations, J. Allergy, 2011 (2011).
[65] J.M. Fitzpatrick, D.W. Roberts, G. Patlewicz, Is skin penetration a determining factor in skin sensitization potential and potency? Refuting the notion of a LogKow threshold for skin sensitization, Journal of Applied Toxicology, 37 (2017) 117-127.
[66] J. Hilton, R.J. Dearman, P. Harvey, P. Evans, D.A. Basketter, I. Kimber, Estimation of relative skin sensitizing potency using the local lymph node assay: A comparison of formaldehyde with glutaraldehyde, American Journal of Contact Dermatitis, 9 (1998) 29-33.
[67] I.V. Tetko, P. Bruneau, Application of ALOGPS to predict 1‐octanol/water distribution coefficients, logP, and logD, of AstraZeneca in‐house database, Journal of Pharmaceutical Sciences, 93 (2004) 3103-3110.
[68] ACD Chemsketch 2018.1.1 www.acdlabs.com/.