References

Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., & Dozier, J. (2006). Mountain hydrology of the western United States. Water Resources Research, 42 (8).http://dx.doi.org/10.1029/2005wr004387
Berihun, M. L., Tsunekawa, A., Haregeweyn, N., Meshesha, D. T., Adgo, E., Tsubo, M., . . . Ebabu, K. (2019). Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the Upper Blue Nile basin, Ethiopia. The Science of the total environment, 689 , 347-365.http://dx.doi.org/10.1016/j.scitotenv.2019.06.338
Chen, Y., Xu, C. Y., Chen, X. W., Xu, Y. P., Yin, Y. X., Gao, L., & Liu, M. B. (2019). Uncertainty in simulation of land-use change impacts on catchment runoff with multi-timescales based on the comparison of the HSPF and SWAT models.Journal of Hydrology, 573 , 486-500.http://dx.doi.org/10.1016/j.jhydrol.2019.03.091
Chen, Y., Yin, X. Y., & Chen, S. (2009). Land use/cover forcasting of catchment and its landscape ecological effects: a case study of Xitiaoxi catchment in the upper reaches of Taihu Basin Resources and Environment in the Yangtze Basin (in Chinese), 18 (8), 765-770.
Cui, Z., Huang, J. C., Tian, F., & Gao, J. F. (2019). Modeling the response of river nutrient conditions to land use changes in lowland artificial watersheds (polders).Ecological Engineering, 135 , 98-107.http://dx.doi.org/10.1016/j.ecoleng.2019.05.012
de Jong, C., Whelan, F., & Messerli, B. (2005). Preface: The importance of a hydrological research framework for water balance studies in mountain basins. Hydrological Processes, 19 (12), 2323-2328.http://dx.doi.org/10.1002/hyp.5886
Gusarov, A. V. (2019). The impact of contemporary changes in climate and land use/cover on tendencies in water flow, suspended sediment yield and erosion intensity in the northeastern part of the Don River basin, SW European Russia.Environmental Research, 175 , 468-488.http://dx.doi.org/10.1016/j.envres.2019.03.057
Hesse, C., Krysanova, V., Pazolt, J., & Hattermann, F. F. (2008). Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecological Modelling, 218 (1-2), 135-148.http://dx.doi.org/10.1016/j.ecolmodel.2008.06.035
Huang, J. C., Arhonditsis, G. B., Gao, J. F., Kim, D. K., & Dong, F. F. (2018a). Towards the development of a modeling framework to track nitrogen export from lowland artificial watersheds (polders). Water Research, 133 , 319-337.http://dx.doi.org/10.1016/j.watres.2018.01.011
Huang, J. C., Zhang, Y. J., Huang, Q., & Gao, J. F. (2018b). When and where to reduce nutrient for controlling harmful algal blooms in large eutrophic lake Chaohu, China?Ecological Indicators, 89 , 808-817.http://dx.doi.org/10.1016/j.ecolind.2018.01.056
Lai, Z. Q., Li, S., Lv, G.-N., Pan, Z. R., & Fei, G. S. (2016). Watershed delineation using hydrographic features and a DEM in plain river network region. Hydrological Processes, 30 (2), 276-288.http://dx.doi.org/10.1002/hyp.10612
Li, Z. F., Luo, C., Xi, Q., Li, H. P., Pan, J. J., Zhou, Q. S., & Xiong, Z. Q. (2015). Assessment of the AnnAGNPS model in simulating runoff and nutrients in a typical small watershed in the Taihu Lake basin, China. Catena, 133 , 349-361.http://dx.doi.org/10.1016/j.catena.2015.06.007
Milly, P. C. D. (1994). CLIMATE, SOIL-WATER STORAGE, AND THE AVERAGE ANNUAL WATER-BALANCE. Water Resources Research, 30 (7), 2143-2156.http://dx.doi.org/10.1029/94wr00586
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the Asabe, 50 (3), 885-900.
O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., . . . Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9 (9), 3461-3482.http://dx.doi.org/10.5194/gmd-9-3461-2016
Salmon, J. M., Friedl, M. A., Frolking, S., Wisser, D., & Douglas, E. M. (2015). Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data. International Journal of Applied Earth Observation and Geoinformation, 38 , 321-334.http://dx.doi.org/10.1016/j.jag.2015.01.014
Su, B. L., & Luo, Y. X. (2019). Modelling hydrological processes and nutrient retention in plain polders. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 64 (7), 835-844.http://dx.doi.org/10.1080/02626667.2019.1601728
Tsuchiya, R., Kato, T., Jeong, J., & Arnold, J. G. (2018). Development of SWAT-Paddy for Simulating Lowland Paddy Fields. Sustainability, 10 (9).http://dx.doi.org/10.3390/su10093246
Utset, A., Velicia, H., del Rio, B., Morillo, R., Centeno, J. A., & Martinez, J. C. (2007). Calibrating and validating an agrohydrological model to simulate sugarbeet water use under mediterranean conditions. Agricultural Water Management, 94 (1-3), 11-21.http://dx.doi.org/10.1016/j.agwat.2007.07.007
Vermaat, J. E., & Hellmann, F. (2010). Covariance in water- and nutrient budgets of Dutch peat polders: what governs nutrient retention? Biogeochemistry, 99 (1-3), 109-126.http://dx.doi.org/10.1007/s10533-009-9395-8
Wang, F. Y., Duan, K. Q., Fu, S. Y., Gou, F., Liang, W., Yan, J. W., & Zhang, W. B. (2019). Partitioning climate and human contributions to changes in mean annual streamflow based on the Budyko complementary relationship in the Loess Plateau, China. Science of the Total Environment, 665 , 579-590.http://dx.doi.org/10.1016/j.scitotenv.2019.01.386
Weingartner, R., Viviroli, D., & Schadler, B. (2007). Water resources in mountain regions: a methodological approach to assess the water balance in a highland-lowland-system. Hydrological Processes, 21 (5), 578-585.http://dx.doi.org/10.1002/hyp.6268
Wellen, C., Kamran-Disfani, A. R., & Arhonditsis, G. B. (2015). Evaluation of the Current State of Distributed Watershed Nutrient Water Quality Modeling.Environmental Science & Technology, 49 (6), 3278-3290.http://dx.doi.org/10.1021/es5049557
Wu, T. W., Lu, Y. X., Fang, Y. J., Xin, X. G., Li, L., Li, W. P., . . . Liu, X. H. (2019). The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geoscientific Model Development, 12 (4), 1573-1600.http://dx.doi.org/10.5194/gmd-12-1573-2019
Xie, X. H., & Cui, Y. L. (2011). Development and test of SWAT for modeling hydrological processes in irrigation districts with paddy rice. Journal of Hydrology, 396 (1-2), 61-71.http://dx.doi.org/10.1016/j.jhydrol.2010.10.032
Yan, R. H., Gao, J. F., & Huang, J. C. (2016). WALRUS-paddy model for simulating the hydrological processes of lowland polders with paddy fields and pumping stations.Agricultural Water Management, 169 , 148-161.http://dx.doi.org/10.1016/j.agwat.2016.02.018
Yan, R. H., Li, L. L., & Gao, J. F. (2018). Modelling the regulation effects of lowland polder with pumping station on hydrological processes and phosphorus loads. Science of the Total Environment, 637 , 200-207.http://dx.doi.org/10.1016/j.scitotenv.2018.04.389
Yao, C., Zhang, K., Yu, Z. B., Li, Z. J., & Li, Q. L. (2014). Improving the flood prediction capability of the Xinanjiang model in ungauged nested catchments by coupling it with the geomorphologic instantaneous unit hydrograph. Journal of Hydrology, 517 , 1035-1048.http://dx.doi.org/10.1016/j.jhydrol.2014.06.037
Ye, X. C., Zhang, Q., Liu, J., Li, X. H., & Xu, C. Y. (2013). Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China. Journal of Hydrology, 494 , 83-95.http://dx.doi.org/10.1016/j.jhydrol.2013.04.036
Zhao, G. J., Hormann, G., Fohrer, N., Gao, J. F., Li, H. P., & Tian, P. (2011). Application of a Simple Raster-Based Hydrological Model for Streamflow Prediction in a Humid Catchment with Polder Systems. Water Resources Management, 25 (2), 661-676.http://dx.doi.org/10.1007/s11269-010-9719-4
Zhao, R. J. (1984). Water hydrological modelling - Xinanjiang Model and Shanbei Model . Beijing: China Water Resources and Hydropower Press.