References and Notes
- Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000)
Nanotube molecular wires as chemical sensors. Science 287:622-625.
- Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route
toward applications. Science 297:787-792.
- Kong J, Chapline MG, Dai H (2001) Functionalized carbon nanotubes for
molecular hydrogen sensors. Adv. Mater 13:1384-1386
- Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon
nanotubes. Electroanal. 14:1609-1613
- Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube
sensors for gas and organic vapor detection. Nano lett. 3:929-933
- Krungleviciute V, Migone AD, Yudasaka M, Iijima S (2011)
CO2 adsorption on dahlia-like carbon nanohorns:
isosteric heat and surface area measurements. J. Phys. Chem. C
116:306-310
- Sawant SY, Somani RS, Bajaj HC, Sharma SS (2012) A dechlorination
pathway for synthesis of horn shaped carbon nanotubes and its
adsorption properties for CO2 CH4 CO
and N2. J. Hazard. Mater. 227:317-326
- Ahmadi-Peyghan A, Hadipour NL, Bagheri Z (2013) Effects of Al doping
and double-antisite defect on the adsorption of HCN on a
BC2N nanotube: density functional theory studies. J.
Phys. Chem. C 117:2427-2432
- An W, Wu X, Zeng XC (2008) Adsorption of O2H2 CO NH3 and NO2 on
ZnO nanotube: a density functional theory study. J. Phys. Chem. C
112:5747-5755
- Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu BL, Duan W (2008)
Adsorption of gas molecules on graphene nanoribbons and its
implication for nanoscale molecule sensor J. Phys. Chem. C
112:13442-13446
- Li K, Wang W, Cao D (2011) Metal (Pd,Pt)-decorated carbon nanotubes
for CO and NO sensing. Sens. Actuat. B 159:171-177
- Du X, George S (2008) Thickness dependence of sensor response for CO
gas sensing by tin oxide films grown using atomic layer deposition.
Sens. Actuat. B 135:152-160
- Samadizadeh M, Rastegar SF, Peyghan AA (2015) The electronic response
of nano-sized tube of BeO to CO molecule: a density functional study.
Struc. Chem. 26:809-814
- Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2011) Toxic CO
detection by B12N12 nanocluster.
Microelectron. J. 42:1400-1403
- Wang R, Zhang D, Liu C (2014) The germanium-doped boron nitride
nanotube serving as a potential resource for the detection of carbon
monoxide and nitric oxide. Comp. Mater. Sci. 82:361-366
- Wu R, Yang M, Lu Y, Feng Y, Huang Z, Wu Q (2008) Silicon carbide
nanotubes as potential gas sensors for CO and HCN detection. J. Phys.
Chem. C 112:15985-15988
- Samanta PN, Das KK (2014) Adsorption of CO SO2 HCN
NH3 and H2CO on zigzag GaP nanotubes:
a QM/MM study. RSC Adv. 4:59056-59063
- Zhao L, Choi M, Kim HS, Hong SH (2007) The effect of multiwalled
carbon nanotube doping on the CO gas sensitivity of SnO2-based
nanomaterials. Nanotechnology 18:445501-445505
- Kim H, Hong MH, Jang HW, Yoon SJ, Park HH (2013) CO gas sensing
properties of direct-patternable TiO2 thin films
containing multi-wall carbon nanotubes. Thin Solid Films 529:89-93
- Beheshtian J, Peyghan AA, Bagheri Z (2013) Ab initio study of
NH3 and H2O adsorption on pristine and
Na-doped MgO nanotubes. Struc. Chem. 24:165-170
- Penza M, Rossi R, Alvisi M, Suriano D, Serra E (2011) Pt-modified
carbon nanotube networked layers for enhanced gas microsensors. Thin
Solid Films 520:959-965
- Zhao W, Fam DWH, Yin Z, Sun T, Tan HT, Liu W, Tok AY, Boey YCF, Zhang
H, Hng HH (2012) A carbon monoxide gas sensor using oxygen plasma
modified carbon nanotubes. Nanotechnology 23:425502
- Leenaerts O, Partoens B, Peeters F (2008) Adsorption of
H2O NH3 CO NO2 and NO
on graphene: A first-principles study. Phys. Rev. B 77:125416
- Yang S, Zhi L, Tang K, Feng X, Maier J, Müllen K (2012) Efficient
synthesis of heteroatom (N or S)‐doped graphene based on ultrathin
graphene oxide‐porous silica sheets for oxygen reduction reactions.
Adv. Funct. Mater. 22:3634-3640
- Zhang J, Li J, Wang Z, Wang X, Feng W, Zheng W, Cao W, Hu P (2014)
Low-temperature growth of large-area heteroatom-doped graphene film.
Chem. Mater. 26:2460-2466
- Talla JA (2012) First principles modeling of boron-doped carbon
nanotube sensors. Physica B 407:966-970
- Zhou Z, Gao X, Yan J, Song D (2006) Doping effects of B and N on
hydrogen adsorption in single-walled carbon nanotubes through density
functional calculations. Carbon 44:939-947
- Peng S, Cho K (2003) Ab initio study of doped carbon nanotube sensors.
Nano lett. 3:513-517
- Jia G, Li X, Song X, Li J, Chen Y (2013) A reasonable criterion of
nitrogen-doped single-walled carbon nanotubes with pyridine-like
configurations. Surf. Sci. 608:122-128
- Xiong C, Wei Z, Hu B, Chen S, Li L, Guo L, Ding W, Liu X, Ji W, Wang X
(2012) Nitrogen-doped carbon nanotubes as catalysts for oxygen
reduction reaction. J. Power Sources 215:216-220
- Adjizian JJ, Leghrib R, Koos AA, Suarez-Martinez I, Crossley A, Wagner
P, Grobert N, Llobet E, Ewels CP (2014) Boron-and nitrogen-doped
multi-wall carbon nanotubes for gas detection. Carbon 66:662-673
- Wang YL, Su KH, Zhang JP (2012) Studying of B N S Si and P Doped (5 5)
Carbon Nanotubes by the Density Functional Theory. Adv. Mater. Res.
1488-1492
- Hamadanian M, Khoshnevisan B, Fotooh FK (2011) Density functional
study of super cell N-doped (10 0) zigzag single-walled carbon
nanotubes as CO sensor. Struct. Chem. 22:1205-1211
- Hassani F, Tavakol H (2014) A DFT AIM and NBO study of adsorption and
chemical sensing of iodine by S-doped fullerenes. Sens. Actuat. B
Sens. Actuat. B 196:624-630
- Sheka, E. F., & Chernozatonskii, L. A. (2010). Broken symmetry
approach and chemical susceptibility of carbon nanotubes. Inter.
J. Quant. Chem , 110 : 1466-1480.
- Tavakol H, Shahabi D (2015) DFT QTAIM and
NBO study of adsorption of rare gases into and on the surface of
sulfur-doped single-wall carbon nanotubes. J. Phys. Chem. C
119:6502-6510
- Shahabi D, Tavakol H (2017) DFT, NBO and molecular docking studies of
the adsorption of fluoxetine into and on the surface of simple and
sulfur-doped carbon nanotubes. Appl. Surf. Sci. 420:267-275
- Sheka, E. F., & Chernozatonskii, L. A. (2010). Chemical reactivity
and magnetism of graphene. Inter. J. Quant.
Chem , 110: 1938-1946.
- Saadat K, Tavakol H (2016) Study of
noncovalent interactions of end-caped sulfur-doped carbon nanotubes
using DFT, QTAIM, NBO, and NCI calculations. Struct. Chem. 27:739-751
- Sumpter, B. G., Huang, J., Meunier, V., Romo‐Herrera, J. M.,
Cruz‐Silva, E., Terrones, H., & Terrones, M. (2009). A theoretical
and experimental study on manipulating the structure and properties of
carbon nanotubes using substitutional dopants. Inter. J. Quant.
Chem , 109: 97-118.
- Schmidt MW, Baldridge Boatz KK, Elbert ST, Gordon MS, Jensen JH,
Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL Dupuis, M,
Montgomery JA (1993) General Atomic and Molecular Electronic Structure
System. J. Comp. Chem. 14:1347-1363
- Dykstra CE, Frenking G, Kim KS, Scuseria GE, Gordon MS, Schmidt MW
(2005) Advances in electronic structure theory: GAMESS a decade later
in Theory and Applications of Computational Chemistry: the first forty
years. Elsevier, Amsterdam, 1167-1189
- Becke AD (1993) Density-functional thermochemistry III The role of
exact exchange. J. Chem. Phys. 98:5648-5654
- Precomputed vibrational scaling factors prepared by: National
Institute of Standards and Technology Computational Chemistry
Comparison and Benchmark DataBase (2002) copyright by the US Url:
http://cccbdbnistgov/vibscalejustasp
- Mietrus S, Scrocco E (1981) Correlation of observed and model
vibrational frequencies for aqueous organic acids. J. Chem. Phys.
55:117-122
- Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO Version 3.1.
- Bader RFW (1990) Atoms in molecules A quantum theory Oxford University
Press New York
- O’Boyle NM, Tenderholt AL, Langner KM (2008) cclib: A library for
package-independent computational chemistry algorithms. J. Comp. Chem.
29:839-845
- Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987)
Tables of bond lengths determined by X-ray and neutron diffraction
Part 1 Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans.
2:S1-S19
- Li SS (2006) Scattering Mechanisms and Carrier Mobilities in
Semiconductors. Semicond. Phys. Elect. 211-245