References and Notes
  1. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622-625.
  2. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787-792.
  3. Kong J, Chapline MG, Dai H (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater 13:1384-1386
  4. Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanal. 14:1609-1613
  5. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano lett. 3:929-933
  6. Krungleviciute V, Migone AD, Yudasaka M, Iijima S (2011) CO2 adsorption on dahlia-like carbon nanohorns: isosteric heat and surface area measurements. J. Phys. Chem. C 116:306-310
  7. Sawant SY, Somani RS, Bajaj HC, Sharma SS (2012) A dechlorination pathway for synthesis of horn shaped carbon nanotubes and its adsorption properties for CO2 CH4 CO and N2. J. Hazard. Mater. 227:317-326
  8. Ahmadi-Peyghan A, Hadipour NL, Bagheri Z (2013) Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: density functional theory studies. J. Phys. Chem. C 117:2427-2432
  9. An W, Wu X, Zeng XC (2008) Adsorption of O2H2 CO NH3 and NO2 on ZnO nanotube: a density functional theory study. J. Phys. Chem. C 112:5747-5755
  10. Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu BL, Duan W (2008) Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor J. Phys. Chem. C 112:13442-13446
  11. Li K, Wang W, Cao D (2011) Metal (Pd,Pt)-decorated carbon nanotubes for CO and NO sensing. Sens. Actuat. B 159:171-177
  12. Du X, George S (2008) Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition. Sens. Actuat. B 135:152-160
  13. Samadizadeh M, Rastegar SF, Peyghan AA (2015) The electronic response of nano-sized tube of BeO to CO molecule: a density functional study. Struc. Chem. 26:809-814
  14. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2011) Toxic CO detection by B12N12 nanocluster. Microelectron. J. 42:1400-1403
  15. Wang R, Zhang D, Liu C (2014) The germanium-doped boron nitride nanotube serving as a potential resource for the detection of carbon monoxide and nitric oxide. Comp. Mater. Sci. 82:361-366
  16. Wu R, Yang M, Lu Y, Feng Y, Huang Z, Wu Q (2008) Silicon carbide nanotubes as potential gas sensors for CO and HCN detection. J. Phys. Chem. C 112:15985-15988
  17. Samanta PN, Das KK (2014) Adsorption of CO SO2 HCN NH3 and H2CO on zigzag GaP nanotubes: a QM/MM study. RSC Adv. 4:59056-59063
  18. Zhao L, Choi M, Kim HS, Hong SH (2007) The effect of multiwalled carbon nanotube doping on the CO gas sensitivity of SnO2-based nanomaterials. Nanotechnology 18:445501-445505
  19. Kim H, Hong MH, Jang HW, Yoon SJ, Park HH (2013) CO gas sensing properties of direct-patternable TiO2 thin films containing multi-wall carbon nanotubes. Thin Solid Films 529:89-93
  20. Beheshtian J, Peyghan AA, Bagheri Z (2013) Ab initio study of NH3 and H2O adsorption on pristine and Na-doped MgO nanotubes. Struc. Chem. 24:165-170
  21. Penza M, Rossi R, Alvisi M, Suriano D, Serra E (2011) Pt-modified carbon nanotube networked layers for enhanced gas microsensors. Thin Solid Films 520:959-965
  22. Zhao W, Fam DWH, Yin Z, Sun T, Tan HT, Liu W, Tok AY, Boey YCF, Zhang H, Hng HH (2012) A carbon monoxide gas sensor using oxygen plasma modified carbon nanotubes. Nanotechnology 23:425502
  23. Leenaerts O, Partoens B, Peeters F (2008) Adsorption of H2O NH3 CO NO2 and NO on graphene: A first-principles study. Phys. Rev. B 77:125416
  24. Yang S, Zhi L, Tang K, Feng X, Maier J, Müllen K (2012) Efficient synthesis of heteroatom (N or S)‐doped graphene based on ultrathin graphene oxide‐porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 22:3634-3640
  25. Zhang J, Li J, Wang Z, Wang X, Feng W, Zheng W, Cao W, Hu P (2014) Low-temperature growth of large-area heteroatom-doped graphene film. Chem. Mater. 26:2460-2466
  26. Talla JA (2012) First principles modeling of boron-doped carbon nanotube sensors. Physica B 407:966-970
  27. Zhou Z, Gao X, Yan J, Song D (2006) Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations. Carbon 44:939-947
  28. Peng S, Cho K (2003) Ab initio study of doped carbon nanotube sensors. Nano lett. 3:513-517
  29. Jia G, Li X, Song X, Li J, Chen Y (2013) A reasonable criterion of nitrogen-doped single-walled carbon nanotubes with pyridine-like configurations. Surf. Sci. 608:122-128
  30. Xiong C, Wei Z, Hu B, Chen S, Li L, Guo L, Ding W, Liu X, Ji W, Wang X (2012) Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction. J. Power Sources 215:216-220
  31. Adjizian JJ, Leghrib R, Koos AA, Suarez-Martinez I, Crossley A, Wagner P, Grobert N, Llobet E, Ewels CP (2014) Boron-and nitrogen-doped multi-wall carbon nanotubes for gas detection. Carbon 66:662-673
  32. Wang YL, Su KH, Zhang JP (2012) Studying of B N S Si and P Doped (5 5) Carbon Nanotubes by the Density Functional Theory. Adv. Mater. Res. 1488-1492
  33. Hamadanian M, Khoshnevisan B, Fotooh FK (2011) Density functional study of super cell N-doped (10 0) zigzag single-walled carbon nanotubes as CO sensor. Struct. Chem. 22:1205-1211
  34. Hassani F, Tavakol H (2014) A DFT AIM and NBO study of adsorption and chemical sensing of iodine by S-doped fullerenes. Sens. Actuat. B Sens. Actuat. B 196:624-630
  35. Sheka, E. F., & Chernozatonskii, L. A. (2010). Broken symmetry approach and chemical susceptibility of carbon nanotubes. Inter. J. Quant. Chem110 : 1466-1480.
  36. Tavakol H, Shahabi D (2015) DFT QTAIM and NBO study of adsorption of rare gases into and on the surface of sulfur-doped single-wall carbon nanotubes. J. Phys. Chem. C 119:6502-6510
  37. Shahabi D, Tavakol H (2017) DFT, NBO and molecular docking studies of the adsorption of fluoxetine into and on the surface of simple and sulfur-doped carbon nanotubes. Appl. Surf. Sci. 420:267-275
  38. Sheka, E. F., & Chernozatonskii, L. A. (2010). Chemical reactivity and magnetism of graphene. Inter. J. Quant. Chem110: 1938-1946.
  39. Saadat K, Tavakol H (2016) Study of noncovalent interactions of end-caped sulfur-doped carbon nanotubes using DFT, QTAIM, NBO, and NCI calculations. Struct. Chem. 27:739-751
  40. Sumpter, B. G., Huang, J., Meunier, V., Romo‐Herrera, J. M., Cruz‐Silva, E., Terrones, H., & Terrones, M. (2009). A theoretical and experimental study on manipulating the structure and properties of carbon nanotubes using substitutional dopants. Inter. J. Quant. Chem109: 97-118.
  41. Schmidt MW, Baldridge Boatz KK, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL Dupuis, M, Montgomery JA (1993) General Atomic and Molecular Electronic Structure System. J. Comp. Chem. 14:1347-1363
  42. Dykstra CE, Frenking G, Kim KS, Scuseria GE, Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: GAMESS a decade later in Theory and Applications of Computational Chemistry: the first forty years. Elsevier, Amsterdam, 1167-1189
  43. Becke AD (1993) Density-functional thermochemistry III The role of exact exchange. J. Chem. Phys. 98:5648-5654
  44. Precomputed vibrational scaling factors prepared by: National Institute of Standards and Technology Computational Chemistry Comparison and Benchmark DataBase (2002) copyright by the US Url: http://cccbdbnistgov/vibscalejustasp
  45. Mietrus S, Scrocco E (1981) Correlation of observed and model vibrational frequencies for aqueous organic acids. J. Chem. Phys. 55:117-122
  46. Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO Version 3.1.
  47. Bader RFW (1990) Atoms in molecules A quantum theory Oxford University Press New York
  48. O’Boyle NM, Tenderholt AL, Langner KM (2008) cclib: A library for package-independent computational chemistry algorithms. J. Comp. Chem. 29:839-845
  49. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) Tables of bond lengths determined by X-ray and neutron diffraction Part 1 Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 2:S1-S19
  50. Li SS (2006) Scattering Mechanisms and Carrier Mobilities in Semiconductors. Semicond. Phys. Elect. 211-245