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ABSTRACT

The maximal Lp-regularity properties of nonlocal fractional elliptic equa-
tions are studied. Particularly, it is proven that the fractional elliptic opera-
tor generated by these equation is sectorial and also is a generator of an ana-
lytic semigroup. Moreover, maximal regularity properties of nonlocal fractional
parabolic equation are established.
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1. Introduction, notations and background

In the last years, fractional elliptic and parabolic equations have found many
applications in physics (see [2, 5], [7-9], [11, 18] and the references therein).
Fractional derivative calculus has received a considerable attention in the last
years. This is mainly because the fact that they have developed venues of feasi-
bility in many areas of science and engineering in the fields of physics, chemistry,
aerodynamics, electrodynamics of complex medium, polymer rheology, bode’s
analysis of feedback amplifiers, capacitor theory. In addition to they have found
venues of applicability in many areas of science and engineering such as elec-
trical circuits, electro-analytical chemistry, biology, control theory, fitting of
experimental data viscoelasticity, acoustics, electromagnetic waves, control the-
ory, polarization, heat conduction and mathematical biology. The regularity
properties of fractional differential equations (FDEs) have been studied e.g. in
[1, 3, 8, 9, 12-16]. They [20] have studied the Mittag-Leffler functions as their
typical representatives, including many interesting special cases that have al-
ready proven their usefulness in fractional calculus and its applications. In this
study[21], the homotopy analysis method is applied to obtain the solution of
nonlinear fractional partial differential equations. A new solution technique for
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analytical solutions of fractional partial differential equations (FPDEs) is pre-
sented [22]. The main objective of the present paper is to dicuss the Lp (Rn)-
maximal regularity of the fractional abstract differential equation (ADE) with
parameter ∑

|α|≤l

aα ∗Dαu+ λu = f (x) , x ∈ Rn, (1.1)

where aα are complex valued functions, λ is a complex parameter. Now, we
give some information of the fractional calculus which helps us to solve the
given problem. We have well known definitions of a fractional derivative of
order α > 0 such as Riemann-–Liouville, Grunwald-–Letnikow, Caputo and
Generalized Functions Approach. The most commonly used definitions are the
Riemann—Liouville and Caputo. We give some basic definitions and properties
of the fractional calculus theory which are used through in this work.

Definition 1.1. A real function f(x), x > 0 is said to be in the space Cµ, µ ∈ R
if there exists a real number p > µ, such that f(x) = xpf1(x), where f1(x) ∈
C[0,∞), and it said to be in the space Cmµ iff fm ∈ Cµ,m ∈ N.

Definition 1.2. The left and right Riemann-–Liouville fractional integral of
order α ≥ 0, of a function f ∈ Cµ, µ ≥ −1, is defined as

aI
α
x f(x) =

1

Γ(α)

x∫
a

(x− t)α−1
f(t)dt, (1.2)

xI
α
b f(x) =

1

Γ(α)

b∫
x

(t− x)
α−1

f(t)dt, (1.3)

It has the following properties:
For f ∈ Cµ, µ ≥ −1, α, β ≥ 0 and γ > 1 :

1. IαIβf(x) = Iα+βf(x), (1.4)

2. IαIβf(x) = IβIαf(x), (1.5)

3. Iαxγ =
Γ (γ + 1)

Γ(α+ γ + 1)
xα+γ , (1.6)

Definition 1.3. The left and right Riemann-–Liouville fractional derivative of
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order α ≥ 0, of a function f ∈ Cµ, µ ≥ −1, is defined as

aD
α
xf(x) =

dn

dxn
aI
n−α
x f(x) =

1

Γ(n− α)

dn

dxn

x∫
a

(x− t)n−α−1
f(t)dt, (1.7)

xD
α
b f(x) = (−1)

n dn

dxn
xI
n−α
b f(x)

=
(−1)

n

Γ(n− α)

dn

dxn

b∫
x

(t− x)
n−α−1

f(t)dt, (1.8)

Dα = Dα1
1 Dα2

2 ...Dαn
n ,

here Dαk is Riemann-Liouville type fractional partial derivatives of order αk ∈
(1, 2] , with respect to xk i.e.

Dαk
k u =

1

Γ (2− γ)

∂2

∂x2
k

xk∫
0

u (y) dy

(xk − y)
αk−1 , (1.9)

here Γ (αk) is Gamma function for αk > 0 (see e.g. [5, 7, 10, 11]), aα ∗Dαu is
a convolution formula.

For αi ∈ [0,∞) and α = (α1, α2, ..., αn). Here, Lp (Ω) denotes the space of
strongly measurable complex-valued functions that are defined on the measur-
able subset Ω ⊂ Rn with the norm given by

‖f‖Lp(Ω) =

∫
Ω

|f (x)|p dx

 1
p

, 1 ≤ p <∞ .

Let S (Rn) denote the comlex-valued Schwartz class, i.e., the space of all
rapidly decreasing smooth functions on Rn equipped with its usual topology
generated by seminorms.

A function Ψ ∈ C (Rn) is called a Fourier multiplier from Lp (Rn) to Lp (Rn)
if the map

u→ Λu = F−1Ψ (ξ)Fu, u ∈ S (Rn)

is well defined and extends to a bounded linear operator

Λ : Lp (Rn)→ Lp (Rn) .

We prove that problem (1.1) has a unique solution u ∈ W l
p (Rn;H (A) , H)

for f ∈ Lp (Rn;H) and the following uniform coercive estimate holds

|α|≤l |λ|
1− |α|

l ‖aα ∗Dαu‖Lp(Rn;H) ≤ C ‖f‖Lp(Rn;H) . (1.10)

The estimate (1.3) implies that the operator O generated by problem (1.1) has
a bounded inverse from Lp (Rn) into the Sobolev space W l

p (Rn) , which will be
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defined subsequently. Particularly, from the estimate (1.3) we obtain that the
operator O is uniformly sectorial in Lp (Rn) . By using these coercive properties
of elliptic operator, we prove the well posedness of the Cauchy problem for the
nonlocal fractional parabolic ADE:

∂tu+
∑
|α|≤l

aα ∗Dαu = f (t, x) , u(0, x) = 0, (1.11)

in mixed spaces Lp for p = (p, p1). In other words, we show that problem (1.4)
has a unique solution u ∈ W 1,γ

p

(
R2

+;H (A) , E
)

for f ∈ Lp

(
R2

+;H
)

satisfying
the following coercive estimate

‖∂tu‖Lp(Rn+1
+ ) +

∑
|α|≤l

‖aα ∗Dα
xu‖Lp(Rn+1

+ ) + ‖A ∗ u‖Lp;(Rn+1
+ ) ≤

M ‖f‖Lp(Rn+1
+ ) , (1.12)

here Lp = Lp

(
Rn+1

+

)
denote the space of strongly measurable functions f de-

fined on Rn+1
+ equipped with the mixed norm

‖f‖Lp(Rn+1
+ ) =

∫
Rn

∫
R+

|f (t, x)|p1 dt


p
p1

dx


1
p

<∞, p1, p ∈ (1,∞) .

Let C denote the set of complex numbers and

Sϕ = {λ; λ ∈ C, |arg λ| ≤ ϕ} ∪ {0} , 0 ≤ ϕ < π.

B (E1, E2) denotes the space of bounded linear operators from E1 to E2.
For E1 = E2 = E it denotes by B (E). Let D (A), R (A) denote the domain
and range of the linear operator in E, respectively. Let Ker A denote a null
space of A. A closed linear operator A is said to be ϕ− sectorial (or sectorial
for ϕ = 0) in a Banach space E with bound M > 0 if Ker A = {0}, D (A)

and R (A) are dense on E, and
∥∥∥(A+ λI)

−1
∥∥∥
B(E)

≤ M |λ|−1
for all λ ∈ Sϕ,

ϕ ∈ [0, π), where I is an identity operator in E. Sometimes A + λI will be
written as A+ λ and will be denoted by Aλ. It is known [17, §1.15.1] that the
powers Aθ, θ ∈ (−∞,∞) for a positive operator A exist.

A sectorial operator A (x) , x ∈ Rn is said to be uniformly sectorial in a
Banach space E if there exists a ϕ ∈ [0 , π) such that the uniformly estimate
holds ∥∥∥(A (x) + λI)

−1
∥∥∥
B(E)

≤M |λ|−1

for all λ ∈ Sϕ.
Here, S′ = S′ (Rn) denotes the space of linear continuous mappings from

S (Rn) into C and it is called the Schwartz distributions. For any α = (α1, α2, ..., αn),
αi ∈ [0,∞) the function (iξ)

α
will be defined as:
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(iξ)α =

{
(iξ1)

α1 , ., (iξn)
αn , ξ1ξ2, ., ξn 6= 0

0, ξ1, ξ2, ., ξn = 0,

where
(iξk)

αk = exp
[
αk

(
ln |ξk|+ i

π

2
sgn ξk

)]
, k = 1, 2, ..., n.

Let s ∈ R and ξ = (ξ1, ξ2, ..., ξn) ∈ Rn. Consider the following fractional
Sobolev space

W s
p (Rn) = {u u ∈ S ′ (Rn) , F−1

(
1 + |ξ|2

) s
2 Fu ∈ Lp (Rn) ,

‖u‖W s
p (Rn) = ‖u‖Lp(Rn) +

∥∥∥∥F−1
(

1 + |ξ|2
) s

2

Fu

∥∥∥∥
Lp(Rn)

<∞

}
.

Sometimes we use one and the same symbol C without distinction in order
to denote positive constants which may differ from each other even in a single
context. When we want to specify the dependence of such a constant on a
parameter, say α, we write Cα.

The embedding theorems in vector valued spaces play a key role in the theory
of DOEs. From [15] we obtain the estimating lower order derivatives

Theorem A1. Suppose 1 < p ≤ q < ∞ and s ∈ (0,∞) with κ =
1
s

[
|α|+ n

(
1
p −

1
q

)]
≤ 1, 0 ≤ µ ≤ 1− κ, then the embedding

DαW s
p (Rn) ⊂ Lq (Rn)

is continuous and there exists a constant Cµ > 0, depending only on µ such
that

‖Dαu‖Lq(Rn) ≤ Cµ
[
hµ ‖u‖W s

p (Rn) + h−(1−µ) ‖u‖Lp(Rn)

]
for all u ∈W s

p (Rn) and 0 < h ≤ h0 <∞.

2. Nonlocal fractional elliptic equation

Consider the problem (1.1).
Condition 2.1. Assume aα ∈ L∞ (Rn) such that

L (ξ) =
∑
|α|≤l

âα(ξ) (iξ)
α ∈ Sϕ1

, |L (ξ)| ≥ C
n∑
k=1

∣∣âα(l,k)

∣∣ |ξk|l , (2.1)

for

α (l, k) = (0, 0, ..., l, 0, 0, ..., 0) , i.e αi = 0, i 6= k,
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Consider operator functions

σ1 (ξ, λ) = λσ0 (ξ, λ) , σ2 (ξ, λ) =
∑
|α|≤l

|λ|1−
|α|
l âα(ξ) (iξ)

α
σ0 (ξ, λ) , (2.2.)

where
σ0 (ξ, λ) = [L (ξ) + λ]

−1
.

Let
X = Lp (Rn) , Y = W l

p (Rn) .

In this section we prove the following:
Theorem 2.1. Assume that the Condition 2.1 is satisfied. Suppose that

γ ∈ (1, 2] , and λ ∈ Sϕ2
. Then for f ∈ X, 0 ≤ ϕ1 < π−ϕ2 and ϕ1+ϕ2 ≤ ϕ there

is a unique solution u of the equation (1.1) belonging to Y and the following
coercive uniform estimate holds∑

|α|≤l

|λ|1−
|α|
l ‖a ∗Dαu‖X + ‖u‖X ≤ C ‖f‖X . (2.3)

For the proving of Theorem 2.1 we need the followin lemmas:

Lemma 2.1. Assume Condition 2.1 holds and λ ∈ Sϕ2
with ϕ2 ∈ [0, π) ,

where ϕ1 +ϕ2 < π, then the operator functions σi (ξ, λ) are uniformly bounded,
i.e.,

‖σi (ξ, λ)‖B(E) ≤ C, i = 0, 1, 2.

Proof. By virtue of [4, Lemma 2.3] , for L(ξ) ∈ Sϕ1
, λ ∈ Sϕ2

and ϕ1 +ϕ2 <
π there exists a positive constant C such that

|λ+ L (ξ)| ≥ C (|λ|+ |L (ξ)|) . (2.4)

Since L(ξ) ∈ Sϕ1 in view of Condition 2.1 and (2.4) the function σ0 (ξ, λ) is
uniformly bounded for all ξ ∈ Rn, λ ∈ Sϕ2

, i.e.

σ0 (ξ, λ) ≤ (|λ|+ |L (ξ)|)−1 ≤M0.

Moreover, we have

|σ1 (ξ, λ)| ≤M |λ| (|λ|+ |L (ξ)|)−1 ≤M1.

Next, let us consider σ2. It is clear to see that

|σ2 (ξ, λ)|B(E) ≤ C
∑
|α|≤l

|λ|
n∏
k=1

[
|ξ| |λ|−

1
l

]αk
|σ0 (ξ, λ)| . (2.5)
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By setting yk =
(
|λ|−

1
l |ξk|

)αk
in the following well known inequality

yα1
1 yα2

2 ...yαnn ≤ C

(
1 +

n∑
k=1

ylk

)
, yk ≥ 0, |α| ≤ l (2.6)

we get

‖σ2 (ξ, λ)‖B(E) ≤ C
∑
|α|≤l

|λ|

[
1 +

n∑
k=1

|ξk|l |λ|−1

]
|λ+ L (ξ)|−1

.

Taking into account the Condition 2.1 and (2.5)− (2.6) we obtain

|σ2 (ξ, λ)| ≤ C

(
|λ|+

n∑
k=1

|ξk|l
)

(|λ|+ |L (ξ)|)−1 ≤ C.

Lemma 2.2. Assume Condition 2.1 holds. Suppose âα ∈ C(n) (Rn) and

|ξ||β|
∣∣Dβ âα(ξ)

∣∣ ≤ C1, βk ∈ {0, 1} , ξ ∈ Rn\ {0} , 0 ≤ |β| ≤ n, (2.7)

Then, operators |ξ||β|Dβ
ξ σi (ξ, λ), i = 0, 1, 2 are uniformly bounded.

Proof. Consider the term |ξ||β|Dβ
ξ σ0 (ξ, λ). By using the Conditin 2.1and

the above estimates (2.4)− (2.6)

|ξk|
∣∣∣∣ ∂∂ξk σ0 (ξ, λ)

∣∣∣∣ ≤
[
|ξk|

∣∣∣∣ ∂∂ξk âα (ξ)

∣∣∣∣+ αk |âα (ξ)|
] ∣∣∣∣∣

n∏
k=1

(iξk)
αk

∣∣∣∣∣ ∣∣∣[L (ξ) + λ]
−2
∣∣∣ <∞.

It easy to see that operators |ξ|β D|β|σ0 (ξ, λ) contain the similar terms as
in |ξk| |Dξkσ0 (ξ, λ)| for all βk ∈ {0, 1}. Hence we get

|ξ||β|
∣∣∣Dβ

ξ σ0 (ξ, λ)
∣∣∣ <∞.

In a similar way, by using the Conditin 2.1and the above estimates (2.4) −
(2.7) we obtain

|ξ||β|
∣∣∣Dβ

ξ σi (ξ, λ)
∣∣∣ <∞, i = 1, 2. (2.8)

Proof. of Theorem 2.1. By applying the Fourier transform to equation
(1.1) we get

û (ξ) = σ0 (ξ, λ) f̂ (ξ) , σ0 (ξ, λ) = [Lε (ξ) + λ]
−1
. (2.9)
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Hence, the solution of (1.1) can be represented as u (x) = F−1σ0 (ξ, λ) f̂ and
by Lemma 2.1 there are positive constants C1 and C2 such that

C1 |λ| ‖u‖X ≤
∥∥∥F−1

[
λσ0 (ξ, λ) f̂

]∥∥∥
X
≤ C2 |λ| ‖u‖X ,

C1

∑
|α|≤l

|λ|1−
|α|
l ‖aα ∗Dαu‖X ≤

∥∥∥F−1
[
σ2 (ξ, λ) f̂

]∥∥∥
X
≤ (2.10)

C2

∑
|α|≤l

|λ|1−
|α|
l ‖aα ∗Dαu‖X ,

Therefore, it is sufficient to show that the operators σi (ξ, λ) are multipliers in
X. But, by Lemma 2.2 and by virtue of Mikhlin multiplier theorem (see e.g
[17, § 2.2]) we get that σi (ξ, λ) are multipliers in X. So, we obtai the assertion.

Result 2.1. Theorem 2.1 implies that the operator O is separable in X, i.e.
for all f ∈ X there is a unique solution u ∈ Y of the problem (1.1), all terms
of equation (1.1) are also from X and there are positive constants C1 and C2 so
that

C1 ‖Ou‖X ≤
∑
|α|≤l

‖aα ∗Dαu‖X + ‖u‖X ≤ C2 ‖Ou‖X .

Indeed, if we put λ = 1 in (2.3), by Theorem 2.1 we get the second inequality.
So it is remain to prove the first estimate. The first inequality is equivalent to
the following estimate∑

|α|≤l

∥∥F−1âα (iξ)
α
û
∥∥
X
≤
∑
|α|≤l

∥∥∥F−1âα (iξ)
α
σ0 (ξ, λ) f̂ (ξ)

∥∥∥
X
.

So, it suffices to show that the operator functions

σ0 (ξ, λ) ,
∑
|α|≤l

âα (iξ)
α
σ0 (ξ, λ)

are uniform Fourier multipliers in X. This fact is proved in a similar way as in
the proof of Theorem 2.1.

From Theorem 2.1, we have:
Result 2.2. Assume all conditions of Theorem 2.1 hold. Then, for all

λ ∈ Sϕ the resolvent of operator O exists and the following sharp coercive
uniform estimate holds∑

|α|≤l

|λ|1−
|α|
l

∥∥∥a ∗Dα (O + λ)
−1
∥∥∥
B(X)

+
∥∥∥(O + λ)

−1
∥∥∥
B(X)

≤ C. (2.11)

Indeed, we infer from Theorem 2.1 that the operator O + λ has a bounded
inverse from X to Y. So, the solution u of the equation (1.1) can be expressed

as u (x) = (O + λ)
−1
f for all f ∈ X. Then estimate (2.4) implies the estimate

(2.11) .
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Theorem 2.2. Assume that the Condition 2.1 is satisfied. Suppose that
γ ∈ (1, 2] , and λ ∈ Sϕ2 . Then for f ∈ X, 0 ≤ ϕ1 < π−ϕ2 and ϕ1+ϕ2 ≤ ϕ there
is a unique solution u of the equation (1.1) belonging to Y and the following
coercive uniform estimate holds∑

|α|≤l

|λ|1−
|α|
l ‖Dαu‖X + ‖u‖X ≤ C ‖f‖X . (2.12)

Proof. The estimate (2.12) is derived by reasoning as in Theorem 2.2.
From Theorem 2.2, we have the following results:
Result 2.3. There are positive constants C1 and C2 so that

C1 ‖Ou‖X ≤
∑
|α|≤l

‖Dαu‖X + ‖Au‖X ≤ C2 ‖Ou‖X . (2.13)

From theorem 2.2. we obtain
Result 2.4. Assume all conditions of Theorem 2.2 hold. Then, for all

λ ∈ Sϕ the resolvent of operator O exists and the following sharp uniform
estimate holds∑

|α|≤l

|λ|1−
|α|
l

∥∥∥Dα (O + λ)
−1
∥∥∥
B(X)

+
∥∥∥(O + λ)

−1
∥∥∥
B(X)

≤ C. (2.15)

Result 2.5. Theorem 2.2 particularly implies that the operator O is secto-
rial in X. Then the operators Os are generators of analytic semigroups in X for
s ≤ 1

2 (see e.g. [17, §1.14.5]).

3. The Cauchy problem for fractional parabolic equation

In this section, we shall consider the following Cauchy problem for the
parabolic FDOE

∂u

∂t
+
∑
|α|≤l

aα ∗Dαu = f (t, x) , u(0, x) = 0, t ∈ R+, x ∈ Rn, (3.1)

where a is a complex number, Dα
x is the fractional derivative in x for αk ∈ (1, 2] ,

defined by (1.2).
By applying Theorem 2.1 we establish the maximal regularity of the problem

(3.1) in mixed Lp spaces, where p = (p1, p). LetO denote the operator generated
by problem (1.1) for λ = 0. For p = (p, p1) , Z = Lp

(
Rn+1

+

)
will denote the

space of all p-summable complexvalued functions on Rn+1
+ with mixed norm,

i.e., the space of all measurable complex-valued functions f defined on Rn+1
+ for

which

‖f‖Lp(Rn+1
+ ;H) =

∫
Rn

∫
R+

|f (t, x)|p dx


p1
p

dt


1
p1

<∞.
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Let Z1,γ = W 1,l
p

(
Rn+1

+

)
denotes the space of all functions u ∈ Lp

(
Rn+1

+

)
possessing the generalized derivative Dtu = ∂u

∂t ∈ Z with respect to y and
fractional derivatives Dα

xu ∈ Z with respect to x for |α| ≤ l with the norm

‖u‖Z1,2(A) = ‖u‖Z + ‖∂tu‖Z + ‖Dγ
xu‖Z ,

where u = u (t, x) .
Now, we are ready to state the main result of this section.
Theorem 3.1. Assume the conditions of Theorem 2.1 hold for ϕ ∈

(
π
2 , π

)
.

Then for f ∈ Z problem (3.1) has a unique solution u ∈ Z1,γ (A) satisfying the
following unform coercive estimate

‖∂tu‖Z +
∑
|α|≤l

‖aα ∗Dαu‖Z + ‖u‖Z ≤ C ‖f‖Z .

Proof. By definition ofX = Lp (Rn) and mixed space Lp

(
Rn+1

+

)
, p = (p, p1),

we have

‖u‖Lp1 (0,∞;) =

 ∞∫
0

‖u (t)‖p1X dt

 1
p1

=

 ∞∫
0

‖u (t)‖p1Lp(Rn) dt

 1
p1

= ‖u‖Z .

Therefore, the problem (3.1) can be expressed as the following Cauchy prob-
lem for the abstract parabolic equation

du

dt
+Ou (t) = f (t) , u (0) = 0, t ∈ (0,∞) . (3.2)

Then, by virtue of [19, Theorem 4.2], we obtain that for f ∈ Lp1 (0,∞;X)
the problem (3.2) has a unique solution u ∈W 1

p1 (0,∞;D (O) , X) satisfying the
following estimate∥∥∥∥dudt

∥∥∥∥
Lp1 (0,∞;X)

+ ‖Ou‖Lp1 (0,∞;X) ≤ C ‖f‖Lp1 (0,∞;X) .

From the Theorem 2.2, relation (3.2) and from the above estimate we get
the assertion.
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