eqn. 2
\(\left(\frac{U_{h}}{h}\right)^{2}=\ \left\{\left(\frac{U_{h_{e}}}{h_{e}}\right)^{2}+\left(\frac{U_{h_{a}}}{h_{a}}\right)^{2}+\left(\frac{U_{h_{c}}}{h_{c}}\right)^{2}\right\}\times 100\%\ldots\ldots\ldots(2)\)or, it can be re-written for standard uncertainty in the form ofeqn. 1 as shown in eqn. 3 .
\(u\left(h\right)=\left\{\sqrt{\sum_{j=e}^{c}\frac{\partial h}{{\partial q}_{j}}h\left(q_{j}\right)+\sum_{j=e}^{c}\frac{\partial h}{{\partial T}_{j}}h\left(T_{j}\right)+\sum_{j=e}^{c}\frac{\partial h}{{\partial A}_{j}}h\left(A_{j}\right)}\right\}\times 100\%\ldots\ldots\ldots(3)\)
where j = e, a and c which represents evaporator,
adiabatic and condenser respectively.