This study was financially supported by the Natural Science Foundation
of China (U1906221; U1806215), the National Key Research & Development
Program of China (2016YFC0501300, 2016YFD0200303), the Innovation
project of the Institute of Soil Science, Chinese Academy of Science
(CAS) (ISSASIP1633) and the Key Research and Development Program of
Jiangsu Province (BE2017337-3).
Ahmed, V., Verma, M.K., Gupta, S., Mandhan, V., & Chauhan, N.S. (2018).
Metagenomic profiling of soil microbes to mine salt stress tolerance
genes. Front Microbiol 9: 159. https://doi.org/10.3389/fmicb.2018.00159
Baumann, K., & Marschner, P. (2013). Effects of salinity on microbial
tolerance to drying and rewetting. Biogeochemistry 112: 71-80.
https://doi.org/10.1007/s10533-011-9672-1
Bello-López, J.M., Domínguez-Mendoza, C.A., de León-Lorenzana, A.S.,
Delgado-Balbuena, L., Navarro-Noya, Y.E., Gómez-Acata, S.,
Rodríguez-Valentín, A., Ruíz-Valdiviezo, V.M., Luna-Guido, M., Verhulst,
N., Govaerts, B., & Dendooven, L. (2014). Bacterial colonization of a
fumigated alkaline saline soil. Extremophiles 18: 733-743.
https://doi.org/10.1007/s00792-014-0653-x
Berendse, F. (1990). Organic matter accumulation and nitrogen
mineralization during secondary succession in heathland ecosystems. J
Eco 78: 413-427. https://doi.org/ 10.2307/2261121
Bouyoucos, G.J. (1951). A recalibration of the hydrometer method for
making mechanical analysis of soils. Agron J 43: 434-438.
https://doi.org/10.2134/agronj1951.00021962004300090005x
Bremner, J.M. (1960). Determination of nitrogen in soil by the Kjeldahl
method. J Agr Sci 55: 11-33. https://doi.org/10.1017/S0021859600021572
Brookes, P.C., Landman, A., Pruden, G., & Jenkinson, D.S. (1985).
Chloroform fumigation and the release of soil nitrogen: a rapid
extraction method to measure microbial biomass nitrogen in Soil. Soil
Biol Biochem 17: 837-842. https://doi.org/10.1016/0038-0717(85)90144-0
Canfora, L., Bacci, G., Pinzari, F., Lo Papa, G., Dazzi, C., &
Benedetti, A. (2014). Salinity and bacterial diversity: to what extent
does the concentration of salt affect the bacterial community in a
saline soil? PLoS ONE 9 (9): e106662.
https://doi.org/10.1371/journal.pone.0106662
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman,
F., Costello, E., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I.,
Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E.,
Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J.,
Sevinsky, J.R., Tumbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko,
T., Zaneveld, J., & Knight, R. (2010). QIIME allows analysis of
high-throughput community sequencing data. Nat Methods 7: 335-336.
https://doi.org/10.1038/nmeth.f.303
Chambers, L.G., Guevara, R., Boyer, J.N., Troxler, T.G., & Davis, S.E.
(2016). Effects of salinity and inundation on microbial community
structure and function in a Mangrove peat soil. Wetlands 36 (2):
361-371. https://doi.org/10.1007/s13157-016-0745-8
Chen, L.J., Feng, Q., Wei, Y.P., Li, C.S., Zhao, Y., Li, H.Y., & Zhang,
B.G. (2017). Effects of saline water irrigation and fertilization
regimes on soil microbial metabolic activity. J Soils Sediments 17:
376-383. https://doi.org/10.1007/s11368-016-1551-x
Cong, M.Y., Cao, D., Sun, J.K., & Shi, F.C. (2014). Soil microbial
community structure evolution along halophyte succession in Bohai Bay
wetland. J Chem 2014: 491347. https://doi.org/10.1155/2014/491347
Cornforth, I.S., & Walmsley, D. (1971). Methods of measuring available
nutrients in West Indian soils: 1. Nitrogen. Plant Soil 35: 389-399.
https://doi.org/10.1007/BF01372670
Cui, J.T., Li, Y.N., Wang, C.Y., Kim, K.S., Wang, T.Y., & Liu, S.X.
(2018). Characteristics of the rhizosphere bacterial community across
different cultivation years in saline–alkaline paddy soils of Songnen
Plain of China. Can J Microbiol 64: 925-936.
https://doi.org/10.1139/cjm-2017-0752
Daims, H., & Wagner, M. (2018). Nitrospira. Trends Microbiol 26 (5):
462-463. https://doi.org/10.1016/j.tim.2018.02.001
de León-Lorenzana, A.S., Delgado-Balbuena, L., Domínguez-Mendoza, C.,
Navarro-Noya, Y.E., Luna-Guido, M., & Dendooven, L. (2017). Reducing
salinity by flooding an extremely alkaline and saline soil changes the
bacterial community but its effect on the archaeal community is limited.
Front Microbiol 8: 466. https://doi.org/10.3389/fmicb.2017.00466
Delgado-Baquerizo, M., Reith, F., Dennis, P.G., Hamonts, K., Powell, G.,
Young, A.G., Singh, B., & Bissett, A. (2018). Ecological drivers of
soil microbial diversity and soil biological networks in the Southern
Hemisphere. Ecology 99 (3): 583-596. https://doi.org/10.1002/ecy.2137
Dong, W.Y., Zhang, X.Y., Liu, X.Y., Fu, X.L., Chen, F.S., Wang, H.M.,
Sun, X.M., & Wen, X.F. (2015). Responses of soil microbial communities
and enzyme activities to nitrogen and phosphorus additions in Chinese
fir plantations of subtropical China. Biogeosciences 12: 5537-5546.
https://doi.org/10.5194/bg-12-5537-2015
Edgar, R.C. (2010). Search and clustering orders of magnitude faster
than BLAST. Bioinformatics 26: 2460-2461.
https://doi.org/10.1093/bioinformatics/btq461
Elmajdoub, B., & Marschner, P. (2015). Response of microbial activity
and biomass to soil salinity when supplied with glucose and cellulose. J
Soil Sci Plant Nut 15 (4): 816-832.
https://doi.org/10.4067/s0718-95162015005000056
Evans, S., Martiny, J.B., & Allison, S.D. (2017). Effects of dispersal
and selection on stochastic assembly in microbial communities. ISME J
11: 176-185. https://doi.org/10.1038/ismej.2016.96
Fuerst, J.A., & Sagulenko, E. (2013). Nested bacterial boxes: nuclear
and other intracellular compartments in Planctomycetes. J Mol Microb
Biotech 23 (1-2): 95-103. https://doi.org/10.1159/000346544
Gad, A.H. (2014). Bacterial diversity at the great salt plains of
Oklahoma. The University of Tulsa, ProQuest Dissertations Publishing,
2014. 3683374.
Gao, Y.C., Wang, J.N., Guo, S.H., Hu, Y.L., Li, T.T., Mao, R., & Zeng,
D.H. (2015). Effects of salinization and crude oil contamination on soil
bacterial community structure in the Yellow River Delta region, China.
Appl Soil Ecol 86: 165-173. https://doi.org/10.1016/j.apsoil.2014.10.011
Guo, W., Qi, X.B., Xiao, Y.T., Li, P., Andersen, M.N., Zhang. Y., &
Zhao, Z.J. (2018). Effects of reclaimed water irrigation on microbial
diversity and composition of soil with reducing nitrogen fertilization.
Water 10: 365. https://doi.org/10.3390/w10040365
Hagemann, M. (2011). Molecular biology of cyanobacterial salt
acclimation. FEMS Microbiol Rev 35: 7e123.
https://doi.org/10.1111/j.1574-6976.2010.00234.x
Hollister, E.B., Engledow, A.S., Hammett, A.J.M., Provin, T.L.,
Wilkinson, H.H., & Gentry, T.J. (2010). Shifts in microbial community
structure along an ecological gradient of hypersaline soils and
sediments. ISME J 4: 829-838. https://doi.org/10.1038/ismej.2010.3
Holtzclaw, K.M., Rible, J.M., & Pratt, P.F. (1975). Bulk density
sampler for deep soil profiles. Soil Sci Soc Am J 39 (6): 1220-1223.
https://doi.org/10.2136/sssaj1975.03615995003900060050x
Ikeda, S., Suzuki, K., Kawahara, M., Noshiro, M., & Takahashi, N.
(2014). An assessment of urea-formaldehyde fertilizer on the diversity
of bacterial communities in onion and sugar beet. Microbes Environ 29
(2): 231-234. https://doi.org/10.1264/jsme2.me13157
Iwaoka, C., Imada, S., Taniguchi, T., Du, S., Yamanaka, N., & Tateno,
R. (2018). The impacts of soil fertility and salinity on soil nitrogen
dynamics mediated by the soil microbial community beneath the halophytic
shrub tamarisk. Microb Ecol 75: 985-996.
https://doi.org/10.1007/s00248-017-1090-z
Kirchman, D., Dittel, A., Findlay, S., & Fischer, D. (2004). Changes in
bacterial activity and community structure in response to dissolved
organic matter in the Hudson River, New York. Aquat Microb Ecol 35 (3):
243-257. https://doi.org/10.3354/ame035243
Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., &
Schloss, P.D. (2013). Development of a dual-index sequencing strategy
and curation pipeline for analyzing amplicon sequence data on the miseq
illumina sequencing platform. Appl Environ Microbiol 79: 5112-5120.
https://doi.org/10.1128/AEM.01043-13
Lau, J.A., & Lennon, J.T. (2012). Rapid responses of soil
microorganisms improve plant fitness in novel environments. Proc Natl
Acad Sci USA 109 (35): 14058-14062.
https://doi.org/10.1073/pnas.1202319109
Li, J.G., Pu, L.J., Han, M.F., Zhu, M., Zhang, R.S., & Xiang, Y.Z.
(2014). Soil salinization research in China: Advances and prospects. J
Geogr Sci 24(5): 943-960. https://doi.org/10.1007/s11442-014-1130-2
Li, J.G., Shen, M.C., Hou, J.F., Li, L., Wu, J.X., & Dong, Y.H. (2016).
Effect of different levels of nitrogen on rhizosphere bacterial
community structure in intensive monoculture of greenhouse lettuce. Sci
Rep 6: 25305. https://doi.org/10.1038/srep25305
Li, M., Jiang, L.L., Sun, Z.J., Wang, J.Z., Rui, Y.C., Zhong, L., Wang,
Y.F., & Kardol, P. (2012). Effects of flue gas desulfurization gypsum
by-products on microbial biomass and community structure in
alkaline–saline soils. J Soils Sediments 12: 1040-1053.
https://doi.org/10.1007/s11368-012-0531-z
Liang, B.C., & MacKenzie, A.F. (1996). Effect of fertilization on
organic and microbial biomass nitrogen using 15N under
corn (Zea mays L.) in two Quebec soils. Fertil Res 44: 143-149.
https://doi.org/10.1007/BF00750804
Liu, L., Yu, X.J., Tang, H.G., & Xin, P. (2019). Effect of reclamation
on the annual and seasonal characteristics of Spartina alterniflora
population in Tiaozini coastal wetland. J Agr Res Environ 36 (3):
376-384. https://doi.org/10.13254/j.jare.2019.0070
Long, X.H., Liu, L.P., Shao, T.Y., Shao, H.B., & Liu, Z.P. (2016).
Developing and sustainably utilize the coastal mudflat areas in China.
Sci Total Environ 569: 1077-1086.
https://doi.org/10.1016/j.scitotenv.2016.06.170
Lozupone, C.A., & Knight, R. (2007). Global patterns in bacterial
diversity. Proc Natl Acad Sci USA 104: 11436-11440.
https://doi.org/10.1073/pnas.0611525104
Lu, H.F., Lashari, M.S., Liu, X.Y., Ji, H.S., Li, L.Q., Zheng, J.F.,
Kibue, G.W., Joseph, S., & Pan, G.X. (2015). Changes in soil microbial
community structure and enzyme activity with amendment of biochar-manure
compost and pyroligneous solution in a saline soil from Central China.
Eur J Soil Biol 70: 67-76. https://doi.org/10.1016/j.ejsobi.2015.07.005
Luo, X.X., Liu, G.C., Xia, Y., Chen, L., Jiang, Z.X., Zheng, H., &
Wang, Z.Y. (2017). Use of biochar-compost to improve properties and
productivity of the degraded coastal soil in the Yellow River Delta,
China. J Soils Sediments 17 (3): 780-789.
https://doi.org/10.1007/s11368-016-1361-1
Ma, B., & Gong, J. (2013). A meta-analysis of the publicly available
bacterial and archaeal sequence diversity in saline soils. World J
Microb Biot 29: 2325-2334. https://doi.org/10.1007/s11274-013-1399-9
Magurran, A.E. (2013). Open questions: some unresolved issues in
biodiversity. BMC Biology 11 (1): 118-118.
https://doi.org/10.1186/1741-7007-11-118
Masella, A.P., Bartram, A.K., Truszkowski, J.M., Brown, D.G., &
Neufeld, J.D. (2012). PANDAseq: PAired-eND Assembler for Illumina
sequences. BMC Bioinformatics 13, 31.
https://doi.org/10.1186/1471-2105-13-31
Meena, M.D., Joshi, P.K., Jat, H.S., Chinchmalatpure, A.R., Narjary, B.,
Sheoran, P., & Sharma, D.K. (2016). Changes in biological and chemical
properties of saline soil amended with municipal solid waste compost and
chemical fertilizers in a mustard–pearl millet cropping system. Catena
140: 1-8. https://doi.org/10.1016/j.catena.2016.01.009
Naz, N., Hameed, M., Sajid, A.A.M., Ashraf, M., & Arshad, M. (2010). Is
soil salinity one of the major determinants of community structure under
arid environments? Community Ecol 11 (1): 84-90.
https://doi.org/10.1556/comec.11.2010.1.12
Nelson, D.W., & Sommer, L.E. (1982). Total carbon, organic carbon, and
organic matter. In: Page, A.L. (Ed.), Methods of Soil Analysis. Am Soc
Agron. Madison, WI, pp. 539-579.
Nguyen, L.T.T., Osanai, Y., Lai, K., Anderson, I.C., Bange, M.P.,
Tissue, D.T., & Singh, B.K. (2018). Responses of the soil microbial
community to nitrogen fertilizer regimes and historical exposure to
extreme weather events: Flooding or prolonged-drought. Soil Biol Biochem
118: 227-236. https://doi.org/10.1016/j.soilbio.2017.12.016
Olsen, S.R., & Sommers, L.E. (1982). Phosphorous. P. 403-430. In Page
AL (ed.) Methods of soil analysis. Part 2. 2nd ed. ASA and SSSA,
Madison, WI.
Pitman, M.G., & Läuchli, A. (2004). Global Impact of Salinity and
Agricultural Ecosystems. Salinity: Environment-Plants-Molecules.
Springer Netherlands.
Powlson, D.S., Jenkinson, D.S. (1976). The effects of biocidal
treatments on metabolism in soil-II. Gamma irradiation, autoclaving,
air-drying and fumigation. Soil Biol Biochem 8 (3): 179-188.
https://doi.org/10.1016/0038-0717(76)90002-X
Radhakrishnan, R., & Baek, K.H. (2017). Physiological and biochemical
perspectives of non-salt tolerant plants during bacterial interaction
against soil salinity. Plant Physiol Biochem 116: 116-126.
https://doi.org/10.1016/j.plaphy.2017.05.009
Rath, K.M., Fierer, N., Murphy, D.V., Rousk, J. (2019). Linking
bacterial community composition to soil salinity along environmental
gradients. The ISME J 13: 836-846.
https://doi.org/10.1038/s41396-018-0313-8
Rayment, G.E., & Higginson, F.R. (1992). Australian laboratory handbook
of soil and water chemical methods. Inkata Press, Melbourne.
Ren, M., Zhang, Z.F., Wang, X.L., Zhou, Z.W., Chen, D., Zeng, H., Zhao,
S.M., Chen, L.L., Hu, Y.L., Zhang, C.Y., Liang, Y.X., She, Q.X., Zhang,
Y., & Peng, N. (2018). Diversity and contributions to nitrogen cycling
and carbon fixation of soil salinity shaped microbial communities in
Tarim Basin. Front Microbiol 9: 431.
https://doi.org/10.3389/fmicb.2018.00431
Rey, A., Pegoraro, E., & Jarvis, .PG. (2008). Carbon mineralization
rates at different soil depths across a network of European forest sites
(FORCAST). Eur J Soil Sci 59: 1049-1062.
https://doi.org/10.1111/j.1365-2389.2008.01065.x
Rhoades, J.D. (1982). Cation exchange capacity. In: Page, A.L. (Ed.).
Methods of Soil analysis. Part 2. Chemical and microbiological
properties (2nd ed.), vol. 9, Agronomy 149-157.
Rousk, J., Elyaagubi, F.K., Jones, D.L., & Godbold, D.L. (2011).
Bacterial salt tolerance is unrelated to soil salinity across an arid
agroecosystem salinity gradient. Soil Biol Biochem 43(9): 1881-1887.
https://doi.org/10.1016/j.soilbio.2011.05.007
Shahid, S.A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical
perspectives and a world overview of the problem. In: Zaman, M., Shahid,
S.A., & Heng, L. (Eds). Guideline for Salinity Assessment, Mitigation
and Adaptation Using Nuclear and Related Techniques. Springer
International Publishing, Cham, pp. 43-53.
Sharma, A., Singh, P., Kumar, S., Kashyap, P.L., Srivastava, A.K.,
Chakdar, H., Singh, R.N., Kaushik, R., Saxena, A.K., & Sharma, A.K.
(2015). Deciphering diversity of salt-tolerant bacilli from saline soils
of eastern Indo-gangetic Plains of India. Geomicrobiol J 32 (2):
170-180. https://doi.org/10.1080/01490451.2014.938205
Shi, C.F., Liang, C.Z., Leng, X.Y., Wang, Y.M., & Wang, Z.Y. (2018).
Effect of biogas residue on saline soil microbial community structure
based on high-throughput 16S rRNA metagenomics analyses. Int J Agric
Biol 20: 1861-1867. https://doi.org/10.17957/IJAB/15.0742
Siles, J.A., Rachid, C.T.C.C., Sampedro, I., García-Romera, I., &
Tiedje, J.M. (2014). Microbial diversity of a Mediterranean soil and its
changes after biotransformed dry olive residue amendment. PLoS One 9:
e103035. https://doi.org/10.1371/journal.pone.0103035
Smolders, E., Brans, K., Coppens, F., & Merckx, R. (2001). Potential
nitrification rate as a tool for screening toxicity in
metal-contaminated soils. Environ Toxicol Chem 20 (11): 2469-2474.
https://doi.org/10.1002/etc.5620201111
Soil Survey Division Staff (1993). Soil Survey Manual. USDA Handbook No.
18. U.S. Government Printing Office, Washington, DC.
Soil Survey Staff (2014). Keys to soil taxonomy, 11th edn. United States
Department of Agriculture, Natural Resources Conservation Service,
Washington DC.
Sun, Y.F., Shen, J.P., Zhang, C.J., Zhang, L.M., Bai, W.M., Fang, Y., &
He, J.Z. (2018). Responses of soil microbial community to nitrogen
fertilizer and precipitation regimes in a semi-arid steppe. J Soils
Sediments 18: 762-774. https://doi.org/10.1007/s11368-017-1846-6
Szymańska, S., Borruso, L., Brusetti, L., Hulisz, P., Furtado, B., &
Hrynkiewicz, K. (2018). Bacterial microbiome of root-associated
endophytes of Salicornia europaea in correspondence to different levels
of salinity. Environ Sci Pollut Res 25 (25): 25420-25431.
https://doi.org/10.1007/s11356-018-2530-0
US Salinity Laboratory Staff (1954). Diagnosis and Improvement of Saline
and Alkali Soils. U.S. Department of Agriculture, Handbook 60. U.S.
Government Printing Office, Washington, DC, USA, pp 160.
Valenzuela-Encinas, C., Neria-González, I., Alcántara-Hernández, R.J.,
Enríquez-Aragón, J.A., Estrada-Alvarado, I., Hernández-Rodríguez, C.,
Dendooven, L., & Marsch, R. (2008). Phylogenetic analysis of the
archaeal community in an alkaline-saline soil of the former lake Texcoco
(Mexico). Extremophiles 12 (2): 247-254.
https://doi.org/10.1007/s00792-007-0121-y
Van Horn, D.J., Okie, J.G., Buelow, H.N., Gooseff, M.N., Barrett, J.E.,
& Takacs-Vesbach, C.D. (2014). Soil microbial responses to increased
moisture and organic resources along a salinity gradient in a polar
desert. Appl Environ Microbiol 80: 3034-3043.
https://doi.org/10.1128/AEM.03414-13
Wang, M.W., Liu, C., Ding, H.R., Zhu, X.M., Xing, J.C., Zhao, B.Q.,
Dong, L., & Hong, L.Z. (2016). Coupling effect of salt and fertilizer
application on the growth of Portulaca oleracea L. and soil environment
in the salt soil of northern Jiangsu coastal mudflat. Jiangsu J Agr Sci
32 (2): 331- 337. https://doi.org/10.3969/j.issn.1000-4440.2016.02.015
Wichern, J.F., Wichern, F., & Joergensen, G.R. (2006). Impact of
salinity on soil microbial communities and the decomposition of maize in
acidic soils. Geoderma 137: 100-108.
https://doi.org/10.1016/j.geoderma.2006.08.001
Wu, Q.L., Zwart, G., Schauer, M., Agterveld, M.P.K., & Bahn, M.W.
(2006). Bacterioplankton community composition along a salinity gradient
of sixteen high-mountain lakes located on the Tibetan Plateau, China.
Appl Environ Microbiol 72: 5478-5485.
https://doi.org/10.1128/AEM.00767-06
Yan, N., & Marschner, P. (2013). Microbial activity and biomass recover
rapidly after leaching of saline soils. Biol Fert Soils 49 (3): 367-371.
https://doi.org/10.1007/s00374-012-0733-y
Yang, L., Bian, X.G., Yang, R.P., Zhou, C.L., & Tang, B.P. (2018).
Assessment of organic amendments for improving coastal saline soil. Land
Degrad Dev 29 (2): 3204-3211. https://doi.org/10.1002/ldr.3027
Yao, R.J., Yang, J.S., Wu, D.H., Xie, W.P., Gao, P., & Wang, X.P.
(2016). Characterizing spatial-temporal changes of soil and crop
parameters for precision management in a coastal rainfed agroecosystem.
Agron J 108: 2462-2477. https://doi.org/10.2134/agronj2016.01.0004
Yao, R.J., Yang, J.S., Zhang, T.J., Gao, P., Yu, S.P., & Wang, X.P.
(2013). Short-term effect of cultivation and crop rotation systems on
soil quality indicators in a coastal newly reclaimed farming area. J
Soils Sediments 13: 1335-1350. https://doi.org/10.1007/s11368-013-0739-6
Yousuf, B., Kumar, R., Mishra, A., & Jha, B. (2014). Differential
distribution and abundance of diazotrophic bacterial communities across
different soil niches using a gene-targeted clone library approach. FEMS
Microbiol Lett 360 (2): 117-125. https://doi.org/10.1111/1574-6968.12593
Zhang, J., Dong, X.C., Zhan, H., Deng, D.L., Luo, C.Y., Zhang, C.H., &
Qiu, H.Z. (2019). Effect of long-term nitrogen application on bacterial
community structure of potato soil in semi-arid area. J Gansu Agric Univ
54 (1): 30-41. https://doi.org/10.13432/j.cnki.jgsau.2019.01.005
Zhang, J.B., Yang, J.S., Yao, R.J., Yu, S.P., Li, F.R., & Hou, X.J.
(2014). The effects of farmyard manure and mulch on soil physical
properties in a reclaimed coastal tidal flat salt-affected soil. J
Integr Agr 13 (8): 1782-1790.
https://doi.org/10.1016/S2095-3119(13)60530-4
Zhang, .KP., Shi, Y., Cui, X.Q., Yue, P., Li, K.H., Liu, X.J., Tripathi,
B.M., & Chu, H.Y. (2019). Salinity is a key determinant for soil
microbial communities in a desert ecosystem. mSystems 4:e00225-18.
https://doi.org/10.1128/mSystems.00225-18
Zhang, Y., Li, Q., Chen, Y.L., Dai, Q.G., & Hu, J. (2019). Dynamic
change in enzyme activity and bacterial community with long-term rice
cultivation in mudflats. Curr Microbial 76 (3): 361-369.
https://doi.org/10.1007/s00284-019-01636-5
Zhao, S., Liu, J.J., Banerjee, S., Zhou, N., Zhao, Z.Y., Zhang. K., &
Tian, C.Y. (2018). Soil pH is equally important as salinity in shaping
bacterial communities in saline soils under halophytic vegetation. Sci
Rep 8 (1): 4550. https://doi.org/10.1038/s41598-018-22788-7
Zhou, G.X., Zhang, J.B., Zhang, C.Z., Feng, Y.Z., Chen, L., Yu, Z.H.,
Xin, X.L., & Zhao, B.Z. (2016). Effects of changes in straw chemical
properties and alkaline soils on bacterial communities engaged in straw
decomposition at different temperatures. Sci Rep 6: 22186.
https://doi.org/10.1038/srep22186
Zhou, L., Yang, Y., Wang, Z.H., Chen, F., & Zeng, Z.H. (2013).
Influence of maize-soybean rotation and N fertilizer on bacterial
community composition. Acta Agronomica Sinica 39 (11): 2016-2022.
https://doi.org/10.3724/SP.J.1006.2013.02016
Zhou, M.H., Butterbach-Bahl, K., Vereecken, H., & Brüggemann, N.
(2017). A meta-analysis of soil salinization effects on nitrogen pools,
cycles and fluxes in coastal ecosystems. Global Change Biol 23:
1338-1352. https://doi.org/10.1111/gcb.13430