References
Baroja-Fernández, E., Muñoz, F., Montero, M., Etxeberria, E., Sesma, M., Ovecka, M., Bahaji, A., Ezquer, I., Li, J., Prat, S., Pozueta-Romero, J. (2009). Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant & Cell Physiology 50(9), 1651-1662. https://doi:10.1093/pcp/pcp108
Basson, C. E., Groenewald, J. H., Kossmann, J., Cronjé, C., & Bauer, R. (2010). Sugar and acid-related quality attributes and enzyme activities in strawberry fruits: Invertase is the main sucrose hydrolysing enzyme.Food Chemistry , 121 (4), 1156–1162. https://doi.org/10.1016/j.foodchem.2010.01.064
Baxter, C. J., Foyer, C. H., Turner, J., Rolfe, S. A., & Quick, W. P. (2003). Elevated sucrose-phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development.Journal of Experimental Botany , 54 (389), 1813–1820. https://doi.org/10.1093/jxb/erg196
Blanch, M., Goñi, O., Sanchez-Ballesta, M. T., Escribano, M. I., & Merodio, C. (2012). Characterisation and functionality of fructo-oligosaccharides affecting water status of strawberry fruit (Fragraria vesca cv. Mara de Bois) during postharvest storage.Food Chemistry , 134 (2), 912–919. https://doi.org/10.1016/j.foodchem.2012.02.203
Blanch, M., Rosales, R., Mateos, R., Perez-Gago, M. B., Sanchez-Ballesta, M. T., Escribano, M. I., & Merodio, C. (2015). Effects of high CO2 levels on fermentation, peroxidation, and cellular water stress in Fragaria vesca stored at low temperature in conditions of unlimited O2. Journal of Agricultural and Food Chemistry , 63 (3), 761–768. https://doi.org/10.1021/jf505715s
Bologa, K. L., Fernie, A. R., Leisse, A., Ehlers Loureiro, M., & Geigenberger, P. (2003). A bypass of sucrose synthase leads to low internal oxygen and impaired metabolic performance in growing potato tubers. Plant Physiology , 132 (4), 2058–2072. https://doi.org/10.1104/pp.103.022236
Choudhury, S. R., Roy, S., Singh, S. K., & Sengupta, D. N. (2010). Understanding the molecular mechanism of transcriptional regulation of banana Sucrose phosphate synthase (SPS) gene during fruit ripening: An insight into the functions of various cis-acting regulatory elements.Plant Signaling and Behavior , 5 (5), 553–557. https://doi.org/10.4161/psb.11092
Closa-Monasterolo, R., Gispert-Llaurado, M., Luque, V., Ferre, N., Rubio-Torrents, C., Zaragoza-Jordana, M., & Escribano, J. (2013). Safety and efficacy of inulin and oligofructose supplementation in infant formula: Results from a randomized clinical trial. Clinical Nutrition , 32 (6), 918–927. https://doi.org/10.1016/j.clnu.2013.02.009
Coleman, H. D., Yan, J., & Mansfield, S. D. (2009). Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proceedings of the National Academy of Sciences of the United States of America , 106 (31), 13118–13123. https://doi.org/10.1073/pnas.0900188106
Colquhoun, T. A., Levin, L. A., Moskowitz, H. R., Whitaker, V. M., Clark, D. G., & Folta, K. M. (2012). Framing the perfect strawberry: An exercise in consumer-assisted selection of fruit crops. Journal of Berry Research , 2 , 45–61. https://doi.org/10.3233/JBR-2011-027
Cordenunsi, B. R., Nascimento, J. R. O., & Lajolo, F. M. (2003). Physico-chemical changes related to quality of five strawberry fruit cultivars during cool-storage. Food Chemistry , 83 (2), 167–173. https://doi.org/10.1016/S0308-8146(03)00059-1
Darwish, O., Slovin, J. P., Kang, C., Hollender, C. A., Geretz, A., Houston, S., Liu, Z., & Alkharouf, N. W. (2013). SGR: an online genomic resource for the woodland strawberry. In BMC Plant Biology (Vol. 13). http://www.biomedcentral.com/1471-2229/13/223
Delorge, I., Janiak, M., Carpentier, S., Dijck, P. Van, Paul, M., & Research, R. (2014). Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants . https://doi.org/10.3389/fpls.2014.00147
Do Nascimento, J. R., Cordenunsi, B. R., Lajolo, F. M., & Alcocer, M. J. C. (1997). Banana sucrose-phosphate synthase gene expression during fruit ripening. Planta , 203 (3), 283–288. https://doi.org/10.1007/s004250050193
Drake, B. G., Gonzàlez-Meler, M. A., & Long, S. P. (1997). MORE EFFICIENT PLANTS: A Consequence of Rising Atmospheric CO 2 ? .Annual Review of Plant Physiology and Plant Molecular Biology ,48 (1), 609–639. https://doi.org/10.1146/annurev.arplant.48.1.609
Fait, A., Hanhineva, K., Beleggia, R., Dai, N., Rogachev, I., Nikiforova, V. J., Fernie, A. R., & Aharoni, A. (2008). Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiology , 148 (2), 730–750. https://doi.org/10.1104/pp.108.120691
Fernandez, O., Béthencourt, L., Quero, A., Sangwan, R. S., & Clément Christophe, C. (2010). Trehalose and plant stress responses: Friend or foe? In Trends in Plant Science (Vol. 15, Issue 7, pp. 409–417). https://doi.org/10.1016/j.tplants.2010.04.004
Frigerio, L., Hinz, G., & Robinson, D. G. (2008). Multiple Vacuoles in Plant Cells: Rule or Exception? Traffic , 9 (10), 1564–1570. https://doi.org/10.1111/j.1600-0854.2008.00776.x
Furuki, T. (2002). Effect of molecular structure on thermodynamic properties of carbohydrates. A calorimetric study of aqueous di- and oligosaccharides at subzero temperatures. Carbohydrate Research ,337 (5), 441–450. https://doi.org/10.1016/s0008-6215(01)00332-9
Galtier, N., Foyer, C. H., Huber, J., Voelker, T. A., & Huber, S. C. (1993). Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning, and growth in tomato (Lycopersicon esculentum var UC82B). Plant Physiology ,101 (2), 535–543. https://doi.org/10.1104/pp.101.2.535
Garg, A. K., Kim, J. K., Owens, T. G., Ranwala, A. P., Do Choi, Y., Kochian, L. V., & Wu, R. J. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses.Proceedings of the National Academy of Sciences of the United States of America , 99 (25), 15898–15903. https://doi.org/10.1073/pnas.252637799
Geigenberger, Reimholz, Deiting, Sonnewald, & Stitt. (1999). Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers. The Plant Journal : For Cell and Molecular Biology , 19 (2), 119–129. https://doi.org/10.1046/j.1365-313x.1999.00506.x
Germain, V., Ricard, B., Raymond, P., & Saglio, P. H. (1997). The role of sugars, hexokinase, and sucrose synthase in the determination of hypoxically induced tolerance to anoxia in tomato roots. Plant Physiology , 114 (1), 167–175. https://doi.org/10.1104/pp.114.1.167
Gibbs, J., & Greenway, H. (2003). Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. InFunctional Plant Biology (Vol. 30, Issue 1, pp. 1–47). https://doi.org/10.1071/PP98095
Greenway, H., & Gibbs, J. (2003). Review: Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Functional Plant Biology ,30 (10), 999. https://doi.org/10.1071/PP98096
Haigler, C. H., Singh, B., Zhang, D., Hwang, S., Wu, C., Cai, W. X., Hozain, M., Kang, W., Kiedaisch, B., Strauss, R. E., Hequet, E. F., Wyatt, B. G., Jividen, G. M., & Holaday, A. S. (2007). Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions. Plant Molecular Biology , 63 (6), 815–832. https://doi.org/10.1007/s11103-006-9127-6
Hancock, J. F. (1999). Strawberries . CABI Pub.
Hare, P. D., Cress, W. A., & Van Staden, J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment , 21 (6), 535–553. https://doi.org/10.1046/j.1365-3040.1998.00309.x
Hashida, Y., Hirose, T., Okamura, M., Hibara, K. ichiro, Ohsugi, R., & Aoki, N. (2016). A reduction of sucrose phosphate synthase (SPS) activity affects sucrose/starch ratio in leaves but does not inhibit normal plant growth in rice. Plant Science , 253 , 40–49. https://doi.org/10.1016/j.plantsci.2016.08.017
Hincha, D. K., Hellwege, E. M., Heyer, A. G., & Crowe, J. H. (2000). Plant fructans stabilize phosphatidylcholine liposomes during freeze- drying. European Journal of Biochemistry , 267 (2), 535–540. https://doi.org/10.1046/j.1432-1327.2000.01028.x
Hollender, C. A., Kang, C., Darwish, O., Geretz, A., Matthews, B. F., Slovin, J., Alkharouf, N., & Liu, Z. (2014). Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiology , 165 (3), 1062–1075. https://doi.org/10.1104/pp.114.237529
Huber, S. C., & Huber, J. L. (1996). Role and regulation of sucrose-phosphate synthase in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology , 47 (1), 431–444. https://doi.org/10.1146/annurev.arplant.47.1.431
Ishitani, M., Majumder, A. L., Bornhouser, A., Michalowski, C. B., Jensen, R. G., & Bohnert, H. J. (1996). Coordinate transcriptional induction of myo-inositol metabolism during environmental stress.Plant Journal , 9 (4), 537–548. https://doi.org/10.1046/j.1365-313X.1996.09040537.x
Jin, R., Zhu, Q. G., Shen, X.-Y., Wang, M.-M., Jamil, W., Grierson, D., Yin, X.-R., & Chen, K.-S. (2018). DkNAC7, a novel high-CO 2 /hypoxia-induced NAC transcription factor, regulates persimmon fruit de-astringency . https://doi.org/10.1371/journal.pone.0194326
Jones, D. T., Taylor, W. R., & Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences.Bioinformatics , 8 (3), 275–282. https://doi.org/10.1093/bioinformatics/8.3.275
Jouquand, C., Chandler, C., Plotto, A., & Goodner, K. (2008). A sensory and chemical analysis of fresh strawberries over harvest dates and seasons reveals factors that affect eating quality. Journal of the American Society for Horticultural Science , 133 (6), 859–867. https://doi.org/10.21273/jashs.133.6.859
Kang, C., Darwish, O., Geretz, A., Shahan, R., Alkharouf, N., & Liu, Z. (2013). Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry fragaria vesca. Plant Cell ,25 (6), 1960–1978. https://doi.org/10.1105/tpc.113.111732
Koch, K. (2004). Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. In Current Opinion in Plant Biology (Vol. 7, Issue 3, pp. 235–246). https://doi.org/10.1016/j.pbi.2004.03.014
Koch, K. E., Ying, Z., Wu, Y., & Avigne, W. T. (2000). Multiple paths of sugar‐sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. Journal of Experimental Botany ,51 (suppl_1), 417–427. https://doi.org/10.1093/jexbot/51.suppl_1.417
Kroger, M., Meister, K., & Kava, R. (2006). Low-calorie Sweeteners and Other Sugar Substitutes: A Review of the Safety Issues.Comprehensive Reviews in Food Science and Food Safety ,5 (2), 35–47. https://doi.org/10.1111/j.1541-4337.2006.tb00081.x
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms.Molecular Biology and Evolution , 35 (6), 1547–1549. https://doi.org/10.1093/molbev/msy096
Lasseur, B., Schroeven, L., Lammens, W., Le Roy, K., Spangenberg, G., Manduzio, H., Vergauwen, R., Lothier, J., Prud’homme, M. P., & Van Den Ende, W. (2009). Transforming a fructan:fructan 6G-fructosyltransferase from perennial ryegrass into a sucrose:sucrose 1-fructosyltransferase.Plant Physiology , 149 (1), 327–339. https://doi.org/10.1104/pp.108.125559
Li, D., Zhang, X., Li, L., Aghdam, M. S., Wei, X., Liu, J., Xu, Y., & Luo, Z. (2019). Elevated CO 2 delayed the chlorophyll degradation and anthocyanin accumulation in postharvest strawberry fruit. Food Chemistry , 285 , 163–170. https://doi.org/10.1016/j.foodchem.2019.01.150
Li, M., Wang, S., Liu, Y., Zhang, Y., Ren, M., Liu, L., Lu, T., Wei, H., & Wei, Z. (2019). Overexpression of PsnSuSy1, 2 genes enhances secondary cell wall thickening, vegetative growth, and mechanical strength in transgenic tobacco. In Plant Molecular Biology (Vol. 100, Issue 3, pp. 215–230). Springer Netherlands. https://doi.org/10.1007/s11103-019-00850-w
Loewus, F. A., & Murthy, P. P. N. (2000). myo-Inositol metabolism in plants. In Plant Science (Vol. 150, Issue 1, pp. 1–19). https://doi.org/10.1016/S0168-9452(99)00150-8
Lunn, J. E., Delorge, I., Figueroa, C. M., Van Dijck, P., & Stitt, M. (2014). Trehalose metabolism in plants. Plant Journal ,79 (4), 544–567. https://doi.org/10.1111/tpj.12509
Macías-Rodríguez, L., Quero, E., & López, M. G. (2002). Carbohydrate Differences in Strawberry Crowns and Fruit ( Fragaria ×ananassa ) during Plant Development. Journal of Agricultural and Food Chemistry , 50 (11), 3317–3321. https://doi.org/10.1021/jf011491p
Marcos Lousa, C. de, Gershlick, D. C., & Denecke, J. (2012). Mechanisms and concepts paving the way towards a complete transport cycle of plant vacuolar sorting receptors. In Plant Cell (Vol. 24, Issue 5, pp. 1714–1732). https://doi.org/10.1105/tpc.112.095679
Ménager, I., Jost, M., & Aubert, C. (2004). Changes in Physicochemical Characteristics and Volatile Constituents of Strawberry (Cv. Cigaline) during Maturation. Journal of Agricultural and Food Chemistry ,52 (5), 1248–1254. https://doi.org/10.1021/jf0350919
Narsai, R., Rocha, M., Geigenberger, P., Whelan, J., & Van Dongen, J. T. (2011). Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytologist ,190 (2), 472–487. https://doi.org/10.1111/j.1469-8137.2010.03589.x
Neumann Andersen, M., Asch, F., Wu, Y., Richardt Jensen, C., Næsted, H., Overgaard Mogensen, V., & Elaine Koch, K. (2002). Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize.Plant Physiology , 130 (2), 591–604. https://doi.org/10.1104/pp.005637
Nguyen‐Quoc, B., & Foyer, C. H. (2001). A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. Journal of Experimental Botany , 52 (358), 881–889. https://doi.org/10.1093/jexbot/52.358.881
Ogiwara, I., Habutsu, S., Hakoda, N., & Shimura, I. (1998). Soluble Sugar Content in Fruit of Nine Wild and Forty-one Cultivated Strawberries. Engei Gakkai Zasshi , 67 (3), 406–412. https://doi.org/10.2503/jjshs.67.406
Ogiwara, I., Miyamoto, R., Habutsu, S., Suzuki, M., Hakoda, N., & Shimura, I. (1998). Variation in Sugar Content in Fruit of Four Strawberry Cultivars Grown in the Field and under Forced Culture, Harvest Years, and Maturation Stages. Journal of the Japanese Society for Horticultural Science , 67 (3), 400–405. https://doi.org/10.2503/jjshs.67.400
Otegui, M. S., Noh, Y. S., Martínez, D. E., Vila Petroff, M. G., Staehelin, L. A., Amasino, R. M., & Guiamet, J. J. (2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant Journal ,41 (6), 831–844. https://doi.org/10.1111/j.1365-313X.2005.02346.x
Ponnu, J., Wahl, V., & Schmid, M. (2011). Trehalose-6-phosphate: Connecting plant metabolism and development. Frontiers in Plant Science , 2 (NOV). https://doi.org/10.3389/fpls.2011.00070
Roch, L., Dai, Z., Gomès, E., Bernillon, S., Wang, J., Gibon, Y., & Moing, A. (2019). Fruit salad in the lab: Comparing botanical species to help deciphering fruit primary metabolism. In Frontiers in Plant Science (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fpls.2019.00836
Roitsch, T., Balibrea, M. E., Hofmann, M., Proels, R., & Sinha, A. K. (2003). Extracellular invertase: Key metabolic enzyme and PR protein.Journal of Experimental Botany , 54 (382), 513–524. https://doi.org/10.1093/jxb/erg050
Romero, I., Vazquez-Hernandez, M., Escribano, M. I., Merodio, C., & Sanchez-Ballesta, M. T. (2016). Expression profiles and DNA-binding affinity of five ERF genes in bunches of vitis vinifera cv. Cardinal treated with high levels of CO2 at low temperature. Frontiers in Plant Science , 7 (NOVEMBER2016). https://doi.org/10.3389/fpls.2016.01748
Rosales, R., Romero, I., Fernandez-Caballero, C., Escribano, M. I., Merodio, C., & Sanchez-Ballesta, M. T. (2016). Low temperature and short-term high-CO2 treatment in postharvest storage of table grapes at two maturity stages: Effects on transcriptome profiling. Frontiers in Plant Science , 7 (JULY2016). https://doi.org/10.3389/fpls.2016.01020
Ruan, Y. L., Patrick, J. W., Bouzayen, M., Osorio, S., & Fernie, A. R. (2012). Molecular regulation of seed and fruit set. In Trends in Plant Science (Vol. 17, Issue 11, pp. 656–665). https://doi.org/10.1016/j.tplants.2012.06.005
Ruan, Y.-L. (2014). Sucrose Metabolism: Gateway to Diverse Carbon Use and Sugar Signaling. Annual Review of Plant Biology ,65 (1), 33–67. https://doi.org/10.1146/annurev-arplant-050213-040251
Sabater-Molina, M., Larqué, E., Torrella, F., & Zamora, S. (2009). Dietary fructooligosaccharides and potential benefits on health. InJournal of Physiology and Biochemistry (Vol. 65, Issue 3, pp. 315–328). https://doi.org/10.1007/BF03180584
Sachs M.M. (1994). Gene expression during anoxia. In Gene Expression in Plants. Harwood Academic.https://books.google.es/books?hl=es&lr=&id=IdKqPM5owX0C&oi=fnd&pg=PA87&dq=Sachs,+M.M.+(1994)+Gene+expression+during+anoxia.&ots=A_yprq-0_b&sig=23sh3rB1c6jeGuy84pwvYjgKgew
Salnikov, V. V, Grimson, M. J., Delmer, D. P., & Haigler, C. H. (2001). Sucrose synthase localizes to cellulose synthesis sites in tracheary elements. Phytochemistry , 57 (6), 823–833. https://doi.org/10.1016/s0031-9422(01)00045-0
Schwieterman, M. L., Colquhoun, T. A., Jaworski, E. A., Bartoshuk, L. M., Gilbert, J. L., Tieman, D. M., Odabasi, A. Z., Moskowitz, H. R., Folta, K. M., Klee, H. J., Sims, C. A., Whitaker, V. M., & Clark, D. G. (2014). Strawberry flavor: Diverse chemical compositions, a seasonal influence, and effects on sensory perception. PLoS ONE ,9 (2). https://doi.org/10.1371/journal.pone.0088446
Seger, M., Gebril, S., Tabilona, J., Peel, A., & Sengupta-Gopalan, C. (2014). Impact of concurrent overexpression of cytosolic glutamine synthetase (GS1) and sucrose phosphate synthase (SPS) on growth and development in transgenic tobacco. Planta , 241 (1), 69–81. https://doi.org/10.1007/s00425-014-2165-4
Sengupta, S., Mukherjee, S., Basak, P., & Majumder, A. L. (2015). Significance of galactinol and raffinose family oligosaccharide synthesis in plants. In Frontiers in Plant Science (Vol. 6, Issue AUG). Frontiers Research Foundation. https://doi.org/10.3389/fpls.2015.00656
Sergeeva, L. I., Keurentjes, J. J. B., Bentsink, L., Vonk, J., Van Der Plas, L. H. W., Koornneef, M., & Vreugdenhil, D. (2006). Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proceedings of the National Academy of Sciences of the United States of America , 103 (8), 2994–2999. https://doi.org/10.1073/pnas.0511015103
Singh, S. P., Jadaun, J. S., Narnoliya, L. K., & Pandey, A. (2017). Prebiotic Oligosaccharides: Special Focus on Fructooligosaccharides, Its Biosynthesis and Bioactivity. Applied Biochemistry and Biotechnology , 183 (2), 613–635. https://doi.org/10.1007/s12010-017-2605-2
Sperdouli, I., & Moustakas, M. (2012). Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Journal of Plant Physiology ,169 (6), 577–585. https://doi.org/10.1016/j.jplph.2011.12.015
Stein, O., & Granot, D. (2019). An overview of sucrose synthases in plants. In Frontiers in Plant Science (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fpls.2019.00095
Stitt, M. (1998). Pyrophosphate as an Energy Donor in the Cytosol of Plant Cells: an Enigmatic Alternative to ATP. Botanica Acta ,111 (3), 167–175. https://doi.org/10.1111/j.1438-8677.1998.tb00692.x
Stitt, M., & Steup, M. (1985). Starch and Sucrose Degradation. InHigher Plant Cell Respiration (pp. 347–390). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-70101-6_13
Sun, J., Loboda, T., Sung, S.-J. S., & Black, C. C. (1992). Sucrose Synthase in Wild Tomato, Lycopersicon chmielewskii, and Tomato Fruit Sink Strength. In Plant Physiol (Vol. 98).
Tang, G. Q., & Sturm, A. (1999). Antisense repression of sucrose synthase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning. Plant Molecular Biology , 41 (4), 465–479. https://doi.org/10.1023/A:1006327606696
Tian, H., Ma, L., Zhao, C., Hao, H., Gong, B., Yu, X., & Wang, X. (2010). Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development. Biochemical and Biophysical Research Communications , 393 (3), 365–370. https://doi.org/10.1016/j.bbrc.2010.01.124
Tousen, Y., Uehara, M., Abe, F., Kimira, Y., & Ishimi, Y. (2013). Effects of short-term fructooligosaccharide intake on equol production in Japanese postmenopausal women consuming soy isoflavone supplements: A pilot study. Nutrition Journal , 12 (1). https://doi.org/10.1186/1475-2891-12-127
Valluru, R., & Van Den Ende, W. (2008). Plant fructans in stress environments: Emerging concepts and future prospects. In Journal of Experimental Botany (Vol. 59, Issue 11, pp. 2905–2916). https://doi.org/10.1093/jxb/ern164
Van den Ende, W. (2013). Multifunctional fructans and raffinose family oligosaccharides. In Frontiers in Plant Science (Vol. 4, Issue JUL). Frontiers Research Foundation. https://doi.org/10.3389/fpls.2013.00247
Van Den Ende, W., De Coninck, B., & Van Laere, A. (2004). Plant fructan exohydrolases: A role in signaling and defense? Trends in Plant Science , 9 (11), 523–528. https://doi.org/10.1016/j.tplants.2004.09.008
Vazquez-Hernandez, M., Navarro, S., Sanchez-Ballesta, M. T., Merodio, C., & Escribano, M. I. (2018). Short-term high CO2 treatment reduces water loss and decay by modulating defense proteins and organic osmolytes in Cardinal table grape after cold storage and shelf-life.Scientia Horticulturae , 234 , 27–35. https://doi.org/10.1016/j.scienta.2018.02.020
Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., & Zhu, J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status.Plant Journal , 45 (4), 523–539. https://doi.org/10.1111/j.1365-313X.2005.02593.x
Vimolmangkang, S., Zheng, H., Peng, Q., Jiang, Q., Wang, H., Fang, T., Liao, L., Wang, L., He, H., & Han, Y. (2016). Assessment of Sugar Components and Genes Involved in the Regulation of Sucrose Accumulation in Peach Fruit. Journal of Agricultural and Food Chemistry ,64 (35), 6723–6729. https://doi.org/10.1021/acs.jafc.6b02159
Volkert, K., Debast, S., Voll, L. M., Voll, H., Schießl, I., Hofmann, J., Schneider, S., & Börnke, F. (2014). Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis. Journal of Experimental Botany , 65 (18), 5217–5229. https://doi.org/10.1093/jxb/eru282
Wan, H., Wu, L., Yang, Y., Zhou, G., & Ruan, Y. L. (2018). Evolution of Sucrose Metabolism: The Dichotomy of Invertases and Beyond. InTrends in Plant Science (Vol. 23, Issue 2, pp. 163–177). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2017.11.001
Wang, F., Sanz, A., Brenner, M. L., & Smith, A. (1993). Sucrose synthase, starch accumulation, and tomato fruit sink strength.Plant Physiology , 101 (1), 321–327. https://doi.org/10.1104/pp.101.1.321
Wang, L., & Ruan, Y. L. (2016). Critical roles of vacuolar invertase in floral organ development and male and female fertilities are revealed through characterization of GhVIN1-RNAi cotton plants. Plant Physiology , 171 (1), 405–423. https://doi.org/10.1104/pp.16.00197
Wang, M. M., Zhu, Q. G., Deng, C. L., Luo, Z. R., Sun, N. J., Grierson, D., Yin, X. R., & Chen, K. S. (2017). Hypoxia-responsive ERFs involved in postdeastringency softening of persimmon fruit. Plant Biotechnology Journal , 15 (11), 1409–1419. https://doi.org/10.1111/pbi.12725
Winter, H., & Huber, S. C. (2000). Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. In Critical Reviews in Biochemistry and Molecular Biology (Vol. 35, Issue 4, pp. 253–289). CRC Press LLC. https://doi.org/10.1080/10409230008984165
Worrell, A. C., Bruneau, J. M., Summerfelt, K., Boersig, M., & Voelker, T. A. (1991). Expression of a maize sucrose phosphate synthase in tomato alters leaf carbohydrate partitioning. The Plant Cell ,3 (10), 1121–1130. https://doi.org/10.1105/tpc.3.10.1121
Yao, M., Lien, E. L., Capeding, M. R. Z., Fitzgerald, M., Ramanujam, K., Yuhas, R., Northington, R., Lebumfacil, J., Wang, L., & DeRusso, P. A. (2014). Effects of term infant formulas containing high sn-2 palmitate with and without oligofructose on stool composition, stool characteristics, and bifidogenicity. Journal of Pediatric Gastroenterology and Nutrition , 59 (4), 440–448. https://doi.org/10.1097/MPG.0000000000000443
Yu, D., Tang, H., Zhang, Y., Du, Z., Yu, H., & Chen, Q. (2012). Comparison and Improvement of Different Methods of RNA Isolation from Strawberry (Fragria * ananassa). Journal of Agricultural Science ,4 (7). https://doi.org/10.5539/jas.v4n7p51
Zeng, Y., Wu, Y., Avigne, W. T., & Koch, K. E. (1999). Rapid repression of maize invertases by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential, and seedling survival. Plant Physiology , 121 (2), 599–608. https://doi.org/10.1104/pp.121.2.599
Zhang, J., Wang, X., Yu, O., Tang, J., Gu, X., Wan, X., & Fang, C. (2011). Metabolic profiling of strawberry (Fragaria×ananassa Duch.) during fruit development and maturation. Journal of Experimental Botany , 62 (3), 1103–1118. https://doi.org/10.1093/jxb/erq343
Zhu, Q. G., Gong, Z. Y., Huang, J., Grierson, D., Chen, K. S., & Yin, X. R. (2019). High-CO2/hypoxia-responsive transcription factors DkERF24 and DkWRKY1 interact and activate DkPDC2 promoter. Plant Physiology , 180 (1), 621–633. https://doi.org/10.1104/pp.18.01552
Zhu, Q. G., Gong, Z. Y., Wang, M. M., Li, X., Grierson, D., Yin, X. R., & Chen, K. S. (2018). A transcription factor network responsive to high CO 2 /hypoxia is involved in deastringency in persimmon fruit.Journal of Experimental Botany , 69 (8), 2061–2070. https://doi.org/10.1093/jxb/ery028
Zouhar, J., & Rojo, E. (2009). Plant vacuoles: where did they come from and where are they heading? In Current Opinion in Plant Biology(Vol. 12, Issue 6, pp. 677–684). https://doi.org/10.1016/j.pbi.2009.08.004