Conflict of Interest Statement
The authors declare that they have no Conflict of Interest.
References
Blankenship, W. D., Condon, L. A., & Pyke, D. A. (2020). Hydroseeding tackifiers and dryland moss restoration potential. Restoration Ecology . https://doi.org/10.1111/rec.12997.
Bowman, J. L., Kohchi, T., Yamato, K. T., Jenkins, J., Shu, S., Ishizaki, K., … & Adam, C. (2017). Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell , 171(2), 287-304.
Cai, S. G., Chen, G., Wang, Y., Huang, Y., Marchant, D. B., Wang, Y., … & Chen, Z. H. (2017). Evolutionary conservation of ABA signaling for stomatal closure. Plant Physiology , 174(2), 732-747.
Cai, S. G., Wu, D. H., Jabeen, Z., Huang, Y. Q., Huang, Y. C., & Zhang, G. P. (2013). Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley. PLoS ONE , 8, e69776.
Cardoso, T. B., Pinto, R. T., & Paiva L. V. (2019). Analysis of gene co-expression networks of phosphate starvation and aluminium toxicity responses in Populus spp. PLoS ONE , 14(10), e0223217.
Chen, R. F., Zhang F. L., Zhang, Q. M., Sun, Q. B., Dong, X. Y., & Shen, R. F. (2012). Aluminium-phosphorus interactions in plants growing on acid soils: does phosphorus always alleviate aluminium toxicity?Journal of the Science of Food and Agriculture , 92, 995-1000.
Chen, Z. H., Chen, G., Dai, F., Wang, Y., Hills, A., Ruan, Y. L., … & Blatt, M. R. (2017). Molecular Evolution of Grass Stomata.Trends in Plant Science , 22, 124-139.
Chen, Z. H., Pottosin, I. I., Cuin, T. A., Fuglsang, A. T., Tester, M., Jha, D., … & Shabala S. (2007). Root plasma membrane transporters controlling K+/Na+homeostasis in salt-stressed barley. Plant Physiology , 145, 1714-1725.
Cogliatti, D. H., & Santa Maria, G. E. (1990). Influx and efflux of phosphorus in roots of wheat plants in non-growth-limiting concentrations of phosphorus. Journal of Experimental Botany , 41, 601-607.
Dai, F, Chen, Z. H., Wang, X. L., Li, Z. F., Jin, G. L., Wu, D. Z., … & Zhang, G. P. (2014). Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley. Proceedings of the National Academy of Sciences of the United States of America , 111, 13403-13408.
Dai, F., Nevo, E., Wu, D. Z., Comadran, J., Zhou, M. X., Qiu, L., … & Zhang, G. P. (2012). Tibet is one of the centers of domestication of cultivated barley. Proceedings of the National Academy of Sciences of the United States of America , 109, 16969-16973.
Dai, H. X., Cao, F. B., Chen, X. H., Zhang, M., Ahmed, I. M., Chen, Z. H., … & Wu, F. B. (2013). Comparative proteomic analysis of aluminum tolerance in Tibetan wild and cultivated barleys. PLoS ONE , 8, e63428.
Dai, H. X., Shan, W. N., Zhao, J., Zhang, G. P., Li, C. D., & Wu, F. B. (2011). Difference in response to aluminum stress among Tibetan wild barley genotypes. Journal of Plant Nutrition and Soil Science , 174, 952-960.
Du, Y. M., Tian, J., Liao, H., Bai, C. J., Yan, X. L., Liu, G. D. (2009). Aluminium tolerance and high phosphorus efficiency helps Stylosanthes better adapt to low-P acid soils. Annals of Botany , 103(8), 1239-1247.
Elliott, G. C., Lynch, J., & Lauchli, A. (1984). Influx and efflux of P in roots of intact maize plants - double-labeling with P-32 and P-33.Plant Physiology , 76, 336-341.
Eticha, D., Stass, A., & Horst, W. J. (2005). Localization of aluminium in the maize root apex: can morin detect cell wall-bound aluminium? Journal of Experimental Botany , 56, 1351-1357.
Feng, X., Liu, W., Qiu, C. W., Zeng, F., Wang, Y., Zhang, G., … & Wu, F. (2020) HvAKT2 and HvHAK1 Confer Drought Tolerance in Barley through Enhanced Leaf Mesophyll H+ Homeostasis. Plant Biotechnology Journal , http://doi: 10.1111/pbi.13332
Fujii, M., Yokosho, K., Yamaji, N., Saisho, D., Yamane, M., Takahashi, H., … & Ma, J. F. (2012). Acquisition of aluminium tolerance by modification of a single gene in barley. Nature Communications , 3, 132-136.
Furukawa, J., Yamaji, N., Wang, H., Mitani, N., Murata, Y., Sato, K., … & Ma, J. F. (2007). An aluminum-activated citrate transporter in barley. Plant and Cell Physiology , 48, 1081-1091.
Ganjali, M. R., Mizani, F., & Salavati-Niasari, M. (2003). Novel monohydrogenphosphate sensor based on vanadyl salophen. Analytica Chimica Acta , 481, 85-90.
Gruber, B. D., Ryan, P. R., Richardson, A. E., Tyerman, S. D., Ramesh, S., Hebb, D. M., … & Delhaize, E. (2010). HvALMT1 from barley is involved in the transport of organic anions. Journal of Experimental Botany , 61(5), 1455-1467.
Hassler, S., Lemke, L., Jung, B., Mohlmann, T., Kruger, F., Schumacher, K., … & Neuhaus, H. E. (2012). Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects, constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis. Plant Journal , 72, 732-744.
Herburger, K., Remias, D. & Holzinger, A. (2016). The green algaZygogonium ericetorum (Zygnematophyceae, Charophyta) shows high iron and aluminium tolerance: protection mechanisms and photosynthetic performance. FEMS microbiology ecology , 92(8), fiw103.
Hossain, M., Zhou, M. X., & Mendham, N. J. (2005). Reliable screening system for aluminium tolerance in barley cultivars. Australian Journal of Agricultural Research , 56, 475-482.
Huang, C. Y., Roessner, U., Eickmeier, I., Genc, Y., Callahan, D. L., Shirley, N., … & Bacic, A. (2008). Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.).Plant and Cell Physiology , 49, 691-703.
IGBP-DIS. (1998). SoilData(V.0) A program for creating global soil-property databases, IGBP Global Soils Data Task, France.
Jiang, H. X., Tang, N., Zheng, J. G., Lie, Y., & Chen, L. S. (2009). Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings. Physiologia Plantarum, 137, 298-311.
Jones, D. L., Blancaflor, E. B., Kochian, L. V., & Gilroy, S. (2006). Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots.Plant Cell and Environment , 29, 1309-1318.
Klug, B., Specht, A., & Horst, W. J. (2011). Aluminium localization in root tips of the aluminium-accumulating plant species buckwheat (Fagopyrum esculentum Moench). Journal of Experimental Botany , 62, 5453-5462.
Kobayashi, Y., Ohyama, Y., Kobayashi, Y., Ito, H., Iuchi, S., Fujita, M., … & Koyama, H. (2014). STOP2 activates transcription of several genes for Al- and low pH-tolerance that are regulated by STOP1 in Arabidopsis. Molecular Plant , 7(2), 311-322.
Kochian, L. V. (1995). Cellular mechanisms of aluminum toxicity and resistance in plants. Annual Review of Plant Physiology and Plant Molecular Biology , 46, 237-260.
Kochian, L. V., Hoekenga, O. A., & Pineros, M. A. (2004). How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology , 55, 459-493.
Kochian, L.V., Pineros, M. A., Liu, J. P., & Magalhaes, J. V. (2015). Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annual Review of Plant Biology , 66, 571-598.
Kopittke, P. M., Menzies, N. W., Wang, P., & Blamey, F. P. C. (2016). Kinetics and nature of aluminium rhizotoxic effects: a review.Journal of Experimental Botany , 67(15), 4451-4467.
Kopittke, P. M., Moore, K. L., Lombi, E., Gianoncelli, A., Ferguson, B. J., Blamey, F. P. C., … & Tollenaere, A. (2015). Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiology , 167, 1402-1411.
Lambers, H., Finnegan, P.M., Jost, R., Plaxton, W.C., Shane, M.W., & Stitt, M. (2015). Phosphorus nutrition in Proteaceae and beyond.Nature Plants , 1(8), 1-9.
Leebens-Mack, J. H., Barker, M. S., Carpenter, E. J., Deyholos, M. K., Gitzendanner, M. A., Graham S. W., … & Wong, G. K. (2019). One thousand plant transcriptomes and the phylogenomics of green plants.Nature , 574, 679-685.
Liang, C., Pineros, M. A., Tian, J., Yao, Z., Sun, L., Liu, J., … & Hong, L. (2013). Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiology , 161(3), 1347-1361.
Liang, Z., Geng, Y., Ji, C., Du, H., Wong, C. E., Zhang, Q., … & Yu, H. (2020). Mesostigma viride genome and transcriptome provide insights into the origin and evolution of Streptophyta. Advanced Science , 7, 1901850. https://doi.org/10.1002/advs.201901850.
Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols , 1, 387-396.
Liu, J. L., Yang, L., Luan, M. D., Wang, Y., Zhang, C., Zhang, B., … & Luan, S. (2015). A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America , 112, E6571-E6578.
Ma, J. F., Ryan, P. R., & Delhaize, E. (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science , 6, 273-278.
Ma, J. F., Zheng, S. J., Matsumoto, H., & Hiradate, S. (1997). Detoxifying aluminium with buckwheat. Nature , 390, 569-570.
Nevo, E., Baum, B., Beiles, A., & Johnson, D. A. (1998). Ecological correlates of RAPD DNA diversity of wild barley, Hordeum spontaneum , in the Fertile Crescent. Genetic Resources and Crop Evolution , 45(2), 151-159.
Newman, I. A. (2001). Ion transport in roots: measurement of fluxes using ion‐selective microelectrodes to characterize transporter function. Plant Cell and Environment , 24(1), 1-14.
Nishiyama, T., Sakayama, H., De Vries, J., Buschmann, H., Saint-Marcoux, D., Ullrich, K.K., … & Rensing, S. A. (2018). The Chara genome: secondary complexity and implications for plant terrestrialization.Cell , 174(2), 448-464.
Pellet, D. M., Papernik, L. A., & Kochian, L.V. (1996). Multiple aluminum-resistance mechanisms in wheat - Roles of root apical phosphate and malate exudation. Plant Physiology , 112, 591-597.
Pettersson, S., & Strid, H. (1989). Initial uptake of aluminum in relation to temperature and phosphorus status of wheat (Triticum-Aestivum L) roots. Journal of Plant Physiology , 134, 672-677.
Pratt ,J, Boisson, A. M., Gout, E., Bligny, R., Douce, R., & Aubert, S. (2009). Phosphate (Pi) starvation effect on the cytosolic Pi concentration and Pi exchanges across the tonoplast in plant cells: An in vivo P-31-nuclear magnetic resonance study using methylphosphonate as a Pi analog. Plant Physiology , 151, 1646-1657.
Prodhan, M. A., Finnegan, P. M., & Lambers, H. (2019). How does evolution in phosphorus-impoverished landscapes impact plant nitrogen and sulfur assimilation? Trends in Plant Science , 24(1), 69-82.
Qiu, L., Wu, D. Z., Ali, S., Cai, S. G., Dai, F., Jin, X. L., … & Zhang, G. P. (2011). Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley.Theoretical and Applied Genetics , 122, 695-703.
Rae, A. L., Cybinski, D. H., Jarmey, J. M., & Smith, F. W. (2003). Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Molecular Biology , 53, 27-36.
Runge-Metzger A. (1995). In Phosphorus in the global environment: transfers, cycles and management. Wiley, New York. 27-42.
Ryan, P. R., & Delhaize, E. (2010). The convergent evolution of aluminium resistance in plants exploits a convenient currency.Functional Plant Biology , 37, 275-284.
Ryan, P. R., Ditomaso, J. M., & Kochian, L. V. (1993). Aluminum toxicity in roots - an investigation of spatial sensitivity and the role of the root cap. Journal of Experimental Botany , 44, 437-446.
Ryan, P. R., Shaff, J. E., & Kochian, L. V. (1992). Aluminum toxicity in roots - Correlation among ionic currents, ion fluxes, and root elongation in aluminum-sensitive and aluminum-tolerant wheat cultivars.Plant Physiology , 99, 1193-1200.
Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S. J., Ryan, P. R., … & Matsumoto, H. (2004). A wheat gene encoding an aluminum-activated malate transporter. Plant Journal , 37, 645-653
Smart, K. E., Smith, J. A., Kilburn, M. R., Martin, B. G., Hawes, C., & Grovenor, C. R. (2010). High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry.Plant Journal , 63, 870-879.
Sposito, G. (2008). The chemistry of soils. Oxford university press.
Stefanovic, A., Arpat, A. B., Bligny, R., Gout, E., Vidoudez, C., Bensimon, M., & Poirier, Y. (2011). Over-expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux.Plant Journal , 66, 689-699.
Sun, Q. B., Shen, R. F., Zhao, X. Q., Chen, R. F., & Dong, X. Y. (2008). Phosphorus enhances Al resistance in Al-resistant lespedeza bicolor but not in Al-sensitive L. cuneata under relatively high Al stress. Annals of Botany , 102, 795-804.
Tang, Y., Garvin, D. F., Kochian, L.V., Sorrells, M. E., & Carver, B. F. (2002). Physiological genetics of aluminum tolerance in the wheat cultivar atlas 66. Crop Science , 42, 1541-1546.
Taylor, G. J., McDonald-Stephens, J. L., Hunter, D. B., Bertsch, P. M., Elmore, D., Rengel, Z., & Reid, R. J. (2000). Direct measurement of aluminum uptake and distribution in single cells of Chara corallina.Plant Physiology , 123, 987-996.
Tokizawa, M., Kobayashi, Y., Saito, T., Kobayashi, M., Iuchi, S., Nomoto, M., … & Koyama, H. (2015). Sensitive to proton rhizotoxicity1, calmodulin binding transcription activator2, and other transcription factors are involved in aluminum-activated malate transporter1 expression. Plant Physiology , 167(3), 991-1003.
Urano, K., Kurihara, Y., Seki, M., & Shinozaki, K. (2010). ’Omics’ analyses of regulatory networks in plant abiotic stress responses.Current Opinion in Plant Biology , 13, 132-138.
Wang, C., Huang, W., Ying, Y.H., Li, S., Secco, D., Tyerman, S., … & Shou, H. X. (2012). Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytologist , 196, 139-148.
Wang, C., Yue, W. H., Ying, Y. H., Wang, S. D., Secco, D., Liu, Y., … & Shou, H. X. (2015). Rice SPX-Major Facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice. Plant Physiology , 169, 2822-2831.
Wang, J. P., Raman, H., Zhou, M. X., Ryan, P. R., Delhaize, E., Hebb, D. M., … & Mendham, N. (2007). High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.).Theoretical and Applied Genetics , 115, 265-276.
Wang, S., Li, L., Li, H., Sahu, S. K., Wang, H., Xu, Y., … & Chang, Y. (2020). Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nature Plants , 6, 95–106.
Wang, T., Yang, Y. H., & Ma W. H. (2008). Storage, patterns and environmental controls of soil phosphorus in China. Acta Scientiarum Naturalium Universitatis Pekinensis , 44, 945-952.
Wu, D. M., Shen, H., Yokawa, K., & Baluska, F. (2014). Alleviation of aluminium-induced cell rigidity by overexpression of OsPIN2 in rice roots. Journal of Experimental Botany , 65, 5305-5315.
Wu, D. Z., Cai, S. G., Chen, M. X., Ye, L. Z., Chen, Z. H., Zhang, H. T., … & Zhang, G. P. (2013). Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS ONE , 8, e55431.
Yang, J. L., Fan, W., & Zheng, S. J. (2019). Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots.Journal of Zhejiang University-SCIENCE B , 20(6), 513-527.
Yang, J. L., Li, Y. Y., Zhang, Y. J., Zhang, S. S., Wu, Y. R., Wu, P., & Zheng, S. J. (2008). Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex.Plant Physiology , 146(2), 602-611.
Yang, J. L., Zhu, X. F., Peng,Y. X., Zheng, C., Li, G. X., Liu, Y., …& Zheng S. J. (2011). Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis.Plant Physiology ,155, 1885-1892.
Yang, Z. B., Geng, X., He, C., Zhang, F., Wang, R., Horst, W. J., & Ding, Z. (2014). TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. The Plant Cell , 26(7), 2889-2904.
Yang, Z. B., He, C., Ma, Y., Herde, M., & Ding, Z. (2017). Jasmonic acid enhances Al-induced root growth inhibition. Plant Physiology , 173(2), 1420-1433.
Zhang, J., Fu, X. X., Li, R. Q., Zhao, X., Liu, Y., Li, M. H., … & Chen, Z. D. (2020). The hornwort genome and early land plant evolution. Nature Plants , 6(2), 107-118.
Zhao, C., Wang, Y., Chan, K. X., Marchant, D. B., Franks, P. J., Randall, D., … & Zhang, B. (2019). Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land.Proceedings of the National Academy of Sciences , 116(11), 5015-5020.
Zheng, S. J., Yang, J. L., He, Y. F., Yu, X. H., Zhang, L., You, J. F., … & Matsumoto, H. (2005). Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiology , 138, 297-303.
Zhou, J., Jiao, F. C., Wu, Z. C., Li, Y. Y., Wang, X. M., He, X. W., … & Wu, P. (2008). OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants.Plant Physiology , 146, 1673-1686.
Zhu, X. F., Shi, Y. Z., Lei, G. J., Fry, S. C., Zhang, B. C., Zhou, Y. H., … & Zheng S. J. (2012). XTH31, Encoding an in vitro XEH/XET-active Enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in arabidopsis. The Plant Cell , 24, 4731-4747.