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We investigate mixed type boundary-transmission problems of the generalized
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mission and boundary conditions for six dimensional unknown physical field (three

components of the displacement vector, electric potential function, magnetic poten-

tial function, and temperature distribution function). We apply the potential method

and the theory of pseudodifferential equations and prove uniqueness and existence

theorems of solutions to different type mixed boundary-transmission problems in

appropriate Sobolev spaces. We analyze smoothness properties of solutions near

the edges of interfacial cracks and near the curves where different type boundary

conditions collide.
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1 INTRODUCTION

Mathematical modeling and analysis of complex multi-component structures in the presence of coupled electro-magnetic

and thermo-mechanical fields became very important from the theoretical and practical points of view, due to the rapidly

increasing use of composite materials in modern technological processes, as well as in biology and medicine. Recently, many

applications have arisen that involve the dynamics of response of new material systems in the presence of strongly coupled

electro-magnetic and thermo-mechanical fields (see, e.g., Brown1, Eringen etc2, Aouadi3, Aouadi4, Avellaneda etc5, Ben-

veniste6, Cady7, Bracke etc8, Chandrasekharaiah9,10, Dang etc11,12, Gao13, Grimes etc14, García-Sánchez etc15, Hetnarski

etc16, Higuchi etc17, Dunn18, Li etc19, Li etc20, Marder21, Morita etc22, Nan23, Nan etc24, Pak25, Qin26, Ryu etc27, Silva

etc28, Straughan29, Tauchert etc30, Uchino31, Van Run etc32, Wang etc33,34,35, Wang etc36, Yang37, Zohdi38, Wei39, Suo etc40,

Harshe etc41, Fabrizio etc42, Hench43, Natroshvili etc44, Natroshvili45, and the references therein).
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In spite of the fact that there are a huge number of papers devoted to numerical solutions of the above mentioned problems for

particular cases (see, e.g., a survey paper Benjeddou46, Kaltenbacher47, Rojas-Dáz etc48, and the references therein), the three-

dimensional mixed initial-boundary-transmission problems for multi-component composed bodies with interior and interfacial

cracks, in the scientific literature have not been systematically treated from the point of view of rigorous mathematical study.

In the present paper, we consider the generalized Green-Lindsay’s thermo-electro-magneto elasticity (GTEME) model

describing physical processes with a finite speed of heat propagation in contrast to the conventional thermoelasticity theory

(for details see, e.g., Straughan29). We consider the case of composed layered solids and analyse mixed boundary transmis-

sion problems for the system of elliptic partial differential equations (“pseudo-oscillation equations"), which are obtained from

the corresponding dynamical equations by the Laplace transform. The mathematical model contains a fully coupled system of

six second order partial differential equations (PDE) with respect to six unknowns: three components of the displacement vec-

tor, the electric and magnetic potentials, and the temperature function. These equations are equipped with appropriate mixed

boundary-transmission conditions.

The main questions of our investigation are the existence and uniqueness of solutions to the essentially mixed boundary-

transmission problems under consideration and analysis of smoothness properties of solutions at the exceptional curves -

interfacial crack edges and curves where different type boundary conditions collide. Near the exceptional curves singularity

zones appear usually and in practice it is very important to analyse and calculate the stress singularity exponents explicitly.

In our study, the main tools are the generalized potential method and the theory of pseudodifferential equations on manifolds

with boundary. By the same approach, similar problems for simpler piezo-elastic models were considered in the references

Buchukuri etc49,50, Buchukuri etc51. The basic boundary-transmission problems for the system of thermo-electro-magneto

elasticity theory for composed structures without interfacial cracks were studied in Buchukuri etc52 and Buchukuri etc53.

It should be mentioned that in the case of interfacial crack, the investigation of the corresponding mixed boundary-

transmission problem becomes very complicated theoretically and technically in comparison with the case of interior crack

problem.

The paper is organized as follows.

In the second section, we introduce the basic differential operators of the generalized thermo-electro-magneto elasticity model

and derive the corresponding Green formulas. In the third section, we derive representation of solutions in the form of single layer

potentials for the problem when the Dirichlet condition is given on the exterior boundary of the layered composite solid and the

rigid transmission conditions are prescribed on the interface surface. This representation is then essentially applied in the fourth

section, where we investigate the problems with mixed boundary conditions on the exterior boundary of the composed solid and

with mixed transmission conditions on the interface surface. This problem covers the case when the composed solid contains

interfacial cracks. We reduce the problem to the system of pseudodifferential equations which live on the interface crack surface

and on the Neumann part of the exterior boundary. We establish invertibility of the corresponding pseudodifferential operators

in appropriate function spaces and establish unique solvability of the original mixed boundary-transmission problem in Sobolev-

Slobodetskii spaces. Finally, we analyse regularity properties of solutions near the exceptional curves and show that solutions

are Hölder continuous functions under some reasonable restrictions on boundary and transmission data. From our analysis it

follows that in general the Hölder smoothness exponents are less then
1

2
and they essentially depend on the material parameters

of the composed solid. It is shown that this smoothness exponent can be calculated explicitly by the principal homogeneous

symbol matrix of the above mentioned pseudodifferential operator.

2 FIELD EQUATIONS OF THE GTEME MODEL AND GREEN’S FORMULAS

The basic linear system of pseudo-oscillation equations for the thermo-electro-magneto-elasticity theory associated with Green-

Lindsay’s model for homogeneous solids in matrix form reads as (see Buchukuri etc53)

A()x, �)U (x, �) = Φ(x, �) ,
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where U = (u1, u2, u3, ',  , #)
⊤ ∶= (u, ',  , #)⊤ is the sought for complex-valued vector function, Φ = (Φ1, ...,Φ6)

⊤ is a given

vector-function, and A()x, �) is a matrix differential operator

A()x, �) =
[
Apq()x, �)

]
6×6

∶=

⎡
⎢⎢⎢⎢⎢⎣

[crjkl)j)l − %�
2�rk]3×3 [elrj)j)l]3×1 [qlrj)j)l]3×1 [−(1 + �0�)�rj)j]3×1

[−ejkl)j)l]1×3 zjl)j)l ajl)j)l −(1 + �0�) pj)j

[−qjkl)j)l]1×3 ajl )j)l �jl)j)l −(1 + �0�)mj)j

[−��kl)l]1×3 �pl)l �ml)l �jl)j)l − �
2ℎ0 − �d0

⎤
⎥⎥⎥⎥⎥⎦
6×6

. (1)

The superscript (⋅)⊤ denotes transposition operation, � = �+i! is a complex parameter, the summation over the repeated indices

is meant from 1 to 3; ) = )x = ()1, )2, )3), )j = )∕)xj . The components of the vector function U have the following physical

sense: the first three components correspond to the elastic displacement vector u = (u1, u2, u3)
⊤, the forth and fifth ones, ' and 

are respectively the electric and magnetic potentials, and the sixth component # stands for the temperature distribution; crjkl are

the elastic constants, ejkl are the piezoelectric constants, qjkl are the piezomagnetic constants, zjk are the dielectric (permittivity)

constants, �jk are the magnetic permeability constants, ajk are the coupling coefficients connecting electric and magnetic fields,

pj and mj are constants characterizing the relation between thermodynamic processes and electromagnetic effects, �rj are the

thermal strain constants, �jk are the heat conductivity coefficients, % denotes the mass density, �0 and ℎ0 are two relaxation times,

d0 is a constitutive coefficient. These constants satisfy the symmetry conditions:

crjkl = cjrkl = cklrj , eklj = ekjl, qklj = qkjl,

zkj = zjk, �kj = �jk, �kj = �jk, akj = ajk, �kj = �jk, r, j, k, l = 1, 2, 3.
(2)

From physical considerations it follows that (see, e.g., Aouadi4, Straughan29, Green etc54) for all �kj = �jk ∈ ℝ and for all

� = (�1, �2, �3) ∈ ℝ3:

crjkl �rj �kl ≥ �0 �kl �kl, zkj �k �j ≥ �1 |�|2, �kj �k �j ≥ �2 |�|2, �kj �k �j ≥ �3 |�|2, (3)

�0 > 0, ℎ0 > 0, d0�0 − ℎ0 > 0,

where �0, �1, �2, and �3 are positive constants depending on material parameters.

Due to the symmetry conditions (2), with the help of (3) one can easily derive the inequalities:

crjkl �rj �kl ≥ �0 �kl �kl, zkj �k �j ≥ �1 |�|2, �kj �k �j ≥ �2 |�|2, �kj �k �j ≥ �3 | �|2,
for all �kj = �jk ∈ ℂ and for all � = (�1, �2, �3) ∈ ℂ3,

where the over bar denotes complex conjugation. The positive definiteness of the potential energy and the laws of thermody-

namics imply that the following 8 × 8 matrix

M = [Mkj]8×8 ∶=

⎡
⎢⎢⎢⎢⎢⎣

[zjl]3×3 [ajl]3×3 [pj]3×1 [�0pj]3×1

[ajl]3×3 [�jl]3×3 [mj]3×1 [�0mj]3×1

[pj]1×3 [mj]1×3 d0 ℎ0

[�0pj]1×3 [�0mj]1×3 ℎ0 �0ℎ0

⎤
⎥⎥⎥⎥⎥⎦
8×8

is positive definite. Moreover, it follows that the matrices

Λ(1) ∶=

[
[zkj]3×3 [akj]3×3

[akj]3×3 [�kj]3×3

]

6×6

, Λ(2) ∶=

[
d0 ℎ0

ℎ0 �0ℎ0

]

2×2

(4)

are positive definite as well, i.e.,

zkj � ′k � ′j + akj (� ′k � ′′j + � ′
k
� ′′
j
) + �kj �

′′
k
� ′′
j
≥ �1 (|� ′|2 + |� ′′|2) ∀� ′, � ′′ ∈ ℂ3,

d0 |z1|2 + ℎ0 (z1 z2 + z1 z2) + �0ℎ0 |z2|2 ≥ �2 (|z1|2 + |z2|2) ∀z1, z2 ∈ ℂ,
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with some positive constants �1 and �2 depending on the material parameters involved in matrices (4).

Further, let us introduce the generalized stress operator  ()x, n, �) associated with the pseudo-oscillation operator A()x, �),

 ()x, n, �) =
[ pq()x, n, �) ]6×6 ∶=

⎡
⎢⎢⎢⎢⎢⎣

[crjkl nj)l]3×3 [elrj nj)l]3×1 [qlrj nj)l]3×1 [−(1 + �0�)�rjnj]3×1

[−ejkl nj)l]1×3 zjl nj)l ajl nj)l −(1 + �0�)pjnj

[−qjkl nj)l]1×3 ajl nj)l �jl nj)l −(1 + �0�)mjnj

[0]1×3 0 0 �jlnj)l

⎤
⎥⎥⎥⎥⎥⎦
6×6

. (5)

For a six vector U = (u, ',  , #)⊤ we can calculate the so-called generalized stress vector  U ,

 ()x, n, �)U (x, �) =
(
�1j(x, �)nj(x), �2j(x, �)nj(x), �3j(x, �)nj(x),

−Dj(x, �)nj(x), −Bj(x, �)nj(x), −T
−1
0
qj(x, �)nj(x)

)⊤
. (6)

Due to (6), the components of the stress vector have the following physical sense: the first three components correspond to

the mechanical stress vector in the theory of generalized thermo-electro-magneto-elasticity, the forth and the fifth components

correspond to the normal components of the electric displacement vector and the magnetic induction vector respectively with

opposite sign, and finally the sixth component is (−T −1
0

) times the normal component of the heat flux vector; here n = (n1, n2, n3)

stands for the unit normal vector to the corresponding surface element, �ij are the components of the mechanical stress tensor, T0
is the initial reference temperature, that is the temperature in the natural state in the absence of deformation and electromagnetic

fields, D = (D1, D2, D3)
⊤ is the electric displacement vector and B = (B1, B2, B3)

⊤ is the magnetic induction vector.

Recall that E = (E1, E2, E3)
⊤ = −grad' and H = (H1, H2, H3)

⊤ = −grad are electric and magnetic fields respectively,

"kj = 2−1()k uj + )j uk) are the components of the mechanical strain tensor, q = (q1, q2, q3)
⊤ is the heat flux vector, and the

corresponding constitutive equations read as

�rj(x, �) = crjkl"kl(x, �) + elrj)l'(x, �) + qlrj)l (x, �) − (1 + �0�)�rj#(x, �),

Dj(x, �) = ejkl "kl(x, �) − zjl )l'(x, �) − ajl )l (x, �) + (1 + �0�)pj#(x, �),

Bj(x, �) = qjkl "kl(x, �) − ajl )l'(x, �) − �jl)l (x, �) + (1 + �0�)mj#(x, �),

qj(x, �) = − T0 �jl)l#(x, �) .

Let Ω be a bounded domain of ℝ3 with sufficiently smooth boundary S = )Ω.

By Ck(Ω) we denote the subspace of functions from Ck(Ω) whose derivatives up to the order k are continuously extendable

to S from Ω; Ck,�(Ω) denotes the subspace of functions from Ck(Ω) whose kth order derivatives are Hölder continuous in Ω

with exponent � ∈ (0, 1]. By Lp, Lp,loc, W
r
p

, W r
p,loc

, Hs
p
, Hs

p,loc
, Bs

p,q
, and Bs

p,q,loc
(with r ≥ 0, s ∈ ℝ, 1 < p < ∞, 1 ≤ q ≤ ∞)

we denote the well-known Lebesgue, Sobolev-Slobodetskii, Bessel potential, and Besov function spaces, respectively (see, e.g.,

Triebel55). Recall thatH r
2
= W r

2
= Br

2,2
, Hs

2
= Bs

2,2
, W t

p
= Bt

p,p
, and Hk

p
= W k

p
, for any r ≥ 0, for any s ∈ ℝ, for any positive

and non-integer t, and for any non-negative integer k. Let us introduce also the following spaces:

H̃s
p
() = {f ∶ f ∈ Hs

p
(0), supp f ⊂}, Hs

p
() = {rf ∶ f ∈ Hs

p
(0)},

B̃s
p,q
() = {f ∶ f ∈ Bs

p,q
(0), suppf ⊂}, Bs

p,q
() = {rf ∶ f ∈ Bs

p,q
(0) },

where  is a proper submanifold of a manifold 0 and r is the restriction operator onto .

For arbitrary vector functions

U = (u1, u2, u3, ',  , #)
⊤ ∈

[
C2(Ω)

]6
and U ′ = (u′

1
, u′

2
, u′

3
, '′,  ′, #′)⊤ ∈

[
C2(Ω)

]6
,

the following first Green identity holds (see Buchukuri etc53)

∫
Ω

[
A()x, �)U ⋅ U ′ + �(U,U ′)

]
dx = ∫

)Ω

{ ()x, n, �)U}+ ⋅ {U ′}+dS , (7)

where the central dot denotes the scalar product of two vectors in the complex vector space ℂN , i.e., a ⋅ b ≡ (a, b) ∶=
∑N

j=1
aj bj

for a, b ∈ ℂN , the symbol {⋅}+ denotes the one sided limit (the trace operator) on )Ω, the operatorsA()x, �) and  ()x, n, �) are
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given by (1) and (5) respectively and

�(U,U ′) ∶= crjkl )luk )ju
′
r
+ % �2 ur u

′
r
+ elrj ()l')ju

′
r
− )jur )l'

′)

+ qlrj ()l )ju
′
r
− )jur )l 

′) + zjl )l')j'′ + ajl ()l')j 
′ + )j )l'

′)

+ �jl)l )j 
′ + �kj[�#

′)juk − (1 + �0�)#)ju
′
k
] − pl[�#

′)l' + (1 + �0�)#)l'
′]

− ml [� #
′ )l + (1 + �0�)# )l 

′] + �jl )l# )j#
′ + � (ℎ0� + d0) ##

′ .

Note that Green’s formula (7) by standard limiting procedure can be generalized to Lipschitz domains and to vector functions

U ∈ [W 1
p
(Ω)]6 with A()x, �)U ∈

[
Lp(Ω)

]6
and U ′ ∈ [W 1

q
(Ω)]6,

1

p
+

1

q
= 1. Using Green’s first identity we can correctly

determine a generalized trace of the stress vector { ()x, n, �)U}+ ∈ [B
−

1

p

p,p ()Ω)]
6 for a functionU ∈ [W 1

p
(Ω)]6 withA()x, �)U ∈

[Lp(Ω)]
6 by the following duality relation (cf. McLean56, Buchukuri etc53)

⟨
{ ()x, n, �)U}+ , {U ′}+

⟩
)Ω

∶= ∫
Ω

[A()x, �)U ⋅ U ′ + �(U,U ′) ] dx,

where U ′ ∈ [W 1
q
(Ω)]6 is an arbitrary vector function. Here the symbol ⟨ ⋅ , ⋅ ⟩)Ω denotes the duality pairing of [B

−
1

p

p,p ()Ω)]
6 with

[B
1

p

q,q()Ω)]
6 which extends the standard L2 inner product for complex-valued vector functions,

⟨f , g ⟩)Ω = ∫
)Ω

6∑
j=1

fj(x) gj(x) dS for f, g ∈ [L2()Ω)]
6.

In particular, for p = 2 we have the inclusion { ()x, n, �)U}+ ∈ [B
−

1

2

2,2
()Ω)]6 = [H

−
1

2

2
()Ω)]6.

3 TRANSMISSION PROBLEM WITH THE DIRICHLET CONDITION

3.1 Formulation of the problem and uniqueness theorem

Let Ω(1) be a bounded simply connected domain with the simply connected boundaryS1 and Ω(2) be an adjacent bounded simply

connected domain with interior boundary S1 and simply connected exterior boundary S2, S1 ∩ S2 = ∅. We assume that the

domains Ω(1) and Ω(2) are occupied by anisotropic homogeneous materials possessing different thermo-electro-magneto-elastic

properties. This means that their material parameters are different constants in different domains, in general, and we have a

composed layered elastic solid Ω(1)
⋃

Ω(2) with interfacial surface S1 and with exterior boundary S2.

Throughout the paper n stands for the exterior normal vector to the surfaces S1 and S2, and, for simplicity, we assume that

S1 and S2 are infinitely smooth manifolds if not otherwise stated.

We equip with the superscript (�), � = 1, 2, the thermo-mechanical and electro-magnetic characteristics, differential and

generalized stress operators associated with the domain Ω(�). Later, we use the same notation for the fundamental solutions,

layer potentials, and the corresponding boundary integral operators.

First we consider an auxiliary boundary-transmission problem for a layered composed solid with the Dirichlet type condition

on the exterior boundary. Representation formula for this problem plays a crucial role in our further analysis.

Problem (TD). Find solutions

U (1) ∈ [W 1
p
(Ω(1))]6, U (2) ∈ [W 1

p
(Ω(2))]6, p > 1,

to the pseudo-oscillation equations of the GTEME theory

A(�)()x, �)U
(�)(x) = 0 , x ∈ Ω(�), � = 1, 2, (8)

satisfying the transmission conditions on the interface S1

{U (1)(x)}+ − {U (2)(x)}− = f (1)(x), x ∈ S1, (9)

{ (1)()x, n, �)U
(1)(x)}+ − { (2)()x, n, �)U

(2)(x)}− = F (1)(x), x ∈ S1, (10)
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and the Dirichlet condition on S2

{U (2)(x)}+ = f (2)(x), x ∈ S2, (11)

where the symbols {⋅}± denote the one sided interior and exterior limits (the trace operators) on S1 and S2 and

f (1) ∈ [B
1−

1

p

p,p (S1)]
6, f (2) ∈ [B

1−
1

p

p,p (S2)]
6, F (1) ∈ [B

−
1

p

p,p (S1)]
6. (12)

Here the differential equations (8) of pseudo-oscillations are understood in the distributional sense, the Dirichlet type

boundary-transmission conditions (9) and (11) in the usual trace sense, and the Neumann type transmission condition (10) in

the generalized functional sense defined by the corresponding Green formulas.

Theorem 1. Let S1 and S2 be Lipschitz, conditions (12) be satisfied with p = 2, and the time relaxation parameters �
(1)

0
and

�
(2)

0
be the same,

�
(1)

0
= �

(2)

0
=∶ �0. (13)

Then the transmission problem (TD) (8)-(11) possesses at most one solution in the space [W 1
2
(Ω(1))]6 × [W 1

2
(Ω(2))]6.

Proof. Actually, the proof of the theorem is quite similar to the proof of Theorem 8.1 in the reference Buchukuri etc53.

3.2 Representation formulas of solutions to the problem (TD)

Let us look for solution vectors U (1) and U (2) of the boundary-transmission problem (TD) in the form of single layer potentials

associated with the operator A(�)()x, �), � = 1, 2, constructed by the corresponding fundamental matrix Γ(�)(x − y, �) (see

Appendix, formula (70))

U (1)(x) = V
(1)

S1
(g(1))(x) in Ω(1), (14)

U (2)(x) = V
(2)

S1
(ℎ(1))(x) + V

(2)

S2
(ℎ(2))(x) in Ω(2), (15)

where g(1) ∈ [B
−1∕p
p,p (S1)]

6, ℎ(1) ∈ [B
−1∕p
p,p (S1)]

6, and ℎ(2) ∈ [B
−1∕p
p,p (S2)]

6 are unknown density vectors. The boundary-

transmission conditions (9), (10), and (11), and properties of the single layer potentials (see Theorems 9-10) lead then to the

following system of pseudodifferential equations for g(1), ℎ(1), and ℎ(2):

(1)

S1
g(1) −(2)

S1
ℎ(1) − {V

(2)

S2
(ℎ(2))}−

S1
= f (1) on S1, (16)

(
−

1

2
I6 +(1)

S1

)
g(1) −

(
1

2
I6 +(2)

S1

)
ℎ(1) − { (2)V

(2)

S2
(ℎ(2))}−

S1
= F (1) on S1, (17)

{V
(2)

S1
(ℎ(1))}+

S2
+(2)

S2
ℎ(2) = f (2) on S2. (18)

The integral operators(�)

Sl
and(�)

Sl
, � = 1, 2, l = 1, 2, are defined in Appendix, see formulas (73) and (74). Denote the operator

generated by the left hand side expressions of system (16)-(18) by M = [Mkj]18×18,

M = N +K,

where

N = [Nkj]18×18 =

⎡
⎢⎢⎢⎣

(1)

S1
−(2)

S1
0

−
1

2
I6 +(1)

S1
−

1

2
I6 −(2)

S1
0

0 0 (2)

S2

⎤
⎥⎥⎥⎦18×18

, (19)

K = [Kkj]18×18 =

⎡⎢⎢⎢⎣

0 0 −r
S1

V
(2)

S2

0 0 −r
S1

 (2)V
(2)

S2

0 r
S2

V
(2)

S1
0

⎤⎥⎥⎥⎦18×18
, (20)

where r
Sj

is the restriction operator to Sj and the boldface zero 0 stands for the 6 × 6 null-matrix, 0 = [0]6×6. Note that due

to the properties of the single layer potentials {V
(2)

S2
(ℎ(2))}−

S1
= r

S1

V
(2)

S2
(ℎ(2)), {V

(2)

S1
(ℎ(1))}+

S2
= r

S2

V
(2)

S1
(ℎ(1)) and { (2)V

(2)

S2
}−
S1

=

r
S1

 (2)V
(2)

S2
.
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System (16)-(18) can be rewritten then as

MΦ = Ψ, (21)

with an unknown vector-function Φ = (g(1), ℎ(1), ℎ(2))⊤ and a given right hand side vector-function Ψ = (f (1), F (1), f (2))⊤.

Let us introduce the function spaces:

Xt
p,q

∶=
[
Bt
p,q
(S1)

]6
×
[
Bt
p,q
(S1)

]6
×
[
Bt
p,q
(S2)

]6
,

Y t
p,q

∶=
[
Bt+1
p,q

(S1)
]6
×
[
Bt
p,q
(S1)

]6
×
[
Bt+1
p,q

(S2)
]6
.

Evidently, the above introduced operators possess the following mapping properties (see Theorem 10 in Appendix):

M ∶ Xt
p,q

→ Y t
p,q
, (22)

N ∶ Xt
p,q

→ Y t
p,q
, (23)

K ∶ Xt
p,q

→ Y t
p,q
, (24)

for p > 1, q ⩾ 1, and t ∈ ℝ. In view of (19), it is easy to see that operator (24) is infinitely smoothing compact operator since S1

and S2 are disjoint C∞−regular manifolds. Therefore, the operator N defined in (23) is a compact perturbation of the operator

M defined in (22).

First we prove the following assertion.

Theorem 2. Let Sj ∈ C∞, j = 1, 2. Then operator (23) is invertible for all p > 1, q ⩾ 1, and t ∈ ℝ.

Proof. Denote

AS1
∶=

⎡
⎢⎢⎣

(1)

S1
−(2)

S1

−
1

2
I6 +(1)

S1
−

1

2
I6 −(2)

S1

⎤
⎥⎥⎦12×12

.

The following invertibility result is proved in Buchukuri etc53 as Theorem 8.2: The operator

AS1
∶

[
B

−
1

p

p,p (S1)
]6

×
[
B

−
1

p

p,p (S1)
]6

→

[
B

1−
1

p

p,p (S1)
]6
×
[
B

−
1

p

p,p (S1)
]6

is invertible for all p > 1. Due to the general theory of pseudodifferential operators, this implies that the operator

AS1
∶

[
Bt
p,q
(S1)

]6
×
[
Bt
p,q
(S1)

]6
→

[
Bt+1
p,q

(S1)
]6
×
[
Bt
p,q
(S1)

]6

is invertible for all p > 1, q ⩾ 1, and t ∈ ℝ.

The invertibility of the operator (see Theorem 10 in Appendix)

(2)

S2
∶

[
Bt
p,q
(S2)

]6
→

[
Bt+1
p,q

(S2)
]6

and the relation (19) complete the proof.

Remark 1. Consider the operator

ÃS1
∶= AS1

ℍS1
=

[
I6 −I6

(1)

S1
−(2)

S1

]

12×12

, (25)

where

ℍS1
=

⎡
⎢⎢⎣
[(1)

S1
]−1 0

0 [(2)

S1
]−1

⎤
⎥⎥⎦12×12

and

(1)

S1
∶=

(
−

1

2
I6 +(1)

S1

)
[(1)

S1
]−1, (2)

S1
∶=

(
1

2
I6 +(2)

S1

)
[(2)

S1
]−1 (26)

are the Steklov-Poincaré type operators associated with the surface S1 (see Appendix). Note that (26) are strongly elliptic

pseudodifferential operators of order 1 (see Buchukuri etc53).

From Theorem 2 and relation (25) it follows that the strongly elliptic pseudodifferential operator

ÃS1
∶

[
Bt+1
p,q

(S1)
]6

×
[
Bt+1
p,q

(S1)
]6

→

[
Bt+1
p,q

(S1)
]6

×
[
Bt
p,q
(S1)

]6
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is invertible for all p > 1, q ⩾ 1, and t ∈ ℝ. Moreover, in Subsection 8.2 in Buchukuri etc53, it is also shown that for all p > 1,

q ⩾ 1, and t ∈ ℝ, the operator

(1)

S1
−(2)

S1
∶

[
Bt+1
p,q

(S1)
]6

→

[
Bt
p,q
(S1)

]6
is invertible as well (see Appendix, Theorem 13).

It can be shown that the inverse operator to the operator (23)

N
−1 ∶ Y

t
p,q

→ X
t
p,q

has the form

N
−1 ≡ ℕ = [ℕkj]18×18 =

⎡
⎢⎢⎢⎢⎣

−[(1)

S1
]−1[(1)

S1
−(2)

S1
]−1(2)

S1
[(1)

S1
]−1[(1)

S1
−(2)

S1
]−1 0

−[(2)

S1
]−1[(1)

S1
−(2)

S1
]−1(1)

S1
[(2)

S1
]−1[(1)

S1
−(2)

S1
]−1 0

0 0 [(2)

S2
]−1

⎤
⎥⎥⎥⎥⎦18×18

. (27)

Due to Theorem 2 and the compactness of the operator (24), the operator (22) is Fredholm with zero index. Let us show that

the null-space of the operator (22) is trivial. Indeed, let Φ = (g(1), ℎ(1), ℎ(2))⊤ ∈ X
−

1

2

2,2
=
[
H

−
1

2

2
(S1)

]6
×
[
H

−
1

2

2
(S1)

]6
×
[
H

−
1

2

2
(S2)

]6
be a solution to the homogenous equation MΦ = 0 and construct vectors U (1) and U (2) by formulas (14) and (15). It can easily

be shown that the pair
(
U (1), U (2)

)
∈ [H1

2
(Ω(1))]6×[H1

2
(Ω(2))]6 solves the homogeneous boundary-transmission Problem (TD).

Therefore, U (1) = 0 in Ω(1) and U (2) = 0 in Ω(2) due to the uniqueness Theorem 1. In view of continuity property of the

single layer potentials and uniqueness theorems for the interior and exterior Dirichlet boundary value problems for the operators

A(�)()x, �), � = 1, 2, (see, e.g., Theorems 2.25-2.26 in Buchukuri etc53), we conclude that

V
(1)

S1
(g(1))(x) = 0 in ℝ

3,

V
(2)

S1
(ℎ(1))(x) + V

(2)

S2
(ℎ(2))(x) = 0 in ℝ3,

which imply g(1) = ℎ(1) = 0 on S1 and ℎ(2) = 0 on S2. Whence, it follows that the null space of the operator (22) is trivial for

p = q = 2, and therefore it is also trivial for all p > 1, q ⩾ 1, and t ∈ ℝ. Consequently, we have the following invertibility result.

Theorem 3. Operator (22) is invertible for all p > 1, q ⩾ 1, and t ∈ ℝ, when Sj ∈ C∞, j = 1, 2.

This theorem implies the corresponding existence result.

Theorem 4. Let Sj ∈ C∞, j = 1, 2, p > 1, q ⩾ 1, t ⩾ 1, and the following conditions hold

f (1) ∈ [B
t−

1

p

p,p (S1)]
6, f (2) ∈ [B

t−
1

p

p,p (S2)]
6, F (1) ∈ [B

t−1−
1

p

p,p (S1)]
6.

Then the boundary-transmission problem (TD) is uniquely solvable in the space [W t
p
(Ω(1))]6×[W t

p
(Ω(2))]6 and the solution pair

is representable in the form of single layer potentials (14)-(15), where the densities g(1), ℎ(1), and ℎ(2) are defined by the system

of pseudodifferential equations (16)-(18).

Proof. Solvability of the problem follows from Theorem 3. We have uniqueness for p = 2, thanks to Theorem 1. To show the

unique solvability for arbitrary p > 1, because invertibility of the operator (22), it is enough to show that an arbitrary solution

U (�) ∈ [W 1
p
(Ω(�))]6 of equation (8) is uniquely representable in the form of single layer potentials, (14) for � = 1 and (15) for

� = 2. Indeed, let U (2) ∈ [W 1
p
(Ω(2))]6 be a solution of the equation A(2)()x, �)U

(2)(x) = 0, x ∈ Ω(2). It is evident that

f (1) ∶= {U (2)}−
S1

∈ [B
1−

1

p

p,p (S1)]
6, f (2) ∶= {U (2)}+

S2
∈ [B

1−
1

p

p,p (S2)]
6. (28)

Thus, the vector function U (2) ∈ [W 1
p
(Ω(2))]6 can be considered as a solution to the Dirichlet problem with conditions (28). On

the other hand, let us consider the vector function

U ∗(x) = V
(2)

S1
(ℎ(1))(x) + V

(2)

S2
(ℎ(2))(x) in Ω(2),
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where ℎ(1) and ℎ(2) solve the system of pseudodifferential equations

(2)

S1
ℎ(1) + {V

(2)

S2
(ℎ(2))}−

S1
= f (1) on S1, (29)

{V
(2)

S1
(ℎ(1))}+

S2
+(2)

S2
ℎ(2) = f (2) on S2, (30)

where f (1) and f (2) are defined by (28).

Put

H ∶=

⎡
⎢⎢⎣
(2)

S1
{V

(2)

S2
}−
S1

{V
(2)

S1
}+
S2

(2)

S2

⎤
⎥⎥⎦
.

With the help of Theorem 10 and taking into consideration unique solvability of the Dirichlet problem in the space [W 1
2
(Ω(2))]6

it is easy to shown that the strongly elliptic pseudodifferential operator

H ∶ [B
−

1

2

2,2
(S1)]

6 × [B
−

1

2

2,2
(S2)]

6
→ [B

1

2

2,2
(S1)]

6 × [B
1

2

2,2
(S2)]

6

is invertible. This implies that the operator

H ∶ [Bt
p,p
(S1)]

6 × [Bt
p,p
(S2)]

6
→ [Bt+1

p,p
(S1)]

6 × [Bt+1
p,p

(S2)]
6 (31)

is invertible for all t ∈ ℝ and p > 1. Therefore system (29)-(30) is uniquely solvable and for the solution pair we have the

inclusion (ℎ(1), ℎ(2)) ∈ [B
−

1

p

p,p (S1)]
6 × [B

−
1

p

p,p (S2)]
6 implying by Theorem 10 the inclusion U ∗ ∈ [W 1

p
(Ω(2))]6.

Further, let Ũ ∶= U (2)−U ∗. Evidently Ũ ∈ [W 1
p
(Ω(2))]6 solves the homogeneous Dirichlet problem. Due to the homogeneous

Dirichlet conditions, {Ũ}−
S1

= 0 and {Ũ}+
S2

= 0, the general integral representation of the vector function Ũ reads as follows

(see Theorem 3.5 in Buchukuri etc53)

Ũ (x) = V
(2)

S1

(
{ (2)Ũ}−

S1

)
(x) − V

(2)

S2

(
{ (2)Ũ}+

S2

)
(x) in Ω(2).

Introducing the notation

ℎ̃(1) ∶= { (2)Ũ}−
S1

∈ [B
−

1

p

p,p (S1)]
6, ℎ̃(2) ∶= −{ (2)Ũ}+

S2
∈ [B

−
1

p

p,p (S2)]
6,

and keeping in mind that the vector function Ũ satisfies the homogeneous Dirichlet conditions on S1 and S2, we find that the

vector function Φ̃ = (ℎ̃(1), ℎ̃(2))⊤ ∈ [B
−

1

p

p,p (S1)]
6 × [B

−
1

p

p,p (S2)]
6 solves the homogeneous equation HΦ̃ = 0. In view of invertibility

of the operator (31), we conclude that Φ̃ = 0, which implies that Ũ = 0 in Ω(2), i.e. U (2) = U ∗ in Ω(2) which proves that an

arbitrary solution U (2) ∈ [W 1
p
(Ω(2))]6 of equation (8) for � = 2 is uniquely representable by formula (15) as the sum of single

layer potentials.

We can show the similar result for a vector function U (1) ∈ [W 1
p
(Ω(1))]6 quite analogously.

This completes the proof.

Remark 2. The inverse operator to operator (22),

M
−1 ≡ M = [Mkj]18×18 ∶ Y t

p,q
→ Xt

p,q
, (32)

can be represented in the following form

M
−1 = N

−1 + L, i.e., M = ℕ + L, (33)

where N−1 ≡ ℕ is defined in (27), while L = [Lkj]18×18 ∶ Y t
p,q

→ Xt
p,q

is an infinitely smoothing compact integral operator.

This follows from the relation M−1 = N−1[I+KN−1]−1, where I is the identity operator. Note that [I+KN−1]−1 = I+R, where

R ∶ Xt
p,q

→ Xt
p,q

is an infinitely smoothing compact operator due to the properties of the operator K defined by (20).

With the help of relations (33) and (27) we find

M
−1 ≡ M =

⎡
⎢⎢⎢⎣

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎥⎥⎥⎦
18×18

,
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where

M
11 = [M11

kj
]6×6 = −[(1)

S1
]−1[(1)

S1
−(2)

S1
]−1(2)

S1
+ L

11 ∶
[
Bt+1
p,q

(S1)
]6

→

[
Bt
p,q
(S1)

]6
, (34)

M
12 = [M12

kj
]6×6 = [(1)

S1
]−1[(1)

S1
−(2)

S1
]−1 + L

12 ∶
[
Bt
p,q
(S1)

]6
→

[
Bt
p,q
(S1)

]6
, (35)

M13 = [M13
kj
]6×6 = L13 ∶

[
Bt+1
p,q

(S2)
]6

→

[
C∞(S1)

]6
, (36)

M21 = [M21
kj
]6×6 = −[(2)

S1
]−1[(1)

S1
−(2)

S1
]−1(1)

S1
+ L21 ∶

[
Bt+1
p,q

(S1)
]6

→

[
Bt
p,q
(S1)

]6
, (37)

M
22 = [M22

kj
]6×6 = [(2)

S1
]−1[(1)

S1
−(2)

S1
]−1 + L

22 ∶
[
Bt
p,q
(S1)

]6
→

[
Bt
p,q
(S1)

]6
, (38)

M
23 = [M23

kj
]6×6 = L

23 ∶
[
Bt+1
p,q

(S2)
]6

→

[
C∞(S1)

]6
, (39)

M31 = [M31
kj
]6×6 = L31 ∶

[
Bt+1
p,q

(S1)
]6

→

[
C∞(S2)

]6
, (40)

M
32 = [M32

kj
]6×6 = L

32 ∶
[
Bt
p,q
(S1)

]6
→

[
C∞(S2)

]6
, (41)

M33 = [M33
kj
]6×6 = [(2)

S2
]−1 + L33 ∶

[
Bt+1
p,q

(S2)
]6

→

[
Bt
p,q
(S2)

]6
, (42)

with Llm being the corresponding 6 × 6 block matrices of the matrix operator L involved in (33),

L =

⎡
⎢⎢⎢⎣

L11 L12 L13

L21 L22 L23

L31 L32 L33

⎤
⎥⎥⎥⎦
18×18

, Llm = [ Llm
kj

]6×6, l, m = 1, 2, 3.

Notice that

(i) the pseudodifferential operators M11, M12, M21, M22, ℕ11, ℕ12, ℕ21, ℕ22, L11, L12, L21, and L22 map a space of vector

functions defined on the surface S1 into a space of vector functions defined on the same surface S1;

(ii) the operators M31 = L31 and M32 = L32 map a space of vector functions defined on the surface S1 into a space of vector

functions defined on the surface S2 and generate infinitely smoothing compact operators;

(iii) the operators M13 = L13 and M23 = L23 map a space of vector functions defined on the surface S2 into a space of vector

functions defined on the surface S1 and generate infinitely smoothing compact operators;

(iv) the pseudodifferential operators M33, ℕ33, and L33 map a space of vector functions defined on the surface S2 into a space

of vector functions defined on the same surface S2.

Therefore the solution of the pseudodifferential equation (21) can be written as

Φ = MΨ,

i.e.,

⎡⎢⎢⎣

g(1)

ℎ(1)

ℎ(2)

⎤⎥⎥⎦
=

⎡
⎢⎢⎢⎣

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎥⎥⎥⎦

⎡⎢⎢⎣

f (1)

F (1)

f (2)

⎤⎥⎥⎦
.

Using the above relations, we can uniquely represent the solution vectors (14)-(15) of the transmission problem (TD) with

the Dirichlet data on the exterior boundary of the composed solid in the following form

U (1)(x) = V
(1)

S1

(
M

11f (1) +M
12F (1) +M

13f (2)
)
(x) in Ω(1), (43)

U (2)(x) = V
(2)

S1

(
M21f (1) +M22F (1) +M23f (2)

)
(x)

+ V
(2)

S2

(
M31f (1) +M32F (1) +M33f (2)

)
(x) in Ω(2), (44)

where f (1), F (1), and f (2) are transmission and boundary data in the formulation of the problem (8)-(12).

Note that due to the mapping properties of the operators involved in (43)-(44), we can conclude that if

f (1) ∈ [B
1−

1

p

p,q (S1)]
6, f (2) ∈ [B

1−
1

p

p,q (S2)]
6, F (1) ∈ [B

−
1

p

p,q (S1)]
6, p > 1, q ⩾ 1,

then

U (1) ∈ [B 1
p,q
(Ω(1))]6, U (2) ∈ [B 1

p,q
(Ω(2))]6. (45)
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Invertibility of the operator M in (32) implies that any pair of solutions to the Problem (TD) satisfying the inclusion (45) is

representable in the form (43)-(44) and this representation is unique.

4 GENERAL MIXED BOUNDARY-TRANSMISSION PROBLEM

Let us consider the most general mixed boundary-transmission problem for the composed solid Ω(1)
⋃

Ω(2). To this end, we

assume that the interface surface S1 of the composed body under consideration contains an interfacial crack submanifold S1C

and the transmission submanifold S1T , S1 = S1C

⋃
S1T with S1C

⋂
S1T = ∅, while the exterior boundary is divided into

two parts, the Dirichlet and Neumann parts, S2 = S2D

⋃
S2N with S2D

⋂
S2N = ∅. Further, let l1 = )S1C = )S1T and

l2 = )S2D = )S2N . Again, for simplicity, we assume that S1, S2, l1, and l2 are infinitely smooth if not otherwise stated.

Mixed Boundary-Transmission Problem (MBT). Find solutions

U (1) ∈ [W 1
p
(Ω(1))]6, U (2) ∈ [W 1

p
(Ω(2))]6, p > 1,

to the pseudo-oscillation equations of the GTEME theory

A(�)()x, �)U
(�)(x) = 0 , x ∈ Ω(�), � = 1, 2, (46)

satisfying the transmission conditions on the interface part S1T

{U (1)(x)}+ − {U (2)(x)}− = f (T )(x), x ∈ S1T , (47)

{ (1)()x, n, �)U
(1)(x)}+ − { (2)()x, n, �)U

(2)(x)}− = F (T )(x), x ∈ S1T , (48)

the interfacial crack conditions on S1C

{ (1)()x, n, �)U
(1)(x)}+ = F (C+)(x), x ∈ S1C ,

{ (2)()x, n, �)U
(2)(x)}− = F (C−)(x), x ∈ S1C ,

(49)

the Dirichlet condition on S2D

{U (2)(x)}+ = f (D)(x), x ∈ S2D, (50)

and the Neumann condition on S2N

{ (2)()x, n, �)U
(2)(x)}+ = F (N)(x), x ∈ S2N . (51)

The transmission and boundary data belong to the natural function spaces,

f (T ) ∈ [B
1−

1

p

p,p (S1T )]
6, f (D) ∈ [B

1−
1

p

p,p (S2D)]
6, F (T ) ∈ [B

−
1

p

p,p (S1T )]
6,

F (C+), F (C−) ∈ [B
−

1

p

p,p (S1C )]
6, F (N) ∈ [B

−
1

p

p,p (S2N )]
6.

(52)

Theorem 5. Let S1, S2, l1, and l2 be Lipschitz, conditions (52) be satisfied with p = 2, and the relation (13) hold. Then the

mixed boundary-transmission problem (MBT) (46)-(51) possesses at most one solution in the space [W 1
2
(Ω(1))]6×[W 1

2
(Ω(2))]6.

Proof. Actually, the proof of the theorem is quite similar to the proof of Theorem 8.1 in the reference Buchukuri etc53 and can

be verbatim performed.

Note that the transmission and interfacial crack conditions (48) and (49) can be rewritten in the following equivalent form

{ (1)()x, n, �)U
(1)(x)}+ − { (2)()x, n, �)U

(2)(x)}− = F (1)(x), x ∈ S1, (53)

{ (1)()x, n, �)U
(1)(x)}+ + { (2)()x, n, �)U

(2)(x)}− = F (C+)(x) + F (C−)(x), x ∈ S1C , (54)

where

F (1)(x) =

{
F (T )(x), x ∈ S1T ,

F (C+)(x) − F (C−)(x), x ∈ S1C .
(55)

Therefore, in the above formulation of the problem (MBT), instead of conditions (48) and (49) we consider the relations (53)

and (54).
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We assume that the following necessary condition is satisfied

F (1) ∈ [B
−

1

p

p,p (S1)]
6. (56)

Further, let f̃ (T ) and f̃ (D) be some fixed extensions of the vector functions f (T ) ∈ [B
1−

1

p

p,p (S1T )]
6 and f (D) ∈ [B

1−
1

p

p,p (S2D)]
6

respectively preserving the spaces. Then we can assume that

{U (1)(x)}+ − {U (2)(x)}− = f̃ (T )(x) + g̃(x) on S1,

{U (2)(x)}+ = f̃ (D)(x) + ℎ̃(x) on S2,

where

f̃ (T ) ∈ [B
1−

1

p

p,p (S1)]
6, f̃ (D) ∈ [B

1−
1

p

p,p (S2)]
6 (57)

are known vector functions, while

g̃ ∈ [B̃
1−

1

p

p,p (S1C )]
6, ℎ̃ ∈ [B̃

1−
1

p

p,p (S2N )]
6 (58)

are unknown vector functions.

Motivated by the results obtained in Section 3, we look for solution pair to the problem (MBT) in the form (see Remark 2):

U (1)(x) = V
(1)

S1

(
M11[f̃ (T ) + g̃] +M12F (1) +M13[f̃ (D) + ℎ̃]

)
(x) in Ω(1), (59)

U (2)(x) = V
(2)

S1

(
M21[f̃ (T ) + g̃] +M22F (1) +M23[f̃ (D) + ℎ̃]

)
(x)

+ V
(2)

S2

(
M

31[f̃ (T ) + g̃] +M
32F (1) +M

33[f̃ (D) + ℎ̃]
)
(x) in Ω(2), (60)

where the operators Mlm are defined in Remark 2, f̃ (T ), f̃ (D), and F (1) are above introduced known vector functions, while g̃

and ℎ̃ are unknown vector functions.

In accordance with formulas (43)-(44), derived in Remark 2, the vectors (59) and (60) under conditions (52), (55), (56), (57),

and (58) belong to the spaces [W 1
p
(Ω(1))]6 and [W 1

p
(Ω(2))]6 respectively and automatically satisfy conditions (46), (47), (50),

and (53). It remains to satisfy conditions (51) and (54) which lead to the following system of pseudodifferential equations with

respect to the unknown vectors g̃ and ℎ̃:

r
S1C

[(
−

1

2
I6 +(1)

S1

)(
M

11g̃ +M
13ℎ̃

)
+
(
1

2
I6 +(2)

S1

)(
M

21g̃ +M
23ℎ̃

)

+
{ (2)V

(2)

S2

(
M

31g̃ +M
33ℎ̃

)}−]
= G(1) on S1C ,

r
S2N

[{ (2)V
(2)

S1

(
M21g̃ +M23ℎ̃

)}+

+
(
−

1

2
I6 +(2)

S2

)(
M31g̃ +M33ℎ̃

)]
= G(2) on S2N ,

where the right hand sides are known vector functions

G(1) = F (C+) + F (C−) − rS1C

[(
−

1

2
I6 +(1)

S1

)(
M11f̃ (T ) +M12F (1) +M13f̃ (D)

)

+
(
1

2
I6 +(2)

S1

)(
M21f̃ (T ) +M22F (1) +M23f̃ (D)

)

+
{ (2)V

(2)

S2

(
M31f̃ (T ) +M32F (1) +M33f̃ (D)

)}−

S1

]
∈ [B

−
1

p

p,p (S1C )]
6,

G(2) = F (N) − rS2N

[{ (2)V
(2)

S1

(
M21f̃ (T ) +M22F (1) +M23f̃ (D)

)}+

S2

+
(
−

1

2
I6 +(2)

S2

)(
M31f̃ (T ) +M32F (1) +M33f̃ (D)

)]
∈ [B

−
1

p

p,p (S2N )]
6.

Thanks to the relations (26) and (34)-(42), and taking into account the equality (cf., Buchukuri etc53, formula (8.67))

(1)

S1

[(1)

S1
−(2)

S1

]−1(2)

S1
= (2)

S1

[(1)

S1
−(2)

S1

]−1(1)

S1
,
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we can rewrite the above system as follows

r
S1C

[
− 2(1)

S1

[(1)

S1
−(2)

S1

]−1(2)

S1
g̃ + Λ11g̃ + Λ12ℎ̃

]
= G(1) on S1C , (61)

r
S2N

[(2)

S2
ℎ̃ + Λ21g̃ + Λ22ℎ̃

]
= G(2) on S2N , (62)

where

(2)

S2
∶=

(
−

1

2
I6 +(2)

S2

)
[(2)

S2
]−1,

Λ11 =
(
−

1

2
I6 +(1)

S1

)
L
11 +

(
1

2
I6 +(2)

S1

)
L
21 + r

S1

 (2)V
(2)

S2
L
31,

Λ12 =
(
−

1

2
I6 +(1)

S1

)
L13 +

(
1

2
I6 +(2)

S1

)
L23 + r

S1

 (2)V
(2)

S2
M33,

Λ21 = r
S2

 (2)V
(2)

S1
M21 +

(
−

1

2
I6 +(2)

S2

)
L31,

Λ22 = r
S2

 (2)V
(2)

S1
M23 +

(
−

1

2
I6 +(2)

S2

)
L33.

Note that(2)

S2
is the Steklov-Poincré type pseudodifferential operator of order 1, while the operatorsΛkj , k, j = 1, 2, are infinitely

smoothing operators.

Further, let us introduce the operators

T =

[
r
S1C

[
− 2(1)

S1

[(1)

S1
−(2)

S1

]−1(2)

S1

]
0

0 r
S2N

(2)

S2

]
, ℚ =

[
r
S1C

Λ11 r
S1C

Λ12

r
S2N

Λ21 r
S2N

Λ22

]
,

and rewrite system (61)-(62) in matrix form

(T +ℚ)Φ̃ = G̃

with

Φ̃ ∶= (g̃, ℎ̃)⊤ ∈ [B̃
1−

1

p

p,p (S1C )]
6 × [B̃

1−
1

p

p,p (S2N )]
6,

G̃ ∶= (G(1), G(2))⊤ ∈ [B
−

1

p

p,p (S1C )]
6 × [B

−
1

p

p,p (S2N )]
6.

Due to Theorems 10-13 in Appendix, we have the following mapping property

T ∶ [B̃s+1
p,q

(S1C )]
6 × [B̃s+1

p,q
(S2N )]

6
→ [Bs

p,q
(S1C )]

6 × [Bs
p,q
(S2N )]

6, (63)

s ∈ ℝ, p > 1, q ≥ 1.

Note that the operator ℚ considered between the function spaces involved in (63),

ℚ ∶ [B̃s+1
p,q

(S1C )]
6 × [B̃s+1

p,q
(S2N )]

6
→ [Bs

p,q
(S1C )]

6 × [Bs
p,q
(S2N )]

6, (64)

s ∈ ℝ, p > 1, q ≥ 1,

is an infinitely smoothing compact operator (see Remark 2). Therefore the Fredholm properties of the operator

T +ℚ ∶ [B̃s+1
p,q

(S1C )]
6 × [B̃s+1

p,q
(S2N )]

6
→ [Bs

p,q
(S1C )]

6 × [Bs
p,q
(S2N )]

6, (65)

s ∈ ℝ, p > 1, q ≥ 1,

coincides with the Fredholm properties of the operator (63).

In what follows, we apply the theory of pseudodifferential operators on manifolds with boundary (see, e.g., Eskin57,

Shargorodsky58) and show that operator (65) is invertible under some restrictions on the parameters s and p.

Denote by S(S1
; x, �1, �2) the principal homogeneous symbol matrix of the operator

S1
∶= (1)

S1

[(1)

S1
−(2)

S1

]−1(2)

S1

and let �
(1)

j
(x) (j = 1, 6) be the eigenvalues of the matrix

1(x) ∶= [S(S1
; x, 0,+1)]−1 S(S1

; x, 0,−1), x ∈ l1 = )S1C .
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Similarly, let S((2)

S2
; x, �1, �2) be the principal homogeneous symbol matrix of the operator (2)

S2
and let �

(2)

j (x) (j = 1, 6) be the

eigenvalues of the matrix

2(x) ∶= [S((2)

S2
; x, 0,+1)]−1 S((2)

S2
; x, 0,−1), x ∈ l2 = )S2N .

Further, let


 ′
1
∶= inf

x∈l1, 1≤j≤6
1

2�
arg �

(1)

j
(x), 
 ′′

1
∶= sup

x∈l1, 1≤j≤6
1

2�
arg �

(1)

j
(x),


 ′
2
∶= inf

x∈l2, 1≤j≤6
1

2�
arg �

(2)

j
(x), 
 ′′

2
∶= sup

x∈l2, 1≤j≤6
1

2�
arg �

(2)

j
(x),


 ′ ∶= min {
 ′
1
, 
 ′

2
}, 
 ′′ ∶= max {
 ′′

1
, 
 ′′

2
}. (66)

By the same arguments, as in Buchukuri etc53, Subsection 5.7, we can show that one of the eigenvalues of the matrix 2(x)

equals to 1, which leads to the inequalities

−
1

2
< 
 ′ ≤ 0 ≤ 
 ′′ <

1

2
.

Theorem 6. Let the following inequalities hold

1 < p <∞, 1 ≤ q ≤ ∞,
1

p
− 1 + 
 ′′ < s +

1

2
<

1

p
+ 
 ′. (67)

Then operator (65) is invertible.

Proof. If inequalities (67) are satisfied, then the operators

r
S1C

S1
∶ [B̃s+1

p,q
(S1C )]

6
→ [Bs

p,q
(S1C )]

6,

r
S2N

(2)

S2
∶ [B̃s+1

p,q
(S2N )]

6
→ [Bs

p,q
(S2N )]

6,

are invertible (cf. Lemma 5.20 and Theorems 8.9 in Buchukuri etc53). Therefore operator (63) is invertible for s and p satisfying

the above inequalities and consequently (65) is Fredholm with zero index in view of compactness of the operator ℚ in (64).

Note that s = −
1

2
and p = 2 satisfy inequality (67). Now we show that the null space of operator (65) is trivial for s = −

1

2
and

p = q = 2.

Indeed, let a pair Φ̃ = (g̃, ℎ̃) ∈ [B̃
1

2

2,2
(S1C )]

6 × [B̃
1

2

2,2
(S2N )]

6 = [H̃
1

2

2
(S1C )]

6 × [H̃
1

2

2
(S2N )]

6 be a solution to the homogeneous

equation

(T +ℚ)Φ̃ = 0 (68)

and construct the vectors

Ũ (1)(x) = V
(1)

S1

(
M11g̃ +M13ℎ̃

)
(x) in Ω(1),

Ũ (2)(x) = V
(2)

S1

(
M21g̃ +M23ℎ̃

)
(x) + V

(2)

S2

(
M31g̃ +M33ℎ̃

)
(x) in Ω(2).

Evidently, Ũ (1) ∈ [W 1
2
(Ω(1))]6 and Ũ (2) ∈ [W 1

2
(Ω(2))]6. Using the results presented in Remark 2 and taking into account

equation (68), we conclude that the vectors Ũ (1) and Ũ (2) solve the homogeneous Problem (MBT). Therefore Ũ (1) = 0 in Ω(1)

and Ũ (2) = 0 in Ω(2) in view of the uniqueness Theorem 5. These equations imply that the densities of the potentials vanish on

the corresponding manifolds, i.e.,

M
11g̃ +M

13ℎ̃ = 0 on S1,

M21g̃ +M23ℎ̃ = 0 on S1,

M31g̃ +M33ℎ̃ = 0 on S2,

which can be rewritten as ⎡
⎢⎢⎢⎣

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

g̃

ℎ̃0

ℎ̃

⎤
⎥⎥⎥⎦
= 0 (69)

with ℎ̃0 = (0, 0, 0)⊤ on S1.
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In accordance with Theorem 3 and Remark 2 the operator M =
[
Mkj

]
18×18

in the left hand side of (69) is invertible from the

space Y
−

1

2

2,2
=
[
B

1

2

2,2
(S1)

]6
×
[
B

−
1

2

2,2
(S1)

]6
×
[
B

1

2

2,2
(S2)

]6
into the spaceX

−
1

2

2,2
=
[
B

−
1

2

2,2
(S1)

]6
×
[
B

−
1

2

2,2
(S1)

]6
×
[
B

−
1

2

2,2
(S2)

]6
. Consequently,

we deduce g̃ = 0 and ℎ̃ = 0. Thus, the null space of operator (65) is trivial for s = −
1

2
and p = q = 2 and consequently it is

invertible for s = −
1

2
and p = q = 2. Then by the general theory of pseudodifferential equations on manifolds with boundary

we conclude that operator (65) is invertible for all s and p satisfying inequality (67) for all q ⩾ 1 (see, e.g., Theorem B1 in

Buchukuri etc53). This completes the proof of the theorem.

This invertibility theorem leads to the following existence result.

Theorem 7. Let the following inequality hold

4

3 − 2
 ′′
< p <

4

1 − 2
 ′

with 
 ′ and 
 ′′ defined in (66).

Then the mixed transmission problem (MBT) has a unique solution

(U (1), U (2)) ∈ [W 1
p
(Ω(1))]6 × [W 1

p
(Ω(2))]6,

which can be represented by the single layer potentials (59)-(60).

Proof. It directly follows from Theorem 6 and Remark 2.

With the help of the arguments applied in the proof of Theorem 5.22 in Buchukuri etc53, we can deduce the following

regularity result.

Theorem 8. Let � > 0 and
f (D) ∈ [C�(S2D)]

6, F (N) ∈ [B�−1
∞,∞

(S2N )]
6,

f (T ) ∈ [C�(S1T )]
6, F (T ) ∈ [B�−1

∞,∞
(S1T )]

6,

F (C+), F (C−) ∈ [B�−1
∞,∞

(S1C )]
6.

Then

U (�) ∈
⋂
� ′<�

[C� ′

( Ω (�) )]6, � = 1, 2,

where 0 < � = min{�, 
 ′ +
1

2
} ⩽

1

2
.

It is evident that the smoothness exponent � essentially depends on the material parameters and it can be explicitly determined

by the principal homogeneous symbol matrix of the pseudodifferential operator T .

5 APPENDIX

Here we collect some results which are employed in the main text of the paper. Proofs of the theorems presented in this

Appendix can be found in the reference Buchukuri etc53.

Let S be a closed simply connected surface surrounding a bounded region Ω+ = Ω(1) and Ω− = Ω(2) = ℝ3 ⧵Ω+. Assume that

the domains Ω(1) and Ω(2) are occupied by anisotropic homogeneous materials possessing different thermo-electro-magneto-

elastic properties described in the main text (see Section 3).

Fundamental matrices Γ(�)(x, �) of the operators A(�)()x, �), � = 1, 2, for � = � + i! with � > 0 and ! ∈ ℝ, read as

Γ(�)(x, �) = −1
�→x

[(
A(�)(−i �, �)

)−1]
,

where (A(�)(−i �, �)
)−1

is the matrix inverse to A(�)(−i �, �), x→� and  −1
�→x

denote the direct and inverse distributional Fourier

transforms in the space of tempered distributions which for regular summable functions f and g read as follows

x→�[f ] = ∫
ℝ3

f (x) ei x⋅�dx,  −1
�→x

[g ] =
1

(2�)3 ∫
ℝ3

g(�) e−i x⋅�d�.
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These fundamental matrices solve the following distributional equations

A(�)()x, �)Γ
(�)(x, �) = I6 �(x),

where I6 is 6 × 6 unit matrix and �(x) is Dirac’s distribution. The entries of the matrix Γ(�)(x, �) in a vicinity of the origin have

the property

Γ(�)(x, �) =

[
[(|x|−1)]5×5 [(1)]5×1
[(1)]1×5 (|x|−1)

]

6×6

,

while at infinity they have the following asymptotic behaviour

Γ(�)(x, �) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(|x|−3) (|x|−5) (|x|−5) (|x|−3) (|x|−3) (|x|−4)
(|x|−5) (|x|−3) (|x|−5) (|x|−3) (|x|−3) (|x|−4)
(|x|−5) (|x|−5) (|x|−3) (|x|−3) (|x|−3) (|x|−4)
(|x|−3) (|x|−3) (|x|−3) (|x|−1) (|x|−1) (|x|−2)
(|x|−3) (|x|−3) (|x|−3) (|x|−1) (|x|−1) (|x|−2)
(|x|−4) (|x|−4) (|x|−4) (|x|−2) (|x|−2) (|x|−3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦6×6

.

Introduce the generalized single layer potential

V
(�)

S
(g)(x) = ∫

S

Γ(�)(x − y, �) g(y) dSy, � = 1, 2, x ∈ ℝ3 ⧵ S, (70)

where g = (g1,⋯ , g6)
⊤ is a density vector function defined on the integration surface S.

Theorem 9. Let S ∈ Cm, � ′

, 0 < � < � ′ ⩽ 1, and let m ⩾ 1 and k ⩽ m − 1 be nonnegative integers. Then the operator

V
(�)

S
∶ [Ck, �(S)]6 → [Ck+1, �(Ω±)]6

is continuous.

For any g ∈ [C 0, �(S)]6 and for any x ∈ S the following jump relations hold

{V
(�)

S
(g)(x)}± = (�)

S
g(x), (71)

{ (�)()x, n(x), �)V
(�)

S
(g)(x)}± = [∓2−1I6 +(�)

S
] g(x), (72)

where (�)

S
is a weakly singular integral operator

(�)

S
g(x) ∶= ∫

S

Γ(�)(x − y, �) g(y) dSy , x ∈ S, (73)

while (�)

S
is a singular integral operator

(�)

S
g(x) ∶= ∫

S

[  (�)()x, n(x), �) Γ
(�)(x − y, �) ] g(y) dSy , x ∈ S. (74)

The following operators are continuous

(�)

S
∶ [Ck, �(S)]6 → [Ck+1, �(S)]6 , (75)

(�)

S
∶ [Ck, �(S)]6 → [Ck, �(S)]6 .

Moreover, operator (75) is invertible.
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Theorem 10. Let s ∈ ℝ, 1 < p <∞, 1 ≤ q ≤ ∞, S ∈ C∞. The operators V
(�)

S
, (�)

S
, and (�)

S
, can be extended to the following

continuous operators

V
(�)

S
∶ [Bs

p,p
(S)]6 → [H

s+1+
1

p

p (Ω+)]6
[
[Bs

p,p
(S)]6 → [H

s+1+
1

p

p, loc
(Ω−)]6

]
,

V
(�)

S
∶ [Bs

p,q
(S)]6 → [B

s+1+
1

p

p,q (Ω+)]6
[
[Bs

p,q
(S)]6 → [B

s+1+
1

p

p,q, loc
(Ω−)]6

]
,

(�)

S
∶ [Hs

p
(S)]6 → [Hs+1

p
(S)]6

[
[Bs

p,q
(S)]6 → [Bs+1

p,q
(S)]6

]
,

(�)

S
∶ [Hs

p
(S)]6 → [Hs

p
(S)]6

[
[Bs

p,q
(S)]6 → [Bs

p,q
(S)]6

]
.

For s > −1 the jump relations (71)-(72) remain valid in appropriate function spaces.

The operator

(�)

S
∶ [Bs

p,q
(S)]6 → [Bs+1

p,q
(S)]6, s ∈ ℝ, p > 1, q ≥ 1,

is invertible.

Theorem 11. Let S = )Ω ∈ C2,� with � > 0. An arbitrary solution to the homogeneous equation

A(�)(), �)U (�) = 0 in Ω, U (�) ∈ [W 1
p
(Ω)]6, p > 1,

is uniquely representable in the form

U (�) = V
(�)

S

([(�)

S

]−1
g
)

with g = {U (�)}+
S
∈ [B

1−
1

p

p,p ()Ω)]6.

The Steklov-Poincaré type operators are defined by the following formulas

(1)

S
∶=

(
− 2−1 I6 +(1)

S

)[(1)

S

]−1
,

(2)

S
∶=

(
2−1 I6 +(2)

S

)[(2)

S

]−1
,

and they are related to the single layer potentials by the relations

(1)

S
g =

{ (1)()x, n(x), �)V
(1)

S

([(1)

S

]−1
g
)}+

S
,

(2)

S
g =

{ (2)()x, n(x), �)V
(2)

S

([(2)

S

]−1
g
)}−

S
.

Note that for arbitrary solution U (�) ∈ [W 1
p
(Ω(�))]6 of the equation A(�)(), �)U (�) = 0 in Ω(�), � = 1, 2, the Steklov-Poincaré

type operators relate the Dirichlet data {U (�)}±
S

with the Neumann data { (�)U (�)}±
S

,

{ (1)U (1)}+
S
= (1)

S
{U (1)}+

S
, { (2)U (2)}−

S
= (2)

S
{U (2)}−

S
.

Theorem 12. Let � = � + i! with � > 0 and ! ∈ ℝ. Then for all g ∈ [H
1

2

2
(S)]6 there hold the coercivity inequalities

Re ⟨((1)

S
+ (1))g , g⟩S ≥ C1 ‖g‖2

[H
1
2
2
(S)]6

,

Re ⟨(−(2)

S
+ (2))g , g⟩S ≥ C2 ‖g‖2

[H
1
2
2
(S)]6

,

where

(1) ∶ [H
1

2

2
(S)]6 → [H

−
1

2

2
(S)]6 and (2) ∶ [H

1

2

2
(S)]6 → [H

−
1

2

2
(S)]6

are compact operators and Cj , j = 1, 2, are positive constants.

The operator

(2)

S
∶ [H

1

2

2
(S)]6 → [H

−
1

2

2
(S)]6

is invertible, while

(1)

S
∶ [H

1

2

2
(S)]6 → [H

−
1

2

2
(S)]6

is a Fredholm operator of index zero with the null space spanned over the vectors

Ψ(1) = (0, 0, 0, 1, 0, 0)⊤, Ψ(2) = (0, 0, 0, 0, 1, 0)⊤. (76)
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Theorem 13. Let s ∈ ℝ, 1 < p < ∞, 1 ≤ q ≤ ∞, S ∈ C∞. The operator

(2)

S
∶ [Bs+1

p,q
(S)]6 → [Bs

p,q
(S)]6

is invertible, while the operator

(1)

S
∶ [Bs+1

p,q
(S)]6 → [Bs

p,q
(S)]6

is Fredholm of zero index with a two-dimensional null-space spanned over the vectors (76).

The operator

(2)

S
−(1)

S
∶ [Bs+1

p,q
(S)]6 → [Bs

p,q
(S)]6

is invertible.
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