
An Efficient Approach for Solving the two Dimensional Variable Order Linear

and Nonlinear Reaction Sub Diffusion Equation

M. Adel1,2

1Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt

2Department of Mathematics, Faculty of Science, Islamic University in Madinah, Medinah,

Saudi Arabia

adel@sci.cu.edu.eg, m.adel@iu.edu.sa

Abstract

We can not list the applications or the fields that use the anomalous sub-diffusion equations

due to their wide area, one of these important applications are in the chemical reactions

when a single substance tends to move from an area of high concentration to an area of low

concentration until the concentration is equal across space. The mathematical model that

describes these physical-chemical phenomena is called the reaction subdiffusion equation. In

our study, we try to solve the 2D variable order version of these equations (2DVORSE) (linear

and nonlinear) using an accurate numerical technique which is the weighted average finite

difference method (WAFDM). We will study the stability of the resulting scheme using the

fractional version of the John von Neumann stability analysis procedure. An accurate specific

stability condition that is valid for some parameters in the resulting schemes is derived and

checked. At the end of the study, we present some numerical examples to demonstrate the

accuracy of the proposed technique.

Keywords: Weighted average finite difference approximations; variable order 2D

reaction-subdiffusion equation; stability analysis; numerical treatments.
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1. Introduction

The very important mathematical tool which allow us to deal with the real life phenomena

of integrals and derivatives of any arbitrary order is the fractional analysis. In the last

studies, many real life phenomena became easier to study and imagine by applying this

important new topic, you can see for example ([1], [2], [8], [10]-[12], [18], [20]), and the other

references cited therein. Actually, no one can list all applications of this important branch of

mathematics, but in fact there are many examples that studied using this important topic,

for example in the viscoelastic materials [4], control theory [9], advection and dispersion of

solutes in fractured media [14] and image processing [8].
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The so-called ”anomalous” physical behaviours has a special attention through the frac-

tional analysis, where scaling power law of fractional arbitrary order appears universally

as an empirical description of such complicated phenomena [23]. There is a very useful

mathematical tool, which is the fractional diffusion equation, to study anomalous transport

processes which are processes in which < x2 >∼ Kγt
γ, where γ is the anomalous diffusion

exponent, < x2 > is the mean square displacement, and K is the anomalous diffusion co-

efficient. When 0 < γ < 1, the diffusion will be slower than normal which is called the

anomalous sub-diffusion equations, and is called the anomalous super diffusion equations if

the diffusion is faster than normal and this happens when γ > 1.

To explain, mathematically, how the concentration of one or more substances distributed

in space changes , we can use the reaction diffusion systems and Figure 1 shows, chemically

the process. Under two processes, these changes are obtained, the first one is the chemical

reactions, where the second one is the transport of the substance in space. Using this fact

Seki et al. [26] and Yuste et al. [27] derived the fractional version of the reaction sub-diffusion

equation.

Figure 1: Diffusion reaction seamless pattern. Black and white organic shapes, lines pattern

.

There are many papers that studied the fractional reaction sub-diffusion equation as

([20], [30], [31]).

Few researchers have considered the two-dimensional anomalous sub-diffusion equation

([22], [29], [30], [32]).

In many applications, the order of the derivative or the integral is fixed, but this may not

be the best choice due to the dynamic process of the trajectories, so we may assume that
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the order γ of the integrals and derivatives is not constant during the process, and to be a

function γ(t) depending on time. In that case. To develop a theory where both fractional

(right and left) operators are taken into account. Hence, we introduce some combined

fractional operators like the combined Caputo fractional derivative that consists in a linear

combination of the right and the left operators.

Recently, there are many researchers studied many applications using mathematical models

describe by the variable order derivatives, for example you can see ([3], [5]-[7], [13], [19],

[25]). We are sure that there are many researchers are working on this topic due to the huge

number of applications that described using these important tools.

In our study we will solve the 2D variable order version of these equation (2DVORSE) which

can be formulated in the following IBVP:

∂u(x, y, t)

∂t
= D

1−γ(x,y,t)
t [∆u(x, y, t)−ςu(x, y, t)]+v(u, x, y, t), (x, y) ∈ D, 0 ≤ t < τ, (1)

,

where D
1−γ(x,y,t)
t is the variable-order fractional derivative defined by the Riemann-

Liouville operator of order 1 − γ(x, y, t), where γ(x, y, t) is the variable order such that

and its maximum and minimum values are bounded by 0 and 1, ς > 0 is a positive constant,

and ∆ is the two-dimensional Laplacian operator, with initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ D, (2)

and the Dirichlet boundary conditions

u(0, y, t) = u1(y, t), u(l, y, t) = u2(y, t),

u(x, 0, t) = v1(x, t), u(x, h, t) = v2(x, t),
(3)

where D = {(x, y)|0 ≤ x ≤ l, 0 ≤ y ≤ h}.
The definitions of Riemann-Liouville variable-order fractional derivatives and Grünwald-

Letnikov variable-order fractional derivatives, which will be used in the studied model, are

defined as follow:

Definition 1. [17] The left RiemannLiouville derivative of variable-order γ(t) for the func-

tion f(t) is defined by

Dγ(t)
x f(t) =

1

Γ(n− γ(t))
(
dn

dt
)n
∫ x

0

f(s)

(t− s)γ(t)−n+1
ds, (4)

where n− 1 < γmin < γ(t) < γmax < n, n ∈ N for all t ∈ [0, τ ].
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Definition 2. [17] The Grünwald-Letnikov variable order derivative of variable-order γ(t)

for the function f(x) is defined as

Dγ(x)
x f(x) = limh−→0

1

hγ(x)

[ x
h

]∑
k=0

Ω
(γ(x))
k f(x− hk), x ≥ 0, (5)

where [x
h
] is the integer part of x

h
, and Ω

(γ(x))
k are the normalized Grünwald weights which

can be written as Ω
(γ(x))
k = (−1)k

(
γ(x)

k

)
.

2. Derivation of the numerical scheme:

The WAFDM is applied to obtain the discretization finite difference scheme of the two-

dimensional variable-order Cable equation. Assume that A, B, C ∈ Z+. We use ∆x,∆y

and ∆t, to express the discretizations for the space-step lengths and time-step length, respec-

tively. And let xa = a∆x, (a = 0, 1, ..., A), yb = b∆y, (b = 0, 1, ..., B) and tc = c∆t, (c =

0, 1, ..., C) be the coordinates of the mesh grade points of D and the exact values of the

solution u(x, y, t) on these grid points can be denoted by u(xa, yb, tc) ≡ uca,b ' U c
a,b, where

∆x = l
A

, ∆y = h
B

and ∆t = τ
C

. The reader can read [16] for more information and a lot of

details about discretization in fractional calculus.

Also, the variable-order differential operators are discretized as in the following [15]:

∂u

∂t
|xa,yb,tc+ 1

2

= δtu
c+ 1

2
a,b +O(∆t) ≡

uc+1
a,b − uca,b

∆t
+O(∆t), (6)

∂2u

∂x2
|xa,yb,tc = δxxu

c
a,b +O((∆x)2) ≡

uca−1,b − 2uca,b + uca+1,b

(∆x)2
+O((∆x)2), (7)

and
∂2u

∂y2
|xa,yb,tc = δyyu

c
a,b +O((∆y)2) ≡

uca,b−1 − 2uca,b + uca,b−1

(∆y)2
+O((∆y)2). (8)

The discretization of the Riemann-Liouville operator is given by:

D
1−γca,b
t u(x, y, t)|xa,yb,tc = δ

1−γca,b
t uca,b +O(hr), (9)

where

δ
1−γca,b
t uca,b ≡

1

h1−γca,b

[ tc
∆t

]∑
i=0

Ω
(1−γca,b)
i u(xa, yb, tc − ih) =

1

∆t1−γ
c
a,b

c∑
i=0

Ω
(1−γca,b)
i uc−la,b , (10)

and [ tc
∆t

] usual Dirichlet function of tc
∆t

and r is the order of the approximation which is

varies according to the choice of Ω
(1−γca,b)
i . One can note that this above expression is not
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the only expression due to the many different expressions of the weights functions Ω
(γ)
i [15].

Let Ω
(γca,b)

i be the general function of the functions Ω(z, γca,b), so we have,

Ω(z, γca,b) =
∞∑
i=0

Ω
(γca,b)

i zi. (11)

Lemma 0.1. [17] Assume that 0 < γmin < γ(x, y, t) < γmax < 1, for a = 1, 2, . . . , A, b =

1, 2, . . . , B, c = 1, 2, . . . , C, andi = 0, 1, . . ., we have the following:

1. Ω
(γca,b)

0 = 1; Ω
(γca,b)

i = (γca,b)− 1 < 0 ; Ω
(γca,b)

i < 0, i = 2, 3, ;

2.
∞∑
i=0

Ω
(γca,b)

i = 0; and −
h∑
l=0

Ω
(γki,j)

l < 1, for h = 1, 2, . . . .

The required WAFD scheme of the two-dimensional variable-order reaction sub-diffusion

equation (1) will be obtained by evaluating this big equation at the intermediate point of

the grid (xa, yb, tc + ∆t
2

)

[ut(x, y, t)−D
1−γ(xa,yb,tc+

∆t
2

)
t [uxx(x, y, t)+uyy(x, y, t)]](xa,yb,tc+ ∆t

2
)+ςD

1−γ(xa,yb,tc)
t u(xa, yb, tc) = 0.

(12)

By using the equations (6), (7) and (8) at the times tc and tc+1, we get

δtu
c+ 1

2
a,b − {θδ

1−γca,b
t [δxxu

c
a,b + δyyu

c
a,b] + (1− θ)δ1−γca,b

t [δxxu
c+1
a,b + δyyu

c+1
a,b ]}+ ςδ

1−γca,b
t uca,b = E

c+ 1
2

a,b ,

(13)

where θ is the weight factor and E
c+ 1

2
a,b is the usual truncation error. The standard difference

formula is given by:

δtU
c+ 1

2
a,b −{θδ

1−γca,b
t [δxxU

c
a,b+δyyU

c
a,b]+(1−θ)δ1−γc+1

a,b

t [δxxU
c+1
a,b +δyyU

c+1
a,b ]}+ςδ1−γca,b

t U c
a,b = 0. (14)

Now, by substitution using equations (6)–(8) and (10), with the assumption that εγca,b =

(∆t)
γca,b

(∆x)2 , εγca,b = (∆t)
γca,b

(∆y)2 , and ηγca,b = (∆t)γ
c
a,b ,then Put ρ = (1 − θ)εγca,b and χ = (1 − θ)εγab,c .

Under some calculations, we can obtain the following WAFD scheme:

ρ[U c+1
a−1,b + U c+1

a+1,b] + χ[U c+1
a,b−1 + U c+1

a,b+1]− [2(χ+ ρ) + 1]U c+1
a,b = Γ. (15)

Where

Γ = −εγca,b
c∑
i=0

[θΩ
(1−γca,b)
i + (1− θ)Ω(1−γca,b)

i+1 ][U c−i
a−1,b − 2U c−i

a,b + U c−i
a+1,b]

− εγca,b

c∑
i=0

[θΩ
(1−γca,b)
i + (1− θ)Ω(1−γca,b)

i+1 ][U c−i
a,b−1 − 2U c−i

a,b + U c−i
a,b+1]

− U c
a,b + ςηγca,b

c∑
i=0

Ω
(1−γca,b)
i U c−i

a,b .

(16)
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The system of equations (15) is a tridiagonal system which easy can be solved by the help

of the conjugate gradian famous method. When θ = 1 and θ = 1
2
, we will have the back-

ward Euler fractional quadrature method and the Crank-Nicholson quadrature methods,

respectively, but at θ = 0 the resulting scheme will be fully implicit.

3. Stability analysis

The stability analysis for the resulting scheme for the two-dimensional variable-order reaction

sub-diffusion equation (15) will be studied by using John von Neumann stability analysis

technique and an accurate stability condition for the resulting numerical scheme (15) will

be derived. In the stability analysis study we neglected the source term (i.e., v(u, x, y, t) = 0).

Proposition 1. Assume that U c
a,b = ξeap(a∆x+b∆y), ξm+1 = ηξm, $1 = εγca,b sin2(p∆x

2
) and

$2 = εγca,b sin2(p∆y
2

) then the scheme will be stable as long as

−1 ≤

1− ςζγc
a,b

c∑
i=0

Ω
(1−γca,b)
i η

−i − 4$1

c∑
i=0

(θΩ
(1−γca,b)
i + (1− θ)Ω

(1−γca,b)
i+1 )η

−i − 4$2

c∑
i=0

(θΩ
(1−γca,b)
i + (1− θ)Ω

(1−γca,b)
i+1 )η

−i

1− 4(1− θ)$1 − 4(1− θ)$2

≤ 1. (17)

Proposition 2. Assuming that

4(2− θ)(1−
c∑
i=0

Ω
(1−γca,b)
i (−1)−i) + (−1)m(1− θ)Ω1−γca,b

m+1

2− ςζγca,b
c∑
i=0

Ω
(1−γca,b)
i (−1)−i

=
1

ϑm
. (18)

Then (15) is stable if the following identity holds:

1

$1 +$2

≥ 1

ϑm
.

Theorem 1. The resulting WAFD numerical scheme in (15) is stable under the following

stability condition:
1

εγca,b + εγca,b
≥ 4(2− θ)(2− 21−γca,b)

1− ςζγca,b2
−γca,b

. (19)

Proof. Since ϑm tends quickly towards its limit value due to the dependence of ϑ depends

on m,

ϑ = lim
m→∞

ϑm. (20)

According to this limit notation, the above stability condition will be

$1 +$2 ≤
2− ςζγca,b

∞∑
i=0

Ω
1−γca,b
i (−1)−i

4{(2− θ)[1−
∞∑
i=1

Ω
1−γca,b
i ] + lim

m→∞
(−1)m(1− θ)Ω1−γca,b

m+1 }
, (21)
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by the help of Eq.(11) with z = −1, we get that
∞∑
i=0

(−1)iΩ1−γ
i = 21−γ, then we have

ϑ =
2− ςζγca,b2

1−γca,b

4{(2− θ)[2− 21−γca,b ] + lim
m→∞

(−1)m(1− θ)Ω1−γca,b
m+1 }

, (22)

but since $1 = εγca,bsin
2(p∆x

2
) and $2 = εγca,bsin

2(p∆y
2

), and by replacing sin2(p∆x
2

) and

sin2(p∆y
2

) by their maximum values and since lim
m→∞

(−1)m(1 − θ)Ω1−γca,b
m+1 = 0, i.e. εγca,b ≤ $1

and εγca,b ≤ $2, therefore

0 ≤ εγca,b + εγca,b ≤ $1 +$2, then 1
εγc
a,b

+εγc
a,b

≥ 1
$1+$2

≥ 1
ϑm
.

The proof is ended because now we can write 1
εγc
a,b

+εγc
a,b

≥ 4(2−θ)(2−2
1−γca,b )

1−ςζγc
a,b

2−γ
; 0 ≤ θ ≤ 1.

4. Numerical results

Now, we are ready to present linear and non-linear numerical treatments to check the ac-

curacy and the stability of the resulting scheme, by applying to solve numerically the two-

dimensional variable-order reaction sub-diffusion equation.

Example 1.

Let us onsider the following two-dimensional variable-order linear reaction sub-diffusion

equation: 
∂u
∂t

= D1−γ
t

(
− u+ ∆u

)
+ v(x, y, t) (x, y) ∈ D, 0 < T < 1,

u(x, y, t) = 0 (x, y) ∈ D, 0 < T < 1,

u(x, y, 0) = 0 (x, y) ∈ D,

where Ω = [0, 1]× [0, 1], 0 < γ < 1, and v(x, y, t) is given by :

v(x, y, t) = 2
(
t+

1

Γ(2 + γ)
t1+γ +

2π2

Γ(2 + γ)
t1+γ

)
sin(πx) sin(πy).

The exact solution of the equation is: u(x, y, t) = t2 sin(πx) sin(πy).

In Figures 2-5 , we study many cases with various values of the parameters (θ, γ,∆x,∆y,∆t, ς,

and the final time Tf ) and the error is plotted in some cases to check the presented numerical

scheme, where in Figure 6, we present a case for the behavior of the (unstable) numerical

solution. Table 1 is created to show the dependency of maximum absolute error on ∆x, ∆y

and ∆t in two different cases under two different set of values for the parameters.
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Figure 2: The behavior of the numerical solution with the following values of the parameters:

θ = 1 for γ = 3
2

+ 1
4

cos(xy) sin(t2), ∆x = 1
6
, ∆y = 1

10
, ∆t = 0.00998, ς = 0.9, Tf = 0.5, and

the maximum error is Maxerror = 1.2056× 10−4.

Figure 3: The behavior of the numerical and the exact solutions (at y = 0.4) together

with the resulting error with the following values of the parameters: θ = 1 for γ =
(
2 −

cosx cos(xy)
)

sin2(t), ∆x = 1
12

, ∆y = 1
18

, ∆t = 0.1999375, ς = 0.25, and Tf = 0.2.
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Figure 4: The behavior of the numerical and the exact solutions (at y = 0.235) together

with the resulting error with the following values of the parameters: θ = 0 for γ = 16−exyt
17

,

∆x = 1
10

, ∆y = 1
20

, ∆t = 0.0132666666, ς = 0.6, and Tf = 0.2.

Figure 5: The behavior of the numerical and the exact solutions (at y = 0.325) with the

following values of the parameters: θ = 0.5 for γ = 20−(xyt)4

20
, ∆x = 1

20
, ∆y = 1

20
, ∆t =

0.00495, ς = 0.4, Tf = 0.1, and the maximum error is Maxerror = 3.5403× 10−5.
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Figure 6: The behavior of the (unstable) numerical solution with the following values of the

parameters: θ = 1 for γ = (2− cos2 x cos2 y) sin2(ty), ∆x = 3, ∆y = 2, ∆t = 0.7999333333,

ς = 0.75, Tf = 0.8, and the maximum error is Maxerror = 5.1622× 10−29.

The value of the variable order γ ⇒ γ = xyt
241π2 + 3

2
γ = 3+e1−(xyt)2

2

The values of the discretizations Maximum Error

∆x ∆y ∆t θ = 0.5, ς = 0.9, T = 0.3, θ = 0, ς = 0.6, T = 0.2,

1/4 1/5 3/40 3.7× 10−3 6.5× 10−3

1/5 1/5 3/50 3.3× 10−3 5.9× 10−3

1/5 1/10 3/100 9.5401× 10−4 7.3261× 10−4

1/10 1/10 3/100 9.5401× 10−4 6.325× 10−4

1/15 1/10 3/100 9.4958× 10−4 4.1543× 10−4

1/15 1/15 3/100 4.358× 10−4 4.3681× 10−4

Table 1: This table is to show the dependency of maximum absolute error on ∆x, ∆y and

∆t in two different cases under two different set of values for the parameters [The first case

when θ = 0.5,=0.9, T = 0.3, and γ = xyt
241π2 + 3

2
, where the second case when θ = 0, s = 0.6,

T = 0.2, and γ = 3+e1−(xyt)2

2
.
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Example 2.

Consider the two-dimensional variable-order non-linear reaction sub-diffusion equation

∂u(x, y, t)

∂t
= D

1−γ(x,y,t)
t

(
∆u(x, y, t)− ςu(x, y, t)

)
+ v(x, y, t), t ∈ (0, 1), (23)

above the square D = [0, 1]× [0, 1], with initial condition

u(x, y, 0) = 0, (x, y) ∈ D, (24)

and the Dirichlet boundary conditions

u(0, y, t) = 0, u(1, y, t) = sin(1)eyt2, u(x, 0, t) = sin(x)t2, and u(x, 1, t) = sin(x)et2, (25)

where

v(x, y, t) = eyt sin(x)
(

2 +
2 + tγ

Γ(2 + γ)
+ eyt3 sin(x)

)
− u2(x, y, t). (26)

The exact solution of the equation is: u(x, y, t) = sin(x)eyt2.

In Figures 7, 8, 10, 11, we study many cases with various values of the parameters (θ, γ,∆x,∆y,∆t, ς,

and the final time Tf ) and the error is plotted in some cases to check the presented numerical

scheme, where in Figure 9, we present a case for the behavior of the (unstable) numerical

solution.

Figure 7: The behavior of the numerical solution with the following values of the parameters:

θ = 0.5 for γ = 2 − cos2(xy) sin2(t), ∆x = 1
12

, ∆y = 1
18

, ∆t = 0.0070714, ς = 0.1, and

Tf = 0.08.
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Figure 8: The behavior of the numerical and the exact solutions (at y = 0.4) together with

the resulting error with the following values of the parameters: θ = 0 for γ = 3
2

+ 1
4

cos(xy),

∆x = 1
5
, ∆y = 1

10
, ∆t = 0.0399, ς = 0.4, and Tf = 0.4.

Figure 9: The behavior of the (unstable) numerical solution with the following values of the

parameters: θ = 1 for γ = 15−(xyt)3

15
, ∆x = 3.2, ∆y = 1.6, ∆t = 0.0039, ς = 0.75, and the

final time Tf = 0.04.
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Figure 10: The behavior of the numerical and the exact solutions (at y = 0.235) together with

the resulting error with the following values of the parameters: θ = 0 for γ = 3
2

+ 1
2
e−xyt

2−1,

∆x = 1
15

, ∆y = 1
10

, ∆t = 0.0399, ς = 0.4, and Tf = 1.

Figure 11: The behavior of the numerical and the exact solutions (at y = 0.325) with

the following values of the parameters: θ = 1 for γ = 15−sin((xyt)4)
10

, ∆x = 1
20

, ∆y = 1
16

,

∆t = 0.0249166, ς = 0.8, and Tf = 0.3.
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5. Conclusion and discussion

In this manuscript, we have solved the two-dimensional variable-order reaction sub-diffusion

equation by the help of WAFDM. The stability analysis of the resulting WAFDM scheme is

presented using an extension of the John von Neumann stability technique, and we now can

write that that this procedure is suitable and leads to very good predictions for the stability

bounds. Two numerical treatments with their exact solutions are presented, and the derived

stability condition is checked. From this study. The computations in this work were done

using Matlab programming.
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