References:
1. Ghosh PR, Fawcett D, Sharma SB, Perera D, Poinern GEJ. Survey of Food Waste Generated by Western Australian Fruit and Vegetable Producers: Options for Minimization and Utilization. Food Public Heal . 2016;6(5):115-122. doi:10.5923/j.fph.20160605.02
2. Mata-Alvarez J, Macé S, Llabrés P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives.Bioresour Technol . 2000;74(1):3-16. doi:10.1016/S0960-8524(00)00023-7
3. Ji C, Kong CX, Mei ZL, Li J. A Review of the Anaerobic Digestion of Fruit and Vegetable Waste. Appl Biochem Biotechnol . 2017;183(3):906-922. doi:10.1007/s12010-017-2472-x
4. Zhang Q, Hu J, Lee DJ. Biogas from anaerobic digestion processes: Research updates. Renew Energy . 2016;98:108-119. doi:10.1016/j.renene.2016.02.029
5. Ince O. Performance of a two-phase anaerobic digestion system when treating dairy wastewater. Water Res . 1998;32(9):2707-2713. doi:10.1016/S0043-1354(98)00036-0
6. Scano EA, Asquer C, Pistis A, Ortu L, Demontis V, Cocco D. Biogas from anaerobic digestion of fruit and vegetable wastes: Experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Convers Manag . 2014;77:22-30. doi:10.1016/j.enconman.2013.09.004
7. Gómez X, Cuetos MJ, Cara J, Morán A, García AI. Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes. Conditions for mixing and evaluation of the organic loading rate. Renew Energy . 2006;31(12):2017-2024. doi:10.1016/j.renene.2005.09.029
8. Di Maria F, Sordi A, Cirulli G, Gigliotti G, Massaccesi L. Co-treatment of fruit and vegetable waste in sludge digesters . An analysis of the relationship among bio-methane generation , process stability and digestate phytotoxicity. Waste Manag . 2014;34(9):1603-1608. doi:10.1016/j.wasman.2014.05.017
9. Bouallagui H, Torrijos M, Godon JJ, et al. Two-phases anaerobic digestion of fruit and vegetable wastes : bioreactors performance.Biochem Eng J . 2004;21:193-197. doi:10.1016/j.bej.2004.05.001
10. Ganesh R, Torrijos M, Sousbie P, Lugardon A, Steyer JP, Delgenes JP. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance. Waste Manag . 2014;34(5):875-885. doi:10.1016/j.wasman.2014.02.023
11. Wu Y, Wang C, Liu X, et al. A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment. Bioresour Technol . 2016;211:16-23. doi:10.1016/j.biortech.2016.03.050
12. Kim M, Gomec CY, Ahn Y, Speece RE. Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. 2003;24(9):1183-1190. doi:10.1080/09593330309385659
13. Mtz.-Viturtia A, Mata-Alvarez J, Cecchi F. Two-phase continuous anaerobic digestion of fruit and vegetable wastes. Resour Conserv Recycl . 1995;13(3-4):257-267. doi:10.1016/0921-3449(94)00048-A
14. Dinsdale RM, Premier GC, Hawkes FR, Hawkes DL. Two-stage anaerobic co-digestion of waste activated sludge and fruit/vegetable waste using inclined tubular digesters. Bioresour Technol . 2000;72(2):159-168. doi:10.1016/S0960-8524(99)00105-4
15. Carrere H, Antonopoulou G, Affes R, et al. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresour Technol . 2016;199:386-397. doi:10.1016/j.biortech.2015.09.007
16. Shanthi M, Rajesh Banu J, Sivashanmugam P. Effect of surfactant assisted sonic pretreatment on liquefaction of fruits and vegetable residue: Characterization, acidogenesis, biomethane yield and energy ratio. Bioresour Technol . 2018;264:35-41. doi:10.1016/j.biortech.2018.05.054
17. Zhou Y, Takaoka M, Wang W, Liu X, Oshita K. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: A pilot scale study in China. J Biosci Bioeng . 2013;116(1):101-105. doi:10.1016/j.jbiosc.2013.01.014
18. Liu X, Wang W, Gao X, Zhou Y, Shen R. Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste.Waste Manag . 2012;32(2):249-255. doi:10.1016/j.wasman.2011.09.027
19. Yu Y, Chan WI, Liao PH, Lo K V. Disinfection and solubilization of sewage sludge using the microwave enhanced advanced oxidation process.J Hazard Mater . 2010;181(1-3):1143-1147. doi:10.1016/j.jhazmat.2010.05.134
20. Eswari P, Kavitha S, Kaliappan S, Yeom IT, Banu JR. Enhancement of sludge anaerobic biodegradability by combined microwave-H2O2pretreatment in acidic conditions. Environ Sci Pollut Res . 2016;23(13):13467-13479. doi:10.1007/s11356-016-6543-2
21. Eskicioglu C, Prorot A, Marin J, Droste RL, Kennedy KJ. Synergetic pretreatment of sewage sludge by microwave irradiation in presence of H2O2 for enhanced anaerobic digestion. Water Res . 2008;42(18):4674-4682. doi:10.1016/j.watres.2008.08.010
22. Ambrose HW, Tse-Liang Chin C, Hong E, et al. Effect of hybrid (microwave-H2O2) feed sludge pretreatment on single and two-stage anaerobic digestion efficiency of real mixed sewage sludge.Process Saf Environ Prot . 2020;136:194-202. doi:10.1016/j.psep.2020.01.032
23. Ambrose HW, Philip L, Sen TK, Suraishkumar GK. The Effect of Combined Microwave and Hydrogen Peroxide Pretreatment on Sludge Characteristics and Oxidation Status of Waste Activated Sludge. In: Lefèbvre B, ed. The Activated Sludge Process: Methods and Recent Developments . nova science publishers; 2019:105-141. https://novapublishers.com/shop/the-activated-sludge-process-methods-and-recent-developments/.
24. Liu J, Jia R, Wang Y, et al. Does residual H2O2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H2O2 pretreatment process? Environ Sci Pollut Res . 2017;24(10):9016-9025. doi:10.1007/s11356-015-5704-z
25. APHA. Standard Methods for the Examination of Water and Wastewater . American Public Health Association, Washington DC; 1999.
26. Dillalo R, Albertson OE. Volatile acids by direct tritation.Water Pollut Control Fed . 1961;33(4):356-365. https://www.jstor.org/stable/25034391.
27. Ghaly AE, Mahmoud NS. Optimum Conditions for Measuring Dehydrogenase Activity of Aspergillus niger using TTC. Am J Biochem Biotechnol . 2006;2(4):186-194. doi:10.3844/ajbbsp.2006.186.194
28. Sun S, Guo Z, Yang R, Sheng Z, Cao P. Study on the triphenyl tetrazolium chloride – dehydrogenase activity ( TTC-DHA ) method in determination of bioactivity for treating tomato paste wastewater.African J Biotechnol . 2012;11(27):7055-7062. doi:10.5897/AJB11.3548
29. Lowry OH, Nira J. Rosebrough, A. Lewis Farr, Randall RJ. Protein measurement with folin phenol reagent. J Biol Chem . 1951;193:265-275.
30. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura SI, Lee YC. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem . 2005;339(1):69-72. doi:10.1016/j.ab.2004.12.001
31. Bouallagui H, Touhami Y, Ben Cheikh R, Hamdi M. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes.Process Biochem . 2005;40(3-4):989-995. doi:10.1016/j.procbio.2004.03.007
32. Park ND, Thring RW, Helle SS. Comparison of methane production by co-digesting fruit and vegetable waste with first stage and second stage anaerobic digester sludge from a two stage digester. Water Sci Technol . 2012;65(7):1252-1257. doi:10.2166/wst.2012.004
33. Bolzonella D, Battistoni P, Susini C, Cecchi F. Anaerobic codigestion of waste activated sludge and OFMSW: The experiences of Viareggio and Treviso plants (Italy). Water Sci Technol . 2006;53(8):203-211. doi:10.2166/wst.2006.251
34. Di Maria F, Barratta M. Boosting methane generation by co-digestion of sludge with fruit and vegetable waste: Internal environment of digester and methanogenic pathway. Waste Manag . 2015;43:130-136. doi:10.1016/j.wasman.2015.06.007
35. Liu X, Gao X, Wang W, Zheng L, Zhou Y, Sun Y. Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renew Energy . 2012;44:463-468. doi:10.1016/j.renene.2012.01.092
36. Nkuna R, Roopnarain A, Adeleke R. Effects of organic loading rates on microbial communities and biogas production from water hyacinth : a case of mono- and co-digestion. J Chem Technol Biotechnol . 2019;94(January):1294-1304. doi:10.1002/jctb.5886
37. Wan C, Zhou Q, Fu G, Li Y. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease. Waste Manag . 2011;31(8):1752-1758. doi:10.1016/j.wasman.2011.03.025
38. Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll X, Peces M, Astals S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sustain Energy Rev . 2014;36:412-427. doi:10.1016/j.rser.2014.04.039
39. Ravi PP, Lindner J, Oechsner H, Lemmer A. Effects of target pH-value on organic acids and methane production in two-stage anaerobic digestion of vegetable waste. Bioresour Technol . 2018;247(July 2017):96-102. doi:10.1016/j.biortech.2017.09.068
40. Liu J, Tong J, Wei Y, Wang Y. Microwave and its combined processes: an effective way for enhancing anaerobic digestion and dewaterability of sewage sludge? J Water Reuse Desalin . 2015;5(3):264. doi:10.2166/wrd.2015.120
41. Lu L, Xing D, Liu B, Ren N. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells. Water Res . 2012;46(4):1015-1026. doi:10.1016/j.watres.2011.11.073
42. Mahdy A, Wandera SM, Qiao W, Dong R. Biostimulation of sewage sludge solubilization and methanization by hyper-thermophilic pre-hydrolysis stage and the shifts of microbial structure profiles. Sci Total Environ . 2019;699(September 2019):134373. doi:10.1016/j.scitotenv.2019.134373
43. Wang Y, Wei Y, Liu J. Effect of H2O2 dosing strategy on sludge pretreatment by microwave-H2O2 advanced oxidation process. J Hazard Mater . 2009;169(1-3):680-684. doi:10.1016/j.jhazmat.2009.04.001
44. Liochev SI. Free radicals: How do we stand them? Anaerobic and aerobic free radical (chain) reactions involved in the use of fluorogenic probes and in biological systems. Med Princ Pract . 2014;23(3):195-203. doi:10.1159/000357120
45. Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity.Toxicology . 2000;149(1):43-50. doi:10.1016/S0300-483X(00)00231-6
46. Zhou X, Jiang G, Wang Q, Yuan Z. Role of indigenous iron in improving sludge dewaterability through peroxidation. Sci Rep . 2015;5:1-6. doi:10.1038/srep07516