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ABSTRACT 1 

 2 

The European honey bee (Apis mellifera) is both a crucial pollinator for agricultural and natural 3 

ecosystems, and an agricultural commodity in its own right. However, honey bees are 4 

experiencing heavy mortality in North America and Europe due to a complex suite of factors. 5 

Weather affects both the bees themselves and the plants that support them. Surrounding land 6 

use, particularly proportion of agricultural and urban areas, determines forage resource 7 

abundance and pesticide exposure risk. Finally, management decisions, including treatment 8 

to control parasitic Varroa destructor mites, contribute to colony success and failure. We used 9 

three years of data from a survey of Pennsylvania beekeepers to assess the importance of 10 

weather, topography, land use, and management factors on overwintering mortality of 11 

managed honey bee colonies at both apiary and colony levels. A Random Forest model for 12 

mite-treated apiaries predicted overwintering survival with 73.3% accuracy for colonies and 13 

65.7% for apiaries, as determined by cross-validation. Growing degree days was the most 14 

important predictor at both levels. Neither topographic nor management variables were 15 

important predictors. A weather-only model was used to predict colony survival probability 16 

across Pennsylvania for the three years of the study, and to create a composite map of survival 17 

probability for 1981-2019 (long-term probability mean value of 59.5%). Although three years 18 

of data were not enough to adequately capture the range of possible climatic conditions, the 19 

model nonetheless performed well within its constraints. The Random Forest approach is 20 

suited to understanding complex nonlinear drivers of survival, and to predicting outcomes 21 

given current conditions or projected climate changes. 22 
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Abbreviations  26 

- USDA-NASS: United States Department of Agriculture - National Agricultural Statistics 27 

Service 28 

- CDL: Cropland Data Layer 29 

- FRI: Forage Resource Index  30 

- ITL: Insect Toxic Load 31 

- RF: Random Forest 32 

- OOB: out-of-bag 33 
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Honey bees (Apis mellifera) contribute more than $20 billion in pollination services to US 37 

agriculture (Calderone, 2012), with additional economic value from downstream industrial 38 

sectors (Chopra et al., 2015). Honey production generates more than $300 million in income 39 

annually for US beekeepers (USDA, 2019). Winter colony mortality has a strong negative 40 

effect on economic and ecosystem potentials, with 30-40% of US colonies dying each winter 41 

(Bee Informed Team, 2019). Winter mortality is known to vary regionally in both the US and 42 

Europe (e.g. Seitz et al., 2015, Brodschneider et al, 2018). Overwintering survival in 43 

Pennsylvania is on average about 53.5% (2016-2019) (Bee Informed Team, 2019). 44 

 45 

Unlike other insect species, honey bee colonies are not dormant during the winter: they remain 46 

active and maintain the hive temperature by forming a thermoregulating cluster (Döke et al., 47 

2015). This enables them to survive long periods of cold temperatures without access to 48 

forage (reviewed in Döke et al., 2015, Seeley et al., 1985, Currie et al., 2015). The colony 49 

ceases foraging for nectar and pollen and relies on its existing stores. Furthermore, brood 50 

rearing ceases, and the colony is dependent on the survival of a long-lived cohort of bees that 51 

is produced in the fall: these bees will live for several months, while worker bees produced in 52 

the summer will only live for a few weeks. Thus, factors which undermine the ability of the 53 

bees to collect and store adequate amounts of food during the summer and autumn, or to 54 

thermoregulate effectively during the winter, can contribute to colony mortality. These factors 55 

include pathogens and parasites (some of which can be managed by the beekeeper), land 56 

use in the surrounding areas which influences forage quality and exposure to pesticides, and 57 

weather factors which influence the availability of forage, the thermoregulatory ability of the 58 

bees in the winter, and the amount of time before bees are able to initiate brood rearing the 59 

spring. Modeling and predicting honey bee winter survival requires consideration of all of these 60 

factors.  61 

 62 

Management practices, notably control of the parasitic Varroa destructor mite, directly affect 63 

bee health and impacts winter survival (Genersch et al., 2010, van Dooremalen et al., 2012). 64 

Winter mortality of honey bee colonies is strongly correlated with uncontrolled mite populations 65 

(Genersch et al., 2010, van Dooremalen et al., 2012). Varroa mites are ectoparasites which 66 

feed on pupae and adult bees (Nazzi et al., 2016). Varroa mites transmit viruses and 67 

immunocompromise bees, which result in increased viral levels and symptoms (Grozinger et 68 

al., 2019, Annoscia et al., 2019). Parasitized, virus-infected bees have reduced nutritional 69 

stores and a reduced lifespan (Amdam et al., 2004). Thus, high levels of Varroa reduce the 70 

probability of winter survival (Dainat et al., 2012). Beekeepers have several management 71 

options that they can use to control Varroa populations and improve winter survival (Haber et 72 

al., 2019), though some beekeepers prefer to avoid treatments (Underwood et al., 2019). 73 
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Indeed, under some conditions, it may be more economically viable to simply replace a colony 74 

in the spring (Degrandi-Hoffman et al., 2019).   75 

Many studies have evaluated how survival correlates with particular land use practices, such 76 

as the percentage of agricultural land or the percentage of certain crops in the area 77 

surrounding the hive. However, while several studies have indicated that honey bees show 78 

reduced growth or higher mortality with increasing urban or agricultural land use (Ricigliano et 79 

al., 2019, Clermont et al., 2015), others have found that agricultural land use is positively 80 

correlated with colony survival (Kuchling et al., 2018, Sponsler et al., 2015). These measures 81 

of land use do not necessarily correlate directly with forage quality, as bees can collect 82 

substantial resources from weeds in agricultural areas, and crops can vary greatly in the 83 

resources they provide to bees or their pesticide regimes (Requier et al., 2015, Colwell et al., 84 

2017, Sponsler et al., 2019). Indices of forage quality and of pesticide loading based on 85 

surrounding land cover have been developed that are intended to incorporate specific effects 86 

of crop and habitat types on a broad scale (Kennedy et al., 2013,  Koh et al., 2016,  Douglas 87 

et al., 2019), but thus far these have not been applied to studies of honey bee winter survival 88 

or health.  89 

 90 

Seasonal weather conditions affect both forage availability and thermoregulatory success, and 91 

directly and indirectly influence honey bee health (Schweiger et al., 2010). Weather conditions 92 

in the early spring or fall can change the timing of availability of foraging resources, lengthen 93 

or shorten the time in which these are available for bees, and alter the time in which bees can 94 

actively forage (Bartomeus et al., 2011, Scaven et al., 2013). Indeed, even small variations in 95 

growing season temperature can dramatically change the numbers of available flowers and 96 

the amount of nectar they produce (Mu et al., 2013). When winter conditions drop below 10°C, 97 

the bees form a thermoregulating cluster (Döke et al., 2015). Outside temperature conditions 98 

influence the efficiency of maintaining these temperatures, with optimal external temperatures 99 

of -5° to 10°C (Dainat et al., 2012). Some temperature fluctuation in the winter allows the 100 

cluster to relocate to areas in the hive with available honey stores (Currie et al., 2015). Honey 101 

bees must maintain the colony at optimal temperatures to rear healthy brood, and raise the 102 

temperature of the brood nest to ~33°C in late winter/early spring to initiate brood rearing 103 

(Currie et al., 2015). Previous research in Austria found that warmer and drier climates were 104 

associated with higher winter losses (Switanek et al., 2017), but that study did not include 105 

measurements of land use practices. 106 

 107 

Our objective was to evaluate the factors that influence the overwintering survival of European 108 

honey bee colonies in Pennsylvania, including beekeeper management practices, weather 109 

and topographic variables that affect temperature and moisture, and the composition of the 110 
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surrounding landscape in terms of the availability of foraging resources and potential pesticide 111 

load contributed by agricultural land use (Kennedy et al., 2013,  Koh et al., 2016,  Douglas et 112 

al., 2019). As well as identifying the most important drivers of mortality, we develop a model 113 

that can be used to predict the probability of overwintering success, both for the current year 114 

and as a function of projected future climate changes. To the best of our knowledge this is the 115 

first study on honey bee overwintering survival that combines weather, topography, and 116 

derived land use factors. 117 

 118 

METHODS  119 

The complex nature of the factors influencing overwintering survival in the European honey 120 

bee necessitated the integration of multiple datasets that represent temperature and moisture 121 

conditions, the availability of foraging resources, and the use of pesticides. Such diverse 122 

datasets can best be addressed with randomization-based machine learning techniques that 123 

do not require the data to meet standard statistical assumptions or expect relationships 124 

between overwintering success and environment to follow any predetermined form.  125 

Data sources 126 

Honey bee overwintering survival. Our main dataset originates from the Pennsylvania State 127 

Beekeepers Association Winter Loss Survey, from 2016 to 2019. The survey collected 128 

information about the management habits of the beekeepers. These include the colony 129 

numbers reported for November and April, which were used to calculate survival. Each 130 

beekeeper received a randomly assigned ID to protect personally identifiable information. This 131 

ID was regenerated each year, and thus individual apiaries could not be followed through time. 132 

The survey included an option to provide geographic coordinates for the beekeeper’s apiary, 133 

and only responses that included these data were used. Only non-migratory operations were 134 

included; these colonies remained in the same place year-round. Beekeepers could only 135 

provide information for one location; we assume that the data represents data from a single 136 

apiary because most of the beekeepers reported fewer than 10 hives (larger numbers of hives 137 

would have suggested that they were spread across locations). The survey also asked 138 

respondents if colonies were moved during the year, and those that indicated that their 139 

colonies were moved were deleted from the data set. After these filtering steps, 342 apiaries, 140 

with 1,726 colonies, remained (Figure 1). 141 

 142 

Weather and topographic variables. For each reported point, we generated annual and 143 

seasonal weather variables from 4 km gridded daily temperature and precipitation data 144 

(PRISM Climate Group, 2019). These included standard bioclimatic and agronomic indices 145 

(Table 1). Novel bee-specific weather indices have been developed based on honey bee 146 

biology and behavior, and relevant for overwintering survival, such as winter days within bee 147 
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optimal thermoregulating temperature range, and number of winter days suitable for foraging, 148 

with maximum temperature above 16C and total precipitation below 3mm (Table 1; Seeley et 149 

al., 1985, Busby, 1991). Topographic variables such as slope and aspect were included in the 150 

analysis because they modify the local climate at finer scales than can be represented by the 151 

gridded climate data (Wang et al., 2017). These were calculated from 30m resolution gridded 152 

elevation data (USGS, 2014, GRASS Development Team, 2018).  153 

Preliminary analysis of this dataset clearly demonstrated that treating for Varroa mites was a 154 

key factor in determining overwintering survival across all three years (Figure 2). Only 17% of 155 

beekeepers did not treat in some way. Because of the clear effect of the treatment and the 156 

small number of untreated colonies, we chose to analyze only the treated apiaries. The survey 157 

data was extremely unbalanced, with 1,429 colonies within 257 apiaries. The apiaries 158 

contained from 1 to 34 colonies, with a median value of 3. Our objective was to predict survival 159 

at the colony level, but we analyzed the data at both apiary and colony scales to ensure that 160 

results were consistent at both levels. We used a binary classification to model survival at the 161 

colony scale. To provide comparable results, and because of the highly unbalanced dataset, 162 

we modeled survival at the apiary scale as a binary variable as well, denoting whether an 163 

apiary experienced any colony mortality.  164 

Forage resource index and insecticide toxic load. Two bee-specific distance-weighted 165 

landscape descriptors were generated for each apiary. These descriptors were based on the 166 

30m resolution USDA-NASS Cropland Data Layer (CDL) for 2017 (Boryan et al., 2011), which 167 

provided information on the land use categories (including specific crop types). The seasonal 168 

Forage Resource Index (FRI) was developed based on expert opinion, and described the 169 

quality and abundance of floral resources for each land use category (Kennedy et al., 2013,  170 

Koh et al., 2016, Lonsdorf et al., 2009). As in Koh et al. 2016 (Koh et al., 2016), we generated 171 

the seasonal FRI at each apiary location using a distance decay function that accounts for the 172 

usual foraging distance of honey bees (5 km) (Beekman et al., 2000). The Insect Toxic Load 173 

(ITL) characterized the amount of active ingredient used for each insecticide based on 174 

statewide records of per-hectare use by crop type, and converted this to an aggregated insect 175 

toxic load using honey bee LD50s (Douglas et al., 2019). The same CDL data and distance-176 

weighting function were used for the FRI and ITL to maintain consistency.  177 

Statistical analyses 178 

A probability Random Forest (RF), a flexible tree-based machine learning approach, was used 179 

to analyze overwintering mortality in relation to environmental and landscape factors within 180 

colonies that had been treated for Varroa mites. Random Forests develop a large number of 181 

decision trees using a random sampling of variables, then average across all trees to produce 182 

an ensemble (forest) fit (Wang et al., 2017, Breiman et al., 2001). The RF technique has been 183 

demonstrated to be very efficient when working with dataset comprising a large number of 184 
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predictors (Berk, 2008), and when the relationship between variables is nonlinear or complex, 185 

because it is a flexible distribution-free method (Shoemaker et al., 2018). Given the complexity 186 

and nonlinearity of the dataset used in this project, RF was preferred to a linear regression 187 

method, and allowed the development of a reliable empirical model without prior knowledge 188 

of the relationship between the phenomena and the predictors (Auret et al., 2012).  189 

 190 

All analyses were conducted in R 3.6.2 (R Core Team, 2019), using ranger 0.11.2 for RF 191 

models of survival probability and permutation-based variable importance (Wright et al., 2017), 192 

with caret 6.0-84 for model evaluation (Kuhn, 2019). Permutation-based variable importance 193 

measures the improvement in model accuracy due to inclusion of each variable (Breiman, 194 

2001). The form of the relationship between survival probability and the major independent 195 

variables was assessed using partial dependence plots (pdp 0.7.0 package; Greenwell, 2017). 196 

Maps were produced with the raster (3.0-12; Hijmans et al., 2020) and sp (1.4-0; Pebesma et 197 

al., 2020) packages. 198 

 199 

Our initial intent was to train the model for the winters of 2016-2017 and 2017-2018 and test 200 

with 2018-2019, but 2016 was warm and dry, 2017 was very wet, and 2018 was warm and 201 

wet. Instead, we used cross-validation stratified by year to assess model accuracy. Ten 202 

repetitions of a 10-fold cross-validation were used to tune the model on a gridded parameter 203 

search with the number of trees between 2,000 and 5,000 on an increment of 500, and number 204 

of variables per tree from 3 to 8.  205 

 206 

An independent set of ten repetitions of a 10-fold cross-validation using the tuned parameters 207 

was used to obtain the error estimates. The final model was fitted on the full dataset, in order 208 

to obtain the most reliable estimates of variable importance and the best model for prediction. 209 

Such a model overestimates accuracy, so cross-validation error estimates are given. These 210 

estimates show how the model is likely to perform when presented with new data. The same 211 

cross-validation and analysis methods were used at both the apiary and colony scales. 212 

 213 

RESULTS AND DISCUSSION 214 

 215 

The analysis was conducted on the 257 apiaries that used Varroa mite treatments, comprising 216 

1,429 colonies across the three years of the survey (2016-2019). Overwintering survival was 217 

calculated as the number of colonies in November versus the number of colonies alive in April. 218 

These apiaries were distributed throughout Pennsylvania (Figure 1). 219 

 220 



7 
 

The apiary model had cross-validated out-of-bag (OOB) error of 0.222 and an accuracy of 221 

65.7% (95% confidence interval 59.6% - 761.5%); the colony model had an OOB error of 0.19 222 

and an accuracy of 73.3% (95% confidence interval 70.9% - 75.5%) (Figure 3). The best apiary 223 

model used 3 variables and 4,000 trees, and the colony model 3 variables and 4,500 trees. 224 

Variable number was much more influential than number of trees.  225 

 226 

The full model was nearly twice as likely to predict that colonies survived when they died than 227 

that they died when they actually survived, suggesting that there is an additional source of 228 

mortality we have not considered (Table 2). Management factors for which data were not 229 

available, including supplemental feeding, are potential explanations. Furthermore, other 230 

studies have found that the timing of mite treatment and weather conditions during mite 231 

treatment can significantly influence treatment efficacy and subsequent winter survival (Beyer 232 

et al., 2018). Finally, the survey did not include information about levels of or evidence for 233 

parasites or pathogens, and thus we could not evaluate whether these parameters correlated 234 

with survival. Interestingly, the beekeeper’s years of experience had no relationship to colony 235 

survival, though it was identified as important elsewhere (Jacques et al., 2017). 236 

 237 

Growing degree days in the prior summer was the strongest predictor of overwintering survival 238 

for both the models (Table 1 for colony model; apiary model not shown). Precipitation of the 239 

wettest quarter and maximum temperature of the warmest month were nearly as important, 240 

but showed the same patterns and are not presented individually. Random Forest models are 241 

robust to correlated predictors, but will indicate both are important. A study in Austria found 242 

that hot, dry summers reduced overwintering survival (Switanek et al., 2017). This is generally 243 

consistent with our findings, although our more nuanced analysis of climatic variables found 244 

adverse effects of both too-cool and too-hot summers. Precipitation also showed a unimodal 245 

relationship with survival; neither too dry nor too wet. Topographic factors were not important, 246 

possibly because colonies thermoregulate, mitigating the effects of microclimate (Döke et al., 247 

2015, Currie et al., 2015). 248 

 249 

The landscape variables, FRI and ITL, did not contribute substantially to the colony survival 250 

model. The foraging index is based on expert opinion, while the insecticide toxic load index 251 

does not take into account variation in local crop management practices or exposure rates of 252 

bees; thus, there is clearly room for improvement in methods for assessing the suitability of 253 

surrounding land use for pollinator use. Moreover, supplementary feeding from the beekeeper 254 

may have mitigated impacts of floral resource availability, while insecticide exposure can have 255 

complex effects on bees which may not be captured by winter survival rates (Sponsler et al., 256 

2019). 257 
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 258 

Because the climatic variables were the most important overall, we also modeled colony 259 

survival using only weather variables. This facilitated prediction, since the 30m topographic 260 

variables require substantially more computing resources to process than the 4km climate 261 

data, it is difficult to estimate the FRI and ITL across a landscape, and because a weather-262 

only model can be applied to both past and projected future climate data without requiring 263 

corresponding land use information. The weather-only model performed about as well as the 264 

full model, with an OOB error of 0.19 and 73% accuracy (95% confidence interval 70.6% - 265 

75.2%). Variable importances were very similar to the full model.  266 

 267 

The maps of predicted honey bee survival for the three winters studied showed considerable 268 

variability, both between years and across the state (Figure 5). Winter 2016-2017 showed a 269 

predicted mean survival of 49.2% (range 5% - 97.6%); 2017-2018 had a predicted mean 270 

survival of 59.2%, (range 9.8% - 100%); and 2018-2019 winter had a mean predicted survival 271 

of 59.7% (range 17% - 100%). Mean predicted long-term survival probability across 272 

Pennsylvania for 1981-2019 was 59.5% (range 5.3% - 100%). The mean is consistent with 273 

values reported elsewhere (53.5%) (Bee Informed Team, 2019). No part of Pennsylvania was 274 

always good or always bad for honey bee survival; there was substantial spatial and temporal 275 

variability. 276 

 277 

CONCLUSIONS 278 

 279 

The use of Varroa mite treatments was the major factor determining overwintering survival of 280 

European honey bee colonies in Pennsylvania, which is consistent with the results of other 281 

studies (e.g., Genersch et al., 2010, van Dooremalen et al., 2012). Climatic factors, particularly 282 

summer temperatures and winter precipitation, were the strongest predictors for treated 283 

colonies. Topographic factors and landscape quality factors were not important, contrary to 284 

expectations. The landscape indices may require further modification, or other factors may 285 

need to be included to better capture the effects of floral quality and insecticide use on colony 286 

survival. The effects of specific management practices, such as providing supplemental feed, 287 

could not be assessed with the available data. Further beekeeper surveys will include 288 

additional questions on management to facilitate reanalysis. 289 

 290 

Because we only had three years of georeferenced survival data, the Random Forest model 291 

was not trained on the complete range of weather conditions possible in Pennsylvania, and 292 

will be less reliable when used to predict on novel conditions. Nonetheless, this model worked 293 

well in the three years for which it was developed, with a high accuracy given the extreme 294 
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variability within the dataset, and the multitude of factors that affect overwintering survival. We 295 

anticipate updating the model regularly as new survey data become available. 296 

 297 

The weather-only Random Forest model can be used for broad predictive purposes at state 298 

or regional scales, and will become more reliable as further survey data are incorporated. 299 

Because it does not rely on landscape or management factors, this model can be used to 300 

characterize changes in overwintering survival with the changing climate. With slight 301 

modifications to use current data, this modeling approach can be used to estimate survival 302 

probabilities for the upcoming winter. The results of this project have been used to develop a 303 

real-time tool to predict honey bee survival probability as a function of GDD. The tool has been 304 

incorporated into the Beescape decision support tool (https://beescape.org/), used by 305 

beekeepers and technical advisors. Our results clearly demonstrate both the predictive power 306 

of weather variables on analyses of honey bee overwintering survival, and the efficacy of using 307 

machine learning methods such as Random Forest that are capable of identifying complex 308 

nonlinear relationships with correlated predictors. 309 

 310 
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 485 
Figure 1. Locations of Pennsylvania beekeeper survey respondents from 2016-2019, stratified 486 

by use of treatment for Varroa mites (257 treated and 85 untreated apiaries). 487 

  488 
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 489 
Figure 2. Survival of mite-treated and untreated honey bee colonies by year. In each of the 490 

three years, 80 out of 375 (21%), 25 out of 377 (7%) and 192 out of 974 (20%) colonies were 491 

untreated (297 out of 1,726, or 17% overall). 492 

 493 

 494 

 495 

 496 

 497 

  498 
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 499 
Figure 3. Prediction accuracy of the Random Forest model of overwintering survival probability 500 

aggregated by apiary for simplicity. The test set contained 1,429 colonies within 257 apiaries. 501 

The color indicates the mean overall model accuracy at that apiary, and the circle size is 502 

proportional to the number of colonies in November. 503 

  504 
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 505 
Figure 4. Partial dependence plots for the two most important variables. These plots describe 506 

the relationship between the explanatory variable named in the header (along the x axis) and 507 

the probability of overwintering survival (y axis), given all the other variables in the model. The 508 

black line represents the modeled relationship between survival and the variables, while the 509 

blue line shows a spline-smoothed fit. 510 
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 512 
Figure 5. Weather-based prediction maps of the probability of honey bee colony survival for 513 

the most recent three years of PRISM data. Contour lines show the 0.5 probability level. 514 

  515 
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 516 
Figure 6. Mean probability of colony survival for 1981-2019. Contour lines show the 0.5 517 

probability level. 518 

  519 
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Table 1. Weather and topographic variables hypothesized to affect honey bee overwintering 520 

survival. Weather variables include both BIOCLIM (Busby, 1991) and agronomic indices, as 521 

well as bee-specific variables developed for this study. Larger permutation-based variable 522 

importance values are more influential. The top two variables are bold. Autumn: September, 523 

October, November. Winter: December, January, February. 524 

 525 

Variable description Unit 
Variable 

importance 

Weather   

Winter minimum temperature c 0.0151 

Winter total precipitation mm 0.0164 

Winter days within the bee-optimal temperature range -5C to 

+10C 
d 0.0111 

Winter days with maximum temperature above 16C and 

precipitation below 3mm 
d 0.0119 

Winter minimum temperature variation C 0.0118 

Autumn total precipitation mm 0.0128 

Growing degree days (base 5 C) C 0.0252 

Days between rain events > 0.25 mm mm 0.0127 

BIOCLIM 2: Mean diurnal temperature range C 0.0151 

BIOCLIM 3: Temperature isothermality  0.0196 

BIOCLIM 4: Temperature seasonality C 0.0132 

BIOCLIM 5: Maximum temperature of warmest month C 0.0201 

BIOCLIM 6: Minimum Temperature of Coldest Month C 0.0131 

BIOCLIM 7: Temperature Annual Range C 0.0130 

BIOCLIM 8: Mean Temperature of Wettest Quarter C 0.0140 

BIOCLIM 9: Mean Temperature of Driest Quarter C 0.0147 
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BIOCLIM 12: Annual Precipitation mm 0.0148 

BIOCLIM 16: Precipitation of Wettest Quarter mm 0.0202 

BIOCLIM 17: Precipitation of Driest Quarter mm 0.0122 

BIOCLIM 18: Precipitation of Warmest Quarter mm 0.0213 

BIOCLIM 19: Precipitation of Coldest Quarter mm 0.0157 

Topography   

Elevation m 0.0154 

Slope  0.0126 

Potential incident solar radiation, 21 Dec Wh*m-2*d-1 0.0156 

Profile curvature m-1 0.0111 

Terrain curvature m-1 0.0110 

Topographic wetness index  0.0116 

East/West orientation of slope  0.0102 

North/South orientation of slope  0.0103 

Landscape   

Distance-weighted Insect Toxic Load  0.0112 

Distance-weighted Forage Quality autumn  0.0104 

Management   

Beekeeper years of experience  0.0040 

Number of colonies in November  0.0057 

  526 



23 
 

Table 2. Confusion matrix for model predictions of colony-level honey bee overwintering 527 

survival for the full Random Forest model. 528 

 529 

a. Full model  Actual 

  Mortality Survival 

 
Predicted 

Mortality 337 (24%) 87 (6%) 

Survival 192 (13%)  813 (57%) 

 530 
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