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Abstract 13 

1. Accurate differential expression of microbial metatranscriptomes based on Next Generation Sequencing 14 

depends partly on the depth of the libraries used to perform the analysis. Therefore, estimating the 15 

sequencing depth required to sample the metatranscriptome of interest using RNA-seq effectively is an 16 

essential first step to both obtain robust results in further analysis and avoiding over-expending once the 17 

information contained in the library reaches saturation.  18 

2. Here we present a method to calculate the effort in saturation curves and a priori genes prediction using 19 

a simulated series of metatranscriptomic/metagenomic matrices. This method is based on the extrapolation 20 

rarefaction curve using a Weibull growth model to estimate the maximum number of genes/OTUs as a 21 

function of sequencing depth using a machine learning approach. This approach allows us to compute the 22 

effort at different confidence intervals and to obtain an approximate a priori effort using based on an initial 23 

fraction of sequences.  24 

3. The accuracy of the results obtained with simulations and real samples (15 datasets of 25 

metatranscriptomes from the oral cavity, RNA sequences consist of vectors of 105-1.5x107 reads depth 26 

with a 10000 and 600000 genes size) allows one to use an initial shallowly sequenced sample (in this case 27 

20% of the total amount of reads sampled; accuracy R2>0.99 simulated samples and 60-93% for real 28 

samples) to estimate the expected sequencing effort needed to cover the whole metatranscriptome/ 29 

metagenome from the same sample, so can be used to estimate the estimate the sample size. The algorithm 30 

containing the proposed method was saved as a function for R. 31 

4. This proposed method of estimation of the maximum number of gene/OTUs, reads to reach 90, 95 and 32 

99% of maximum number of gene/OTUs, using and algorithm based on rarefaction curve + Weibull model 33 

+ machine learning prediction, is efficient to help researchers to know if the sampling is sufficient or 34 

otherwise need to be increased. The analytical pipeline presented here may be successfully used for the in-35 

depth and time-effective characterization of complex microbial communities, representing a useful tool for 36 

the microbiome research community. 37 
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1. Introduction 41 

The study of the human microbiome has dramatically expanded our understanding of the role that 42 

microbes play in health and disease. These kinds of studies have been facilitated by the development of 43 

technologies for Next Generation Sequencing (NGS), which are capable of generating enough number of 44 

sequences as to cover most of the diversity present in the sample. However, capturing the full composition 45 

is still a challenge even when estimating the composition by SSU rDNA analysis (Ni, Yan & Yu, 2013; 46 

Tamames, de la Peña & de Lorenzo, 2012). Garcia-Ortega & Martinez (2015) using a non-parametric 47 

estimator for the number of undetected genes found that on average approximately 10% of the expressed 48 

genes per accession remain undetected if individual sequencing libraries are analysed. 49 

The power and accuracy of such experiments depend substantially on the number of reads sequenced, so a 50 

crucial step in the experiment design should be to determine the optimal read depth for a particular study 51 

or to verify whether one has adequate depth in an actual experiment (Robinson & Storey, 2014). 52 

In the case of RNA-seq studies, most work has been done on assessing sequencing depth on the 53 

transcriptome of eukaryotic systems, with a wide range of estimated sequencing depths to cover the full 54 

patterns of expression. In the human transcriptome, the estimated numbers of sequencing depth necessary 55 

to observe differences in expression profiles vary from 100 to 700 million sequences (Westermann, Gorski 56 

& Vogel, 2012; Toung, Morley, Li  & Cheung, 2011). In the case of prokaryotic RNA-seq experiments 57 

Haas et al. have shown that reads typically produced in a single lane of the Illumina HiSeq sequencer far 58 

exceeds the number needed to saturate the annotated transcriptomes of diverse bacteria growing in 59 

monoculture (Haas, Chin, Nusbaum, Birren & Livny, 2012). 60 

In NGS technology, saturation would be reached when an increment in the number of reads does not result 61 

in additional true expressed transcripts being detected, in the case of metatranscriptome analysis or no 62 

additional ORF/OTUs are detected in the case of metagenomic analysis. One way of estimating the point 63 

of saturation is by using rarefaction curves, a regular method to assess species richness from the results of 64 

sampling. These curves are commonly used in ecology to estimate the species richness as a function of 65 

sampling effort. In the case of RNA-seq/DNA-seq, a higher sequencing depth will only make the curve go 66 
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on longer but otherwise is comparable to a lower sequencing depth curve for the regions that both cover. 67 

Once the curve reaches a plateau, where additional sequencing would only marginally increase the number 68 

of transcripts seen, we consider that the curve is saturated. Another useful feature of saturation curves is 69 

that we can assess the complexity of the sample. Highly complex communities will have many transcripts 70 

being expressed, whereas communities which have low complexity would have a low number of transcripts 71 

being expressed. 72 

We have developed a method to calculate the sequencing effort needed to reach the maximum number of 73 

existing genes (or operational taxonomic units (OUT) in the case of metagenomics) using rarefaction curves 74 

extrapolating from a small initial sequencing depth (10-20%). The method estimates the confidence 75 

intervals at 90, 95 or 99% of the maximum sequencing effort.  76 

 77 

2. Material and methods 78 

We first simulated more than a thousand of different metatranscriptomic/metagenomic matrices. On 79 

those matrices, we computed rarefaction curves using the function iNEXT() from the iNEXT () R library 80 

for Interpolation and Extrapolation for Species Diversity (Hsieh, Ma & Chao, 2017). We then used a non-81 

linear growth model to compute the maximum number of genes expected/ OTUs and to estimate sequencing 82 

depth (reads) to reach 90, 95 or 99% of the maximum sampling effort. 83 

Finally, using a method based on machine learning we predicted the maximum number of OTUs/genes 84 

using only a minimum number of sequencing depth (reads) to reach 90, 95 or 99% of the maximum and 85 

the sampling effort needed. All these functionalities were included in some functions of R. The method 86 

was tested, as an application thereof, on metatranscriptomic samples of oral microbiome. The results of 87 

these are presented in the additional material this article. 88 

 89 

2.1 Simulation of metatranscriptomic/ metagenomic matrices 90 
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Metatranscriptomic/ metagenomics matrices were simulated as described in Rodriguez-Casado, Monleón-91 

Getino, Cubedo & Ríos-Alcolea (2017) and in Monleón, Rodríguez-Casado & Verde (2019). In the table 92 

1 it is possible to see the general metatranscriptomic/metagenomic matrix (𝑴𝑴) structure (n rows: samples, 93 

p columns: genes or OTU) obtained after the bioinformatic analysis and that constitutes the starting point 94 

of this study. Below is his mathematical formalization and the study of his distribution of probabilities, 95 

studied more deeply in previous works (Monleon-Getino, Rodríguez-Casado & Verde, 2019). 96 

Usually, for convenience, we change in 𝑴𝑴 the notation of p by k; also during the statistical analysis we use 97 

the transpose M’, which shows the samples (e.g. individuals) in the columns and the gene/organism 98 

identified in the rows (Table 1). 99 

 100 

Table 1: data matrix structure of M’ (metatranscriptomics or metagenomics matrix input). 101 
 102 

num Gene/Taxon  Sample 1 Sample 2 Sample jth Sample n Total 
1 type.1 m11 m12 … m1n 𝑁𝑁1. 
2 type.2 m21 m22 … m2n 𝑁𝑁2. 
⋮ ⋮ … … mij … … 
k type.k mk1 mk2 … mkn 𝑁𝑁𝑘𝑘. 
 Total 𝑁𝑁.1 𝑁𝑁.2 … 𝑁𝑁.𝑛𝑛 N 

 103 

 104 

As a result of genomic analysis, M’ can be very large and usually has thousands of genes/OTUs, most of 105 

them with small frequencies or 0, i.e. M’ is typically a sparse matrix. This matrix is truncated, in the sense 106 

that there are characteristics that have not been observed in the sampling. 107 

 108 
From the statistical point of view It is very convenient to formalize the probability distribution underlying 109 

this matrix structure, so each sample from M’ can be represented by one k-dimensional random vector 110 

𝑋𝑋𝑗𝑗;𝑋𝑋𝑗𝑗 = �𝑚𝑚1𝑗𝑗,𝑚𝑚2𝑗𝑗 , … ,𝑚𝑚𝑘𝑘𝑗𝑗�, where 𝑚𝑚𝑘𝑘𝑗𝑗 represents the number of times that gene/taxa k is observed in 111 

sample j. 112 

The probability distribution of each random vector  𝑋𝑋𝑖𝑖. (vector row) and 𝑋𝑋.𝑗𝑗 (vector column) can be 113 

associate individually to a multinomial distribution,  114 
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𝑋𝑋.𝑗𝑗~𝑀𝑀𝑁𝑁�𝑁𝑁.𝑗𝑗 ,𝜃𝜃1𝑗𝑗, … ,𝜃𝜃𝑘𝑘𝑗𝑗�;  ∀𝑗𝑗 = 1, . . , 𝑛𝑛       (1) 115 

𝑋𝑋𝑖𝑖.~𝑀𝑀𝑁𝑁(𝑖𝑖. ,𝜃𝜃𝑖𝑖1, … ,𝜃𝜃𝑖𝑖𝑛𝑛); ∀𝑖𝑖 = 1, . . ,𝑘𝑘       (2) 116 

The multinomial distribution is a multivariate generalization of the binomial distribution, where the 117 

marginal distribution of each 𝑋𝑋𝑖𝑖𝑗𝑗 is: 118 

  𝑋𝑋𝑖𝑖𝑗𝑗~𝐵𝐵𝑖𝑖𝑛𝑛�𝑚𝑚𝑖𝑖𝑗𝑗,𝜃𝜃𝑖𝑖𝑗𝑗�; 1 ≤ 𝜃𝜃𝑖𝑖𝑗𝑗 ≤ 1; ∀𝑗𝑗 = 1, . . ,𝑛𝑛; ∀𝑖𝑖 = 1, . . , 𝑘𝑘     (3) 119 

e.g. if we consider the partition of all sample space Ωj  the j-sample space in k parts: 120 

𝐴𝐴1𝑗𝑗 , 𝐴𝐴2𝑗𝑗, … ,𝐴𝐴𝑘𝑘𝑗𝑗 

One individual selected randomly has the probability 𝜃𝜃𝑘𝑘𝑗𝑗 of belongs to the gene/taxon 𝐴𝐴𝑘𝑘𝑗𝑗 in the partition: 121 

𝑃𝑃�𝐴𝐴1𝑗𝑗� = 𝜃𝜃1𝑗𝑗
𝑃𝑃�𝐴𝐴2𝑗𝑗� = 𝜃𝜃2𝑗𝑗

⋮
𝑃𝑃�𝐴𝐴𝑘𝑘𝑗𝑗� = 𝜃𝜃𝑘𝑘𝑗𝑗⎭

⎪
⎬

⎪
⎫
∑ 𝜃𝜃𝑖𝑖𝑗𝑗 = 1𝑘𝑘
𝑖𝑖=1 ;  ∀𝑗𝑗 = 1, . . ,𝑛𝑛      (4) 122 

If we wish calculate for a sample j the probability of have 𝑁𝑁.𝑗𝑗 individuals,  𝑚𝑚1𝑗𝑗 belonging to class𝐴𝐴1𝑗𝑗, 123 

𝑚𝑚2𝑗𝑗 belongs to class 𝐴𝐴2𝑗𝑗,..., 𝑚𝑚𝑘𝑘𝑗𝑗 belongs to class 𝐴𝐴𝑘𝑘𝑗𝑗, with the restriction    124 

∑ 𝑚𝑚𝑖𝑖𝑗𝑗 = 𝑁𝑁.𝑗𝑗
𝑘𝑘
𝑖𝑖 = 1  ; ∀𝑗𝑗 = 1, . . ,𝑛𝑛         (5) 125 

Furthermore, using the multinomial function of density (mass function) we can calculate this probability, 126 

𝑀𝑀𝑁𝑁�𝑁𝑁.𝑗𝑗;𝜃𝜃𝑗𝑗 = �𝜃𝜃1𝑗𝑗 ,𝜃𝜃2𝑗𝑗 , … ,𝜃𝜃𝑘𝑘𝑗𝑗��: 127 

𝑃𝑃��𝐴𝐴1𝑗𝑗 = 𝑚𝑚1𝑗𝑗� ∩ … ∩ �𝐴𝐴ℎ𝑗𝑗 = 𝑛𝑛𝑘𝑘𝑗𝑗�� = 𝑁𝑁.𝑗𝑗!
𝑚𝑚1𝑗𝑗!𝑚𝑚2𝑗𝑗!…𝑚𝑚𝑘𝑘𝑗𝑗!

𝜃𝜃1𝑗𝑗
𝑚𝑚1𝑗𝑗 · 𝜃𝜃2𝑗𝑗

𝑚𝑚2𝑗𝑗 · … · 𝜃𝜃𝑘𝑘𝑗𝑗
𝑚𝑚𝑘𝑘𝑗𝑗;  ∀𝑗𝑗      (6) 128 

Where  0 ≤ 𝜃𝜃𝑖𝑖𝑗𝑗 ≤ 1 for all i in 1 to k, and 𝜃𝜃1𝑗𝑗 + ⋯+ 𝜃𝜃𝑘𝑘𝑗𝑗 = 1 (∀𝑗𝑗), and if k= 1 the mass function reduces 129 

to the binomial, ∀𝑗𝑗 = 1, . . ,𝑛𝑛. 130 

The conjugate prior of the Multinomial distribution is the Dirichlet distribution, the multivariate 131 

generalization of beta distribution. Hence the parameter vector 𝜃𝜃𝑘𝑘 = �𝜃𝜃1𝑗𝑗 ,𝜃𝜃2𝑗𝑗 , … , 𝜃𝜃𝑘𝑘𝑗𝑗�; ∀𝑗𝑗 has a prior 132 

distribution given by: 133 

𝜃𝜃𝑘𝑘~𝐷𝐷𝑖𝑖𝐷𝐷𝑖𝑖𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑙𝑙�𝛼𝛼1𝑗𝑗,𝛼𝛼2𝑗𝑗 , … ,𝛼𝛼𝑘𝑘𝑗𝑗�; ∀𝑗𝑗 = 1, . . , 𝑛𝑛       (7) 134 

In (10) the density function is given by: 135 

𝑔𝑔�𝜃𝜃|𝛼𝛼1𝑗𝑗,𝛼𝛼2𝑗𝑗 , … ,𝛼𝛼𝑘𝑘𝑗𝑗� =
Γ�∑ 𝛼𝛼𝑖𝑖𝑗𝑗𝑘𝑘

𝑖𝑖 �

∏ �Γ𝛼𝛼𝑖𝑖𝑗𝑗�𝑘𝑘
𝑖𝑖

𝜃𝜃1𝑗𝑗
�𝛼𝛼1𝑗𝑗−1�𝜃𝜃2𝑗𝑗

�𝛼𝛼2𝑗𝑗−1� …𝜃𝜃𝑘𝑘𝑗𝑗
�𝛼𝛼𝑘𝑘𝑗𝑗−1�;   136 
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 𝛼𝛼𝑖𝑖𝑗𝑗 > 0; 0 ≤ 𝜃𝜃𝑖𝑖𝑗𝑗 ≤ 1;  ∑ 𝜃𝜃𝑘𝑘𝑖𝑖 𝑖𝑖𝑗𝑗 = 1; ∀𝑗𝑗 = 1, . . ,𝑛𝑛          (8) 137 

In Bayesian inference, 𝑝𝑝(𝜃𝜃|𝑥𝑥) is known as posterior distribution and is proportional to likelihood (p(x| 𝜃𝜃)) 138 

x prior distribution (p(x)), so 𝑝𝑝(𝜃𝜃|𝑥𝑥) ∝ 𝑝𝑝(𝑥𝑥|𝜃𝜃) ∙ 𝑝𝑝(𝑥𝑥).  139 

The posterior distribution of 𝜃𝜃𝑗𝑗  given X is: 140 

 𝜃𝜃𝑗𝑗|𝑥𝑥~𝐷𝐷𝑖𝑖𝐷𝐷𝑖𝑖𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑙𝑙�𝑥𝑥1𝑗𝑗 + 𝛼𝛼1𝑗𝑗, 𝑥𝑥2𝑗𝑗 + 𝛼𝛼2𝑗𝑗, … , 𝑥𝑥𝑘𝑘𝑗𝑗 + 𝛼𝛼𝑘𝑘𝑗𝑗�;  ∀𝑗𝑗 = 1, . . ,𝑛𝑛      (9) 141 

Thus, in order to implement a new method that calculates the depth of the sample and conveniently 142 

estimates the effort of convenient sampling, as well as whether it is necessary to sequence more samples 143 

or not, it can be done by simulating matrices M' with different values of k and n, M' it has to have a 144 

multinomial probability distribution. We can simulate directly M’ from the joint posterior Dirichlet 145 

distribution, using the function rdirichlet() from the LearnBayes package in R (CRAN, 2018) and the 146 

function rmultinom() with probability priori Dirichlet (Monleon-Getino, Rodríguez-Casado & Verde, 147 

2019) 148 

 149 

2.2. Calculating rarefaction curves 150 

There are many methods for calculating the rarefaction curve for each M'; here we have chosen to use 151 

one of the last ones that are the iNEXT() function of the library of R iNEXT () for Interpolation and 152 

Extrapolation for Species Diversity (Hsieh, Ma & Chao, 2016). This library provides simple functions to 153 

compute and plot two types (sample-size- and coverage-based) rarefaction and extrapolation of species 154 

diversity (based on Hill numbers) for individual-based (abundance) data or sampling-unit based (incidence) 155 

data. 156 

Using the function iNEXT(), we calculated the rarefaction curves for each metatranscriptomic/ 157 

metagenomic matrix (M') simulated previously. 158 

 159 

 160 

 161 
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2.3. Calculating sampling effort 162 

Unfortunately, iNEXT() cannot calculate the maximum number of genes/OTUs and neither estimate 163 

the sampling effort, and the reads to reach the 90, 95 and 99% of the maximum number of genes/OTUs in 164 

the case of non-saturative rarefaction curves. To address this caveat, we propose a saturative non-linear 165 

parametric model. 166 

In this type of studies is common do a previous analysis of the selection of models that fit rarefaction 167 

curves, based on previous experience and test a selection of possible non-linear models (Mendez, Monleon-168 

Getino, Jofre & Lucena, 2017) or using  Bayesian methods (Monleon-Getino, Rodriguez-Casado, Mendez-169 

Viera, 2017). 170 

Several functions including Weibull, logistic, asymptotic regression through the origin (or 2 parameters 171 

Weibull growth model), Gompertz and Michaelis-Menten models were tested here using non-linear 172 

regression in order to be used as extrapolations of the rarefaction curves (Mendez, Monleon-Getino, Jofre 173 

& Lucena, 2017). The regression analysis was performed using the R-package function nls(), and the model 174 

accuracy was tested with the function accuracy() of the R-package rcompanion (R Companion, 2018), that 175 

produces a table of fit statistics for multiple models. The model accuracy was tested using Efron's pseudo 176 

r-squared, Min.max.accuracy (for minimum, maximum accuracy, more substantial indicates a better fit, 177 

and a perfect fit is equal to 1) and root mean square error (RMSE) which has the same units as the predicted 178 

values. The Weibull sigmoid model obtained best scores and was selected as a good function that fits and 179 

extrapolates rarefaction curve. 180 

The Weibull growth model used in our studies is derived from the one-parameter Weibull function (10), 181 

given by: 182 

𝐹𝐹(𝑥𝑥) = 1 − 𝑙𝑙(−𝑥𝑥𝛾𝛾)      (10) 183 

Where γ is a shape parameter and x>0 and γ>0. The distribution function has a point of inflection at 184 

(𝑥𝑥,𝐹𝐹(𝑥𝑥)) = �[(γ−1) γ⁄ ]1

γ
,1 − exp �−�1−γ−1���. Then the following equation can be used to obtain the 185 

sigmoidal curve for empirical use: 186 
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     F(x) = β + (α−β)𝐹𝐹(𝑘𝑘𝑥𝑥,𝜃𝜃)        (11) 187 

Moreover, for the Weibull function of four parameters can be described by function. 𝐹𝐹(𝑥𝑥) =  𝛼𝛼 −188 

(𝛼𝛼 − 𝛽𝛽)𝑙𝑙−(𝑘𝑘𝑥𝑥)𝛾𝛾 . So, in our case the Weibull growth model of four parameters (Pinheiro, 2018) is 189 

described by the function𝑊𝑊(𝑥𝑥): 190 

𝑊𝑊(𝑥𝑥) =  𝑎𝑎 − 𝑏𝑏𝑙𝑙−(𝑐𝑐𝑥𝑥)𝑚𝑚     (12) 191 

Where 𝑊𝑊(𝑥𝑥) is the potential number of genes/OTUs being expressed at each number of reads (x) and now  192 

a = α, b = α−β, c = κγ and m = γ.  a, b, c and m are parameters to be estimated and e is the base 193 

of the natural logarithms. a is the asymptote of limiting value of the response variable 𝑊𝑊(𝑥𝑥), lim
x→∞

𝑊𝑊(𝑥𝑥) =194 

a, that represents the maximum number of expressed genes/OTUs. b is the biological constant (lower 195 

asymptote), c is the parameter governing the rate at which the response variable approaches its potential 196 

maximum a and finally, m is the allometric constant. The four-parameter Weibull growth model is 197 

considered a very flexible model in that it can be easily transformed into a 3-, 2- or 1-parameter Weibull 198 

growth model to adapt the relation between possible numbers of genes/OTUs being expressed at each 199 

sample size (reads). For example, by setting b=a and m=1 from (12), we obtain a 2-parameter Weibull 200 

growth model (or Asymptotic regression through the origin model) given by: 201 

  𝑊𝑊(𝑥𝑥) =  𝑎𝑎(1 − 𝑙𝑙(−𝑐𝑐𝑥𝑥))    (13) 202 

with the same meaning 𝑊𝑊(𝑥𝑥), x, a and c (see 12). 203 

 204 

2.4 Estimation of the amount of sequencing (reads) needed to cover the total expected microbial 205 

metatranscriptome/metagenome (confidence band) 206 

The maximum potential number of genes/OTUs being expressed and its 95% confidence band were 207 

used as an estimation of the asymptote of limiting value in a Weibull growth model of four (12) or two 208 

parameters (13). Using this Weibull parametric model we estimated the amount of sequencing needed to 209 

cover 90, 95 and 99% of the total expected metagenome/metatranscriptome in the samples and its 95% 210 
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confidence interval, based only on the first 1 million sequences for each sample. We used R (v. 3.6) to 211 

perform all the calculations described below. 212 

Parameters in the Weibull growth model were estimated using the nls (Non-linear regression), nls2 (Non-213 

linear regression with brute force (CRAN, 2018b) and minpack.lm (R Interface to the Levenberg-214 

Marquardt non-linear Least-Squares) packages. The option ~ Ssweibull(x; a, b, c, m) was used for the 215 

four-parameter Weibull growth model, and ~ SsasympOrig(x; a, b) was used for the two-parameter Weibull 216 

model. In order to initialize the parameters a "brute-force" algorithm has been used, and then the parameters 217 

have been optimized until those that maximize the adjustment value have been optimized; the "brute-force" 218 

algorithm returns the nls object corresponding to the starting values (CRAN, 2018b). 219 

 220 

2.5. A priori genes/OTUs prediction using a few amounts of initial total reads 221 

We used different algorithms to fit a regression model to predict the potential number of genes/OTUs, 222 

effort/reads to reach 90, 95, 99% of the maximum number of genes/OTUs by using only the first 10-20% 223 

of sequences (reads). A first strategy was used a classical linear regression of the function lm() and 224 

optimized using function step() to perform the stepwise model selection, and model validation was 225 

performed by using the function cv.lm(data, model, m) from the DAAG library (Maindonald & Braun, 226 

2010; Maindonald &  Braun, 2019) This function gives internal and cross-validation measures of predictive 227 

accuracy for multiple linear regression.  228 

Two other strategies have been using so-called machine learning algorithms such as support vector 229 

machines (SVM) and Extreme Gradient Boosting (XGBoost), where we use the training data (with multiple 230 

features) xi (here the genes/OTUs in each deep sequencing) to predict a target variable yi (maximum 231 

number of genes/OTUs). 232 

Support Vector Machines (SVM) is a data classification method that separates data using hyperplanes, 233 

which is useful in the case of regression (Cortes & Vapnik, 1995). The concept of SVM is very intuitive 234 

and easily understandable. If we have labelled data, SVM can be used to generate multiple separating 235 
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hyperplanes such that the data space is divided into segments and each segment contains only one kind of 236 

data. SVM technique is generally useful for data which has non-regularity which means, data whose 237 

distribution is unknown. We used the function SVM() in R to do the calculation (Chang & Lin, 2017). 238 

Extreme Gradient Boosting, which is an efficient implementation of the gradient boosting framework from 239 

Chen and Guestrin (2016). Gradient boosting is a state-of-the-art prediction technique that sequentially 240 

produces a model in the form of linear combinations of simple predictors—typically decision trees—by 241 

solving an infinite-dimensional convex optimization problem. XBoost() from library Xboost() in R  (Chen 242 

& Guestrin, 2016),  permits the calculation of this predicted method. 243 

In order to check the accuracy of the different models is common use the coefficient of determination (R2 244 

or R-squared), the mean absolute error (MAE) and the root-mean-square error (RMSE) (Hyndman & 245 

Koehler, 2006). 246 

R2 it is the percentage of the response variable variation that is explained by the model: 247 

   R2 = Explained variation / Total variation      (14) 248 

R2 is always between 0 and 1, 0 indicates that the model explains none of the variability of the response 249 

data around its mean. 1 indicates that the model explains all the variability of the response data around its 250 

mean. 251 

RMSE a frequently used measure of the differences between values (sample and population values) 252 

predicted by a model or an estimator and the values observed. The RMSE represents the sample standard 253 

deviation of the differences between predicted and observed values. 254 

𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 =
∑ (yi�−yi)

2
n

i=1

n
      (15) 255 

Where n is the number of pairs of observations, yi�  the value predicted and yi the observed value. 256 

Mean Absolute Error (MAE) is the average vertical distance between each point and the Y=X  line: 257 

 258 

MAE =
∑ |(yi�−yi)|n

i=1

n
      (16) 259 
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Where n is the number of pairs of observations, yi�  the value predicted and yi the observed value. 260 

 261 

2.6. Metatranscriptome databases used in actual application of the method 262 

We have used metatranscriptome datasets from three different sources as actual application of the proposed 263 

method. The first set was generated in our lab as described in Yost, Duran-Pinedo, Teles, Krishnan  & 264 

Frias-Lopez. (2015) and is available at the Human Oral Microbiome Database (HOMD) server under the 265 

submission number 20141024 (ftp://ftp.homd.org/publication_data/20141024/RNA/ ). The second dataset was 266 

generated by Benítez-Páez, Belda-Ferre , Simón-Soro & Mira. (2014) and is available at the MG-RAST 267 

server by accessing to the “Oral Metatranscriptome” project, id 935 268 

(http://metagenomics.anl.gov/linkin.cgi?project=935 ). The third dataset was generated by Jorth, Turner, 269 

Gumus, Nizam, Buduneli & Whiteley. (2014) and is available at DNAnexus study number SRP033605 270 

(http://sra.dnanexus.com/studies/SRP033605). All databases were cleaned up of rRNA sequences 271 

bioinformatically and in the case of SRP033605 we also removed low-quality sequences from the query 272 

files. Fast clipper and fastq quality filter from the Fastx-toolkit (http://hannonlab.cshl.edu/fastx toolkit/ ) were 273 

used to remove sequences shorter than 50bp with quality score >20 in >80% of the sequence. 274 

 275 

3. Results and Discussion 276 

3.1. Metatranscriptomic/ Metagenomic matrix simulation, rarefaction computation and estimation 277 

of parameters 278 

Our focus is to study the transcriptome of whole complex microbial communities rather than individual 279 

transcriptomes, using the oral community as a model. The oral microbiome is one of the best characterized 280 

human body sites (Paster, Boches, Galvin, Ericson, Lau, Levanos  et al, 2001; Marsh, 2006; Socransky, 281 

Haffajee, Cugini, Smith & Kent, 1998; Haffajee, Socransky, Patel & Song, 2008; Peterson, Snesrud, Liu, 282 

Ong, Kilian, Schork et al, 2013; Belda-Ferre, Alcaraz, Cabrera-Rubio, Romero, Simón-Soro, Pignatelli  et 283 

al., 2012), comprising an extremely complex and highly organized biofilm community  (Kolenbrander, 284 

ftp://ftp.homd.org/publication_data/20141024/RNA/
http://metagenomics.anl.gov/linkin.cgi?project=935
http://sra.dnanexus.com/studies/SRP033605
http://hannonlab.cshl.edu/fastx%20toolkit/
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2000; Kolenbrander, Andersen, Blehert, Egland, Foster and Palmer, 2002). More than 600 bacterial species 285 

have been identified in the oral cavity [Paster, Boches, Galvin, Ericson, Lau, Levanos  et al, 2001; Dewhirst, 286 

Chen, Izard, Paster, Tanner, Yu W-H et al., 2010]. Many oral bacterial species have not yet been cultivated, 287 

and the only information we possess about them derives from their 16S rRNA phylogenetic affiliation. 288 

In the current study, we investigated the mathematical Weibull model proposed, using a nonlinear 289 

regression modeling. This model is a generalization of the asymptotic growth model in that it reduces when 290 

the parameter m is unity (see Methods section). 291 

Using an R script (see Supplementary Material) we simulated 1587 metatranscriptomic/metagenomic 292 

matrices containing more than 99 reads, with random sizes of the number of genes/OTUs (min = 267, 293 

max=339319) and reads (min = 550, max=6823774), and always 3 samples (replicas). The simulations had 294 

a high computational cost of more than 2 weeks and were carried out on a Linux Xeon SP 4114 2.2 GHz 295 

computer server with 40 cores. This information has been collected in a data frame for further analysis. 296 

 297 

Table 2: Estimations of parameters of interest using a set of 1587 simulations by means of a multinomial model of 298 

a metatranscriptomic/ metagenomic matrices 299 

Estimations of parameters of interest Mean Minimum Maximum 

Maximum number of gene/otu observed 183312 6 926470 

Effort computed using iNEXT()+Weibull model 72.399% 1.208% 100% 

Reads to reach 99% maximum number gene/OTUs 5788494 80 31779350 

 300 

A rarefaction curve using the 1587 cases simulated was computed using the function iNEXT() and the 301 

vector obtained (n=100 points, x=reads, y=genes/OTUs) was saved and used later to compute a) maximum 302 

of the number of genes/OTUs b) sampling effort to reach maximum number of gene/OTUs (minimum=1%, 303 

maximum =100%; see Table 2) and furthermore the c) reads to reach 90, 95 and 99% maximum number 304 

of genes/OTUs. This last part (points a), b), c) was done using an estimation based on a Weibull model 305 

commented in section 2.3 using non-linear regression. 306 
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 307 

 308 

 309 

 310 

 311 

 312 

Figure 1: Calculation of the number of gene/OTUs versus number of read using function PILI3() of the 313 

library library(BDSbiost3). 314 

 315 

a b

c d

interpolated observed extrapolated 
interpolated observed extrapolated 

interpolated observed extrapolated interpolated observed extrapolated 
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Four examples of the results obtained are shown in Figure 1. The results obtained can distinguished in four 316 

different types of rarefaction curves a) over-sampling curves: minimum sampling effort to obtain the 317 

maximum amount of genes/OTUs in a quick rarefaction curve; b) correct sampling curves: medium 318 

sampling effort to obtain the maximum amount of genes/OTUs in a saturative rarefaction curve; c) under-319 

sampling curves: maximum sampling effort to obtain the maximum amount of genes/OTUs in a non-320 

observed saturative rarefaction curve; d) very under-sampling: very maximum sampling effort to obtain 321 

the maximum amount of genes/OTUs in a non-observed saturative rarefaction curve. Moreover, in the 322 

curves of Figure 1 we can distinguish the vertical lines of the reads to reach the 90, 95 and 99% of the 323 

maximum number of gene/OTUs 324 

 325 

3.2. A priori genes/OTUs prediction using a few amounts of total reads 326 

Using the data simulated and the parameters estimated previously we fit a regression to predict the 327 

potential number of genes/OTUs and the reads to reach 90, 95, 99% of the maximum number of gene/OTUs 328 

using only the first 20% of sequences (reads). To carry out this method we have been used three algorithms 329 

(linear model (lm), Extreme Gradient Boosting (XB) and support vector machine (SVM)) to predict values 330 

commented in the section. Several predictors were tested to predict the maximum number of genes/OTUs 331 

as a function of the first 20% of sequences (reads), using the simulated data; for which several good 332 

predictors were detected, such as the asymptote using a 4-parameter Weibull model or other similar and 333 

well-known models such as the logistics curve model (Mendez, Monleon-Getino, Jofre & Lucena , 2017). 334 

Other predictors used were the minimum-maximum number of genes/OTUs observed and finally the 335 

minimum-maximum number of reads observed (see Table 3, central column; model 1 and model 2 and 336 

supplementary material).  337 

After testing the prediction of the models proposed using the three prediction algorithms indicated above 338 

(lm, Xboost and SVM) it was found that the results of the prediction of interest (maximum number of 339 

genes/ OTUS and reads to reach 90, 95, 99% of the maximum number of gene/OTUs) for the total curve 340 
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with the 1587 simulated samples was very similar, with a R2 > 0.99, which indicates a possible over-fitting 341 

(see table 3, right column). 342 

To validate the method  and the models, first we used only the first 20 points of the rarefaction curve (reads 343 

of the 20% of the total amount of the curve obtained) and secondly, we divided the total number of 344 

rarefaction curves simulated (n=1587) and the estimated parameters (maximum number of genes/OTUs, 345 

sampling effort, etc.) into two parts using cross-validation. 1) training set: the 70% was used to train and 346 

estimate the prediction models (lm, XB and SVM) and 2) test set: the 30% was used to check the fitting of 347 

the model and its capacity to predict the maximum number of genes/OTUs, reads to reach 90, 95, 99% of 348 

the maximum number of gene/OTUs using only the first 20% of sequences (reads). 349 

 350 

 351 

Table 3: Model accuracy for maximum number of genes/ OTUS prediction using only a 20% of total reads in a 352 

simulation of 1587 metatranscriptomic/metagenomic genomic sequences. 353 

Model name Predictors used in the model (independent variables, 
Xi) 

Results (R2) with 
different algorithms 

of prediction 

Model 1 

• Asymptote estimated using a logistic function  
• Asymptote estimated using a Weibull 4 

parameters function  
• “Observed” minimum number of reads of the 

20% vector 
• “Observed” maximum number of reads of the 

20% vector 

SVM = 0.9964754 

LM = 0.9990069 

Xboost = 0.999999 

Model 2 

• Asymptote estimated using a Weibull 4 
parameters function  

• “Observed” minimum number of reads of the 
20% vector 

• “Observed” maximum number of reads of the 
20% vector 

 

SVM = 0.9964423 

LM  = 0.9981882 

Xboost  0.9999981 

 354 

We used 300 random re-samplings, and a significant computational effort was made to obtain the 355 

predictions using models 1 and 2. We determined that the XB and lm are useful methods to predict the 356 

maximum number of genes/OTUs using only the 20% of depth sequencing. To prove the accuracy of the 357 
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method we used the mean absolute error (MAE), root square mean error (RSME) and the coefficient of 358 

determination (R2) between estimation using Weibull model with 100% of the rarefaction curve and the 359 

20% of it. 360 

The results of the validations of the three prediction methods (XB, lm, and SVM) and model 1 are presented 361 

in the Figures 2, 3 (prediction of maximum number of genes/OTUs) and 4, 5 (prediction of reads to reach 362 

95 maximum number of OTU) where is shown absolute error (MAE), RMSE bands (mean and 95% and 363 

99% confidence) and R2 for the 300 random resampling test sets. Is possible appreciate that lm and XB in 364 

all situations (estimation of the maximum number of genes/OTUs; number of reads to reach 95% of the 365 

maximum number of gene/OTUs) are the best methods. 366 

 367 

 368 

Figure 2: RMSE and absolute error bands (mean (red), 95% (blue) and 99% confidence (magenta)) of 369 

different methods [a) Support vector Machine, (b) linear regression model, and c) XBoost] using 20% of 370 

a) b)

c) d)

e) f)
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depth sequencing (reads) to predict maximum number of otus/genes. 300 random resamples were 371 

performed. 372 

 373 

This final lm model (model 1) for predict max number of genes/OTUs has a RMSE = 6769, MAE= 1763 374 

and R2 = 0.999 between observed and predicted values (Figure 2(b,c) and Figure 3(b). This final lm model 375 

(model 1) for predict reads to reach 95% of the maximum number of genes/OTUs has a RMSE = 41283, 376 

MAE= 16124 and R2 = 1 between observed and predicted values (Figure 4(b,c) and Figure 5(b). 377 

The final XB model estimated for predict max number of genes/OTUs has a RMSE = 10254, MAE= 4635 378 

and R2 = 0.997 between observed and predicted values (Figure 2(e,f) and Figure 3(c). This final XB model 379 

estimated for predict reads to reach 95% of the maximum number of genes/OTUs has a RMSE = 102112, 380 

MAE=49946 and R2 = 0.999 between observed and predicted values (Figure 4(e,f) and Figure 5(c). 381 

 382 

 383 
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 384 

Figure 3: Coefficient of determination (R2) bands (mean (red), 95% (blue) and 99% confidence 385 

(magenta))  of the different methods used [a) Support vector Machine, (b) linear regression model, and c) 386 

XBoost] using 20% of depth sequencing (reads) to predict maximum number of genes/OTUs. 300 random 387 

resamples were performed. 388 

 389 

 390 

a)

b)

c)
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 391 

Figure 4: RMSE and absolute error bands  (mean (red), 95% (blue) and 99% confidence (magenta))  of 392 

different methods [a) Support vector Machine, (b) linear regression model,  and c) XBoost] using 20% of 393 

depth sequencing (reads) to predict the reads to reach 95% of maximum number of genes/OTUs. 300 394 

random resamples were performed. 395 

 396 

Finally, an XB model 1 including the total amount of simulated data (n= 1587) was estimated and saved. 397 

The R2 of all data and prediction models (lm, XB and SVM) are presented in Figure 6 . This model will be 398 

used to predict the described parameters of interest (max num of genes/OTUs: Figure 6 a,b,c, reads to reach 399 

95% of the maximum number of genes/OTUs: Figure 6 d,e,f , effort, etc.). Also, the confidence interval 400 

(95%) can be computed. To obtain the 95% confidence of the prediction we have used a "bagging" method 401 
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thanks to the use of XB model, which basically means creating the same model many times (that has 402 

randomness in it. 403 

 404 

 405 

Figure 5: Coefficient of determination (R2) bands (mean (red), 95% (blue) and 99% confidence 406 

(magenta))  of the different methods used [a) Support vector Machine, (b) linear regression model and c) 407 

XBoost] using 20% of depth sequencing (reads) to predict the reads to reach 95% of maximum number of 408 

genes/OTUs. 300 random resamples were performed 409 

 410 
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Finally using 100 subsamples we can obtain the prediction mean and the 95% by means of the function 411 

ci.mean() of the library(Publish) for R. This final XB model estimated for predict max number of 412 

genes/OTUs has a MAE= 107 and R2 = 0.9964754 between observed and predicted values (Figure 6c). 413 

This final XB model estimated for predict reads to reach 95% of the maximum number of genes/OTUs has 414 

a MAE= 1380 and R2 = 0.9999996 between observed and predicted values (Figure 6g). 415 

 416 

3.3. Application of the method proposed to real data 417 

An example of external validation (real data not used before) was used to check the algorithms developed 418 

previously. To this end, we used a set of 15 datasets of metatranscriptomes from the oral cavity. These 419 

RNA sequences consist of vectors of 105-1.5x107 reads depth with a 10000 and 600000 genes size, most 420 

of them with saturation but in some cases with a definite no saturation examples. We used these sequences 421 

to validate the method and predict the maximum number of genes and the number of reads to reach 95% 422 

of the maximum number of genes using all number of reads or only a percentage of it (3%, 20%, and 60% 423 

of reads depth). The function monle.predict.max() was developed in order to compute this type of 424 

incomplete transcriptomic vectors (X=sequensing depth, Y=genes). 425 

The results of this validation are shown in the supplementary material and reflect that the model used, based 426 

on a Weibull model of four parameters, fits perfectly and is possible to estimate correctly the parameters 427 

of interest (maximum number of genes, reads depth to reach 95% of maximum genes). 428 

When only a percentage (3%, 20% and 60% of reads depth) of the transcriptomic vector was used the 429 

results are equally quite acceptable to predict the maximum amount of genes/OTU and medium acceptable 430 

to predict reads to reach 95% of the maximum number of gene/OTU. The prediction for the maximum 431 

number of genes was considered acceptable when the maximum number of genes is inside the XB bagging 432 

95% prediction interval. In the same way, the prediction to reads depth to reach 95% of the maximum 433 

number of genes prediction was considered acceptable when it is inside the XB bagging 95%prediction 434 

interval or between 90-99% interval calculate using the 100% reads depth of the transcriptomic. 435 
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When a 3% (105-5x105 reads) was used to predict the parameters of interest, 12/15 (80%) curves to predict 436 

the number of genes and 6/15 (33%) curves to predict reads to reach 95% maximum genes were acceptable. 437 

When a 20% (105-3x106 reads) was used to predict the parameters of interest, 14/15 (93%) curves to 438 

predict the number of genes and 9/15 (60%) curves to predict reads to reach 95% maximum genes were 439 

acceptable. When a 60% (105-1x107 reads) were used to predict the parameters of interest, 14/15 (90%) 440 

curves to predict the number of genes and 9/15 (60%) curves to predict reads to reach 95% maximum genes 441 

were acceptable. 442 

 443 
 444 
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 445 

Figure 6: Prediction of maximum number of gene/OTU (a, b, c) and reads to reach 95% maximum 446 

gene/OTUs (d, e, f) using a SVM, lm and XGBoost model and only the 20% of the reads versus observed 447 

value. All the samples were used (n=1556). 448 

 449 

e)

f)

g)

a)

b)

c)

0.9964754

0.9964754

0.9964754

0.9976681

0.9998004

0.9999996
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 450 

3.3. Final conclusions 451 

This proposed method of estimation of the maximum number of gene/OTUs, reads to reach 90, 95 and 99% 452 

of maximum number of gene/OTUs, using and algorithm based on rarefaction curve + Weibull model + 453 

machine learning prediction, is efficient to help researchers to know if the sampling is sufficient or 454 

otherwise need to be increased. It needs to be used with precaution to predict the sequencing depth, 455 

especially with the non-saturation observed samples; sometimes the proposed model can cause predictive 456 

problems, but in most cases, it works.  More efforts can be used with real sequences and typologies to 457 

validate completely this model and methodology based on simulation. 458 

Estimating the sequencing depth required to adequately sample the metatranscriptome/ metagenome of 459 

interest using RNA-seq and Shotgun is an essential first step to both obtain robust results in further analysis 460 

and avoiding over-expending once the information contained in the library reaches saturation. Our method 461 

allows one to use an initial shallowly sequenced sample (in this case 20% of the total amount of reads 462 

sampled) to estimate the expected sequencing effort needed to cover the whole metatranscriptome/ 463 

metagenome from the same sample, so can be used to estimate the estimate the sample size. This limited 464 

initial number of sequences is low enough that with the current NGS methods allows for the estimate of 465 

considerable number of samples at a low cost. 466 

 467 
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