References
1. ASTM. ASTM E647-15: Standard test method for measurement of fatigue
crack growth rates. 2015. Available at: DOI:10.1520/E0647-15.2
2. BSI. BS EN ISO 11782-2:2008: Corrosion of metals and alloys —
Corrosion fatigue testing —Part 2: Crack propagation testing using
precracked specimens. British Standard. 2008.
3. Ritchie RO. Near-threshold fatigue-crack propagation in steels.
International Metals Reviews. 1979; 24(1): 205–230. Available at:
DOI:10.1179/imtr.1979.24.1.205
4. Stonesifer FR. Effect of grain size and temperature on fatigue crack
propagation in A533 b steel. Engineering Fracture Mechanics. 1978; 10:
305–314.
5. Milella PP. Fatigue and corrosion in metals. Milan: Springer-Verlag;
2013. 529–530 p. Available at: DOI:10.1007/978-88-470-2336-9
6. Zerbst U., Madia M., Vormwald M., Beier HT. Fatigue strength and
fracture mechanics – A general perspective. Engineering Fracture
Mechanics. Elsevier Ltd; 2018; 198: 2–23. Available at:
DOI:10.1016/j.engfracmech.2017.04.030
7. Chen DL., Wang ZG., Jiang XX., Ai SH., Shih CH. The dependence of
near-threshold fatigue crack growth on microstructure and environment in
dual-phase steels. Materials Science and Engineering A. 1989; 108(C):
141–151. Available at: DOI:10.1016/0921-5093(89)90415-2
8. Liaw PK. Mechanisms of near-threshold fatigue crack growth in a low
alloy steel. 1985; 33(8): 1489–1502.
9. Zerbst U., Vormwald M., Pippan R., Gänser H-P., Sarrazin-Baudoux C.,
Madia M. About the fatigue crack propagation threshold of metals as a
design criterion–A review. Engineering Fracture Mechanics. 2016;
153(November 2014): 190–243.
10. Ritchie RO. Mechanisms of fatigue-crack propagation in ductile and
brittle solids. International Journal of Fatigue. 1999; 100: 55–83.
11. Thompson AW., Bucci RJ. The dependence of fatigue crack growth rate
on grain size. Metallurgical Transactions. 1973; 4(4): 1173–1175.
Available at: DOI:10.1007/BF02645626
12. Lindigkeit J., Terlinde G., Gysler A., Lutjering G. The effect of
grain size on the fatigue crack-Propagation behavior of age-hardened
alloys in inert and corrosive environment. Acta Metallurgica. 1979; 27:
1717–1726.
13. Hoeppner DW. The effect of grain size on fatigue crack growth in
copper. Fatigue Crack Propagation, ASTM 415. 1967; 18(STP415-EB/Jun):
489. Available at: DOI:10.1111/j.1460-2695.1995.tb00861.x
14. Francois D. The Influence of the microstructure on fatigue. In:
Branco CM, Rosa LG (eds.) NATO ASI S. Advances in Fatigue Science and
Technology; 1989. Available at: DOI:10.1016/B978-0-12-374364-0.50017-5
15. Laird C., Smith GC. Crack propagation in high stress fatigue.
Philosophical Magazine. 1962; 7(77): 847–857. Available at:
DOI:10.1080/14786436208212674
16. Pelloux RMN. Crack extension by alternating shear. Engineering
Fracture Mechanics. 1970; 1(4). Available at:
DOI:10.1016/0013-7944(70)90008-1
17. Stephens RI., Fatemi A., Stephens RR., Fuchs HO. Metal Fatigue in
Engineering. 2nd edn. John Wiley & Sons. NY: John Wiley & Sons; 2001.
51 p. Available at: DOI:10.1115/1.3225026
18. Krupp U. Fatigue Crack Propagation in Metals and Alloys:
Microstructural Aspects and Modelling Concepts. Weinheim: WILEY-VCH
Verlag GmbH & Co; 2007. 136 p.
19. Elber W. Fatigue crack closure under cyclic tension. Engineering
Fracture Mechanics. 1970; 2: 37–45. Available at:
https://ac.els-cdn.com/0013794470900287/1-s2.0-0013794470900287-main.pdf?_tid=6de5a0ce-060b-43f9-adf5-6ddbc40eafbc&acdnat=1549818866_81d1eb651842856827206db98df61835
20. Elber W. The Significance of Fatigue Crack Closure. ASTM STP 486 -
Damage Tolerance in Aircraft Structures. 1971; : 230–242. Available at:
www.astm.org (Accessed: 10 February 2019)
21. Dillinger. Thermomechanically rolled fine-grained steels. 2016.
Available at:
https://www.dillinger.de/d/en/products/heavyplate/thermomechanically-finegrained/
(Accessed: 11 April 2016)
22. Igwemezie V., Mehmanparast A., Kolios A. Materials selection for XL
wind turbine support structures: A corrosion-fatigue perspective. Marine
Structures. Elsevier; 1 September 2018; 61: 381–397. Available at:
DOI:10.1016/J.MARSTRUC.2018.06.008
23. Steel International T. New Horizons - supply solutions in offshore
structual steel. 2010. Available at:
http://www.tatasteeleurope.com/static_files/StaticFiles/Business_Units/International/Tata
Steel International Offshore Capability 2010.pdf (Accessed: 5 April
2016)
24. Corus Construction & Industrial. European structural steel standard
EN 10025 : 2004. 2004. Available at:
http://www.tf.uni-kiel.de/matwis/amat/iss/kap_9/articles/en_steel_standards.pdf
(Accessed: 5 April 2016)
25. Tata Steel. Advance sections. 2013. Available at:
http://www.tatasteeleurope.com/file_source/StaticFiles/section_plates_publications/sections_publications/Advance
to Eurocode Sept 13.pdf
26. Parker Steel Company. S355 EN 10025: Standard Structural Steel
Products. 2012. Available at: http://www.metricmetal.com/products/Grade
Descriptions/S355 Grade Description.php (Accessed: 1 April 2016)
27. Bhadeshia HKDH. Bainite in Steels - Transformation, Microstructure
and Properties. 2nd edn. IOM Communications; 2001.
28. Meester B De. The Weldability of Modern Structural TMCP Steels. ISIJ
International. 1997; 37(6): 537–551. Available at:
DOI:10.2355/isijinternational.37.537
29. Tamura I., Sekind H., Taanaka T., Ouchi C. Thermomechanical
processing of high-strength low-alloy steels. Butterworths; 1988. 248 p.
30. GRANGE RA. Fundamentals of deformation processing: proceedings. In:
Backofen WA (ed.) Volume 9 of Sagamore Army Materials Research
Conference proceedings. Syracuse University Press; p. 229. Available at:
https://books.google.co.uk/books/about/Fundamentals_of_deformation_processing.html?id=QOg_AQAAIAAJ&redir_esc=y
(Accessed: 17 December 2018)
31. Fukumoto Y. New constructional steels and structural stability.
Engineering Structures. Elsevier; 1 October 1996; 18(10): 786–791.
Available at: DOI:10.1016/0141-0296(96)00008-9 (Accessed: 21 November
2018)
32. Shikanai N., Mitao S., Endo S. Recent Development in Microstructural
Control Technologies through the Thermo-Mechanical Control Process
(TMCP) with JFE Steel’s High-Performance Plates. 2008. Available at:
http://www.jfe-steel.co.jp/en/research/report/011/pdf/011-02.pdf
(Accessed: 17 December 2018)
33. Bhadeshia HKDH. Interpretation of the Microstructure of Steels.
Phase Transformation Group, University of Cambridge. Available at:
http://www.phase-trans.msm.cam.ac.uk/2008/Steel_Microstructure/SM.html
(Accessed: 9 October 2018)
34. Igwemezie VC., Ovri JEO. Investigation into the Effects of
Microstructure on the Corrosion Susceptibility of Medium Carbon Steel.
The International Journal Of Engineering And Science (IJES). 2013; 2(6):
2319–1805.
35. Slezak T., Sniezek L. A Comparative LCF Study of S960QL High
Strength Steel and S355J2 Mild Steel. Procedia Engineering. 2015; 114:
78–85. Available at:
https://ac.els-cdn.com/S1877705815016835/1-s2.0-S1877705815016835-main.pdf?_tid=a64b914d-b256-4bf1-bca8-3f2ab3afd688&acdnat=1547527288_d017f7cfa2d300a96252b52d0e7c49c9
(Accessed: 15 January 2019)
36. Igwemezie V., Dirisu P., Mehmanparast A. Critical assessment of the
fatigue crack growth rate sensitivity to material microstructure in
ferrite-pearlite steels in air and marine environment. Materials Science
and Engineering A. 2019; 754: 750–765.
37. Steimbreger C. Fatigue of Welded Structures -Master thesis. Lulea
University of Technology; 2014.
38. Korda AA., Mutoh Y., Miyashita Y., Sadasue T., Mannan SL. In situ
observation of fatigue crack retardation in banded ferrite-pearlite
microstructure due to crack branching. Scripta Materialia. 2006; 54(11):
1835–1840. Available at: DOI:10.1016/j.scriptamat.2006.02.025
39. Igwemezie V., Mehmanparast A. Waveform and frequency effects on
corrosion-fatigue crack growth behaviour in modern marine steels.
International Journal of Fatigue. 2020; 134. Available at:
DOI:https://doi.org/10.1016/j.ijfatigue.2020.105484
40. Cheng YW. The fatigue crack growth of a ship steel in seawater under
spectrum loading. International Journal of Fatigue. 1985; 7(2): 95–100.
Available at: DOI:10.1016/0142-1123(85)90039-8
41. Musuva JK. PhD Thesis - Fatigue crack growth in a low-alloy steel.
University of London; 1980. Available at:
https://spiral.imperial.ac.uk/bitstream/10044/1/35278/2/Musuva-JK-1980-PhD-Thesis.pdf
(Accessed: 27 September 2018)
42. De Jesus AMP., Matos R., Fontoura BFC., Rebelo C., Simões Da Silva
L., Veljkovic M. A comparison of the fatigue behavior between S355 and
S690 steel grades. Journal of Constructional Steel Research. Elsevier
Ltd; 2012; 79(August): 140–150. Available at:
DOI:10.1016/j.jcsr.2012.07.021
43. Atkinson JD., Lindley TC. Effect of stress waveform and hold-time on
environmentally assisted fatigue crack propagation in C-Mn structural
steel. Metal Science. 1979; 13(7): 444–448. Available at:
DOI:10.1179/msc.1979.13.7.444
44. Achilles RD., Bulloch JH. The influence of waveform on the fatigue
crack growth behaviour of SA508 cl III RPV steel in various
environments. International Journal of Pressure Vessels and Piping.
1987; 30(5): 375–389. Available at: DOI:10.1016/0308-0161(87)90110-4
(Accessed: 17 September 2018)
45. Barsom JM., Rolfe ST. Fracture and Fatigue Control in Structures :
Applications of Fracture Mechanics, 3rd Edition. 3rd edn. ASTM; 1999.
318–323 p. Available at: DOI:10.1520/MNL41-3RD-EB
46. Barsom JM. Corrosion-fatigue crack propagation below KIscc.
Engineering Fracture Mechanics. 1971; 3(1): 15–25. Available at:
DOI:10.1016/0013-7944(71)90048-8
47. Musuva JK., Radon JC. The Effect of Stress Ratio and Frequency on
Fatigue Crack Growth. Fatigue of Engineering Materials and Structures.
1979; 1: 457–470. Available at:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1460-2695.1979.tb01333.x
(Accessed: 14 October 2018)
48. Scott PM., Thorpe TW and., Silvester DR V. Rate-determining
processes for corrosion fatigue crack growth in ferritic steels in
seawater. Corrosion Science. 1983; 23(6): 559–575.
49. Appleton RJ. Corrosion fatigue of a C-Mn steel, PhD Thesis.
Department of Mechanical Engineering, University of Glasgow; 1985.
Available at: http://theses.gla.ac.uk/2176/ (Accessed: 13 February 2018)
50. Thorpe TW., Scott PM., Rance A., Silvester D. Corrosion fatigue of
BS4360:50D structural-steel in seawater. International Journal of
Fatigue. 1983; 5(3): 123–133.
51. Thompson JWC. PhD Thesis - Phenomenological investigation of the
influence of Cathodic Protection on corrosion fatigue crack propagation
behaviour, in a BS 4360 50D type structural steel and associated
weldment microstructures, in a marine environment. Cranfield University;
1984.
52. Correia JAFO., Blasón S., De Jesus AMP., Canteli AF., Moreira PMGP.,
Tavares PJ. Fatigue life prediction based on an equivalent initial flaw
size approach and a new normalized fatigue crack growth model.
Engineering Failure Analysis. 2016; 69: 15–28. Available at:
DOI:10.1016/j.engfailanal.2016.04.003 (Accessed: 29 November 2018)
53. Adedipe O., Brennan F., Kolios A. Corrosion fatigue load frequency
sensitivity analysis. Marine Structures. Elsevier Ltd; 2015; 42:
115–136. Available at: DOI:10.1016/j.marstruc.2015.03.005
54. Xiong Y., Hu XX. The effect of microstructures on fatigue crack
growth in Q345 steel welded joint. Fatigue and Fracture of Engineering
Materials and Structures. 2012; 35(6): 500–512. Available at:
DOI:10.1111/j.1460-2695.2011.01640.x
55. Laurito DF., Baptista CARP., Torres MAS., Abdalla AJ.
Microstructural effects on fatigue crack growth behavior of a
microalloyed steel. Procedia Engineering. Elsevier; 2010; 2(1):
1915–1925. Available at: DOI:10.1016/j.proeng.2010.03.206
56. Callister DR. A study of fatigue crack propagation in quenched and
tempered and controlled roller HSLA steels. Cranfield Institute of
Technology; 1987.
57. Tsay LW., Chern TS., Gau CY., Yang JR. Microstructures and fatigue
crack growth of EH36 TMCP steel weldments. International Journal of
Fatigue. 1999; 21(8): 857–864. Available at:
DOI:10.1016/S0142-1123(99)00021-3
58. Chapetti MD., Miyata H., Tagawa T., Miyata T., Fujioka M. Fatigue
crack propagation behaviour in ultra-fine grained low carbon steel.
International Journal of Fatigue. 2005; 27(3): 235–243. Available at:
DOI:10.1016/j.ijfatigue.2004.07.004
59. Mehmanparast A., Brennan F., Tavares I. Fatigue crack growth rates
for offshore wind monopile weldments in air and seawater: SLIC
inter-laboratory test results. Materials and Design. 2017; 114:
494–504. Available at: DOI:10.1016/j.matdes.2016.10.070
60. Tavares I., Brennan F. The SLIC Project. 2015. Available at:
http://www.ewea.org/offshore2015/conference/allposters/PO081.pdf
61. Li X., Cao L., Wang M., Du F. Groove design and microstructure
research of ultra-fine grain bar rolling. Modeling and Numerical
Simulation of Material Science. Scientific Research Publishing; 22
October 2012; 02(04): 67–75. Available at: DOI:10.4236/mnsms.2012.24008
(Accessed: 25 September 2018)
62. Saeed-Akbari A. Determination of steels microstructural components
based on novel characterisation techniques. RWTH Aachen; 2008. Available
at: DOI:10.1007/BF03192151
63. Adedipe O. Integrity of offshore structures. Cranfield University;
2015.
64. Kavishe FPL., Baker TJ. Effect of prior austenite grain size and
pearlite interlamellar spacing on strength and fracture toughness of a
eutectoid rail steel. Materials Science and Technology. 1986; 2(8):
816–822. Available at: DOI:10.1179/mst.1986.2.8.816
65. Callister WDJ. Materials Science and Engineering An Introduction.
7th (ed.) John Wiley & Sons, Inc; 2007. 226–227 p.
66. Daeubler MA., Thompson AW., Bernstein IM. Influence of
microstructure on fatigue behavior and surface fatigue crack growth of
fully pearlitic steels. Metallurgical Transactions A. 1990; 21A:
925–932. Available at:
https://link.springer.com/content/pdf/10.1007%2FBF02656577.pdf
(Accessed: 1 December 2018)
67. Igwemezie V., Mehmanparast A. Waveform and frequency effects on
corrosion-fatigue crack growth behaviour in modern marine steels.
International Journal of Fatigue. 2020; 134. Available at:
DOI:10.1016/J.IJFATIGUE.2020.105484