References
1. ASTM. ASTM E647-15: Standard test method for measurement of fatigue crack growth rates. 2015. Available at: DOI:10.1520/E0647-15.2
2. BSI. BS EN ISO 11782-2:2008: Corrosion of metals and alloys — Corrosion fatigue testing —Part 2: Crack propagation testing using precracked specimens. British Standard. 2008.
3. Ritchie RO. Near-threshold fatigue-crack propagation in steels. International Metals Reviews. 1979; 24(1): 205–230. Available at: DOI:10.1179/imtr.1979.24.1.205
4. Stonesifer FR. Effect of grain size and temperature on fatigue crack propagation in A533 b steel. Engineering Fracture Mechanics. 1978; 10: 305–314.
5. Milella PP. Fatigue and corrosion in metals. Milan: Springer-Verlag; 2013. 529–530 p. Available at: DOI:10.1007/978-88-470-2336-9
6. Zerbst U., Madia M., Vormwald M., Beier HT. Fatigue strength and fracture mechanics – A general perspective. Engineering Fracture Mechanics. Elsevier Ltd; 2018; 198: 2–23. Available at: DOI:10.1016/j.engfracmech.2017.04.030
7. Chen DL., Wang ZG., Jiang XX., Ai SH., Shih CH. The dependence of near-threshold fatigue crack growth on microstructure and environment in dual-phase steels. Materials Science and Engineering A. 1989; 108(C): 141–151. Available at: DOI:10.1016/0921-5093(89)90415-2
8. Liaw PK. Mechanisms of near-threshold fatigue crack growth in a low alloy steel. 1985; 33(8): 1489–1502.
9. Zerbst U., Vormwald M., Pippan R., Gänser H-P., Sarrazin-Baudoux C., Madia M. About the fatigue crack propagation threshold of metals as a design criterion–A review. Engineering Fracture Mechanics. 2016; 153(November 2014): 190–243.
10. Ritchie RO. Mechanisms of fatigue-crack propagation in ductile and brittle solids. International Journal of Fatigue. 1999; 100: 55–83.
11. Thompson AW., Bucci RJ. The dependence of fatigue crack growth rate on grain size. Metallurgical Transactions. 1973; 4(4): 1173–1175. Available at: DOI:10.1007/BF02645626
12. Lindigkeit J., Terlinde G., Gysler A., Lutjering G. The effect of grain size on the fatigue crack-Propagation behavior of age-hardened alloys in inert and corrosive environment. Acta Metallurgica. 1979; 27: 1717–1726.
13. Hoeppner DW. The effect of grain size on fatigue crack growth in copper. Fatigue Crack Propagation, ASTM 415. 1967; 18(STP415-EB/Jun): 489. Available at: DOI:10.1111/j.1460-2695.1995.tb00861.x
14. Francois D. The Influence of the microstructure on fatigue. In: Branco CM, Rosa LG (eds.) NATO ASI S. Advances in Fatigue Science and Technology; 1989. Available at: DOI:10.1016/B978-0-12-374364-0.50017-5
15. Laird C., Smith GC. Crack propagation in high stress fatigue. Philosophical Magazine. 1962; 7(77): 847–857. Available at: DOI:10.1080/14786436208212674
16. Pelloux RMN. Crack extension by alternating shear. Engineering Fracture Mechanics. 1970; 1(4). Available at: DOI:10.1016/0013-7944(70)90008-1
17. Stephens RI., Fatemi A., Stephens RR., Fuchs HO. Metal Fatigue in Engineering. 2nd edn. John Wiley & Sons. NY: John Wiley & Sons; 2001. 51 p. Available at: DOI:10.1115/1.3225026
18. Krupp U. Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts. Weinheim: WILEY-VCH Verlag GmbH & Co; 2007. 136 p.
19. Elber W. Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics. 1970; 2: 37–45. Available at: https://ac.els-cdn.com/0013794470900287/1-s2.0-0013794470900287-main.pdf?_tid=6de5a0ce-060b-43f9-adf5-6ddbc40eafbc&acdnat=1549818866_81d1eb651842856827206db98df61835
20. Elber W. The Significance of Fatigue Crack Closure. ASTM STP 486 - Damage Tolerance in Aircraft Structures. 1971; : 230–242. Available at: www.astm.org (Accessed: 10 February 2019)
21. Dillinger. Thermomechanically rolled fine-grained steels. 2016. Available at: https://www.dillinger.de/d/en/products/heavyplate/thermomechanically-finegrained/ (Accessed: 11 April 2016)
22. Igwemezie V., Mehmanparast A., Kolios A. Materials selection for XL wind turbine support structures: A corrosion-fatigue perspective. Marine Structures. Elsevier; 1 September 2018; 61: 381–397. Available at: DOI:10.1016/J.MARSTRUC.2018.06.008
23. Steel International T. New Horizons - supply solutions in offshore structual steel. 2010. Available at: http://www.tatasteeleurope.com/static_files/StaticFiles/Business_Units/International/Tata Steel International Offshore Capability 2010.pdf (Accessed: 5 April 2016)
24. Corus Construction & Industrial. European structural steel standard EN 10025 : 2004. 2004. Available at: http://www.tf.uni-kiel.de/matwis/amat/iss/kap_9/articles/en_steel_standards.pdf (Accessed: 5 April 2016)
25. Tata Steel. Advance sections. 2013. Available at: http://www.tatasteeleurope.com/file_source/StaticFiles/section_plates_publications/sections_publications/Advance to Eurocode Sept 13.pdf
26. Parker Steel Company. S355 EN 10025: Standard Structural Steel Products. 2012. Available at: http://www.metricmetal.com/products/Grade Descriptions/S355 Grade Description.php (Accessed: 1 April 2016)
27. Bhadeshia HKDH. Bainite in Steels - Transformation, Microstructure and Properties. 2nd edn. IOM Communications; 2001.
28. Meester B De. The Weldability of Modern Structural TMCP Steels. ISIJ International. 1997; 37(6): 537–551. Available at: DOI:10.2355/isijinternational.37.537
29. Tamura I., Sekind H., Taanaka T., Ouchi C. Thermomechanical processing of high-strength low-alloy steels. Butterworths; 1988. 248 p.
30. GRANGE RA. Fundamentals of deformation processing: proceedings. In: Backofen WA (ed.) Volume 9 of Sagamore Army Materials Research Conference proceedings. Syracuse University Press; p. 229. Available at: https://books.google.co.uk/books/about/Fundamentals_of_deformation_processing.html?id=QOg_AQAAIAAJ&redir_esc=y (Accessed: 17 December 2018)
31. Fukumoto Y. New constructional steels and structural stability. Engineering Structures. Elsevier; 1 October 1996; 18(10): 786–791. Available at: DOI:10.1016/0141-0296(96)00008-9 (Accessed: 21 November 2018)
32. Shikanai N., Mitao S., Endo S. Recent Development in Microstructural Control Technologies through the Thermo-Mechanical Control Process (TMCP) with JFE Steel’s High-Performance Plates. 2008. Available at: http://www.jfe-steel.co.jp/en/research/report/011/pdf/011-02.pdf (Accessed: 17 December 2018)
33. Bhadeshia HKDH. Interpretation of the Microstructure of Steels. Phase Transformation Group, University of Cambridge. Available at: http://www.phase-trans.msm.cam.ac.uk/2008/Steel_Microstructure/SM.html (Accessed: 9 October 2018)
34. Igwemezie VC., Ovri JEO. Investigation into the Effects of Microstructure on the Corrosion Susceptibility of Medium Carbon Steel. The International Journal Of Engineering And Science (IJES). 2013; 2(6): 2319–1805.
35. Slezak T., Sniezek L. A Comparative LCF Study of S960QL High Strength Steel and S355J2 Mild Steel. Procedia Engineering. 2015; 114: 78–85. Available at: https://ac.els-cdn.com/S1877705815016835/1-s2.0-S1877705815016835-main.pdf?_tid=a64b914d-b256-4bf1-bca8-3f2ab3afd688&acdnat=1547527288_d017f7cfa2d300a96252b52d0e7c49c9 (Accessed: 15 January 2019)
36. Igwemezie V., Dirisu P., Mehmanparast A. Critical assessment of the fatigue crack growth rate sensitivity to material microstructure in ferrite-pearlite steels in air and marine environment. Materials Science and Engineering A. 2019; 754: 750–765.
37. Steimbreger C. Fatigue of Welded Structures -Master thesis. Lulea University of Technology; 2014.
38. Korda AA., Mutoh Y., Miyashita Y., Sadasue T., Mannan SL. In situ observation of fatigue crack retardation in banded ferrite-pearlite microstructure due to crack branching. Scripta Materialia. 2006; 54(11): 1835–1840. Available at: DOI:10.1016/j.scriptamat.2006.02.025
39. Igwemezie V., Mehmanparast A. Waveform and frequency effects on corrosion-fatigue crack growth behaviour in modern marine steels. International Journal of Fatigue. 2020; 134. Available at: DOI:https://doi.org/10.1016/j.ijfatigue.2020.105484
40. Cheng YW. The fatigue crack growth of a ship steel in seawater under spectrum loading. International Journal of Fatigue. 1985; 7(2): 95–100. Available at: DOI:10.1016/0142-1123(85)90039-8
41. Musuva JK. PhD Thesis - Fatigue crack growth in a low-alloy steel. University of London; 1980. Available at: https://spiral.imperial.ac.uk/bitstream/10044/1/35278/2/Musuva-JK-1980-PhD-Thesis.pdf (Accessed: 27 September 2018)
42. De Jesus AMP., Matos R., Fontoura BFC., Rebelo C., Simões Da Silva L., Veljkovic M. A comparison of the fatigue behavior between S355 and S690 steel grades. Journal of Constructional Steel Research. Elsevier Ltd; 2012; 79(August): 140–150. Available at: DOI:10.1016/j.jcsr.2012.07.021
43. Atkinson JD., Lindley TC. Effect of stress waveform and hold-time on environmentally assisted fatigue crack propagation in C-Mn structural steel. Metal Science. 1979; 13(7): 444–448. Available at: DOI:10.1179/msc.1979.13.7.444
44. Achilles RD., Bulloch JH. The influence of waveform on the fatigue crack growth behaviour of SA508 cl III RPV steel in various environments. International Journal of Pressure Vessels and Piping. 1987; 30(5): 375–389. Available at: DOI:10.1016/0308-0161(87)90110-4 (Accessed: 17 September 2018)
45. Barsom JM., Rolfe ST. Fracture and Fatigue Control in Structures : Applications of Fracture Mechanics, 3rd Edition. 3rd edn. ASTM; 1999. 318–323 p. Available at: DOI:10.1520/MNL41-3RD-EB
46. Barsom JM. Corrosion-fatigue crack propagation below KIscc. Engineering Fracture Mechanics. 1971; 3(1): 15–25. Available at: DOI:10.1016/0013-7944(71)90048-8
47. Musuva JK., Radon JC. The Effect of Stress Ratio and Frequency on Fatigue Crack Growth. Fatigue of Engineering Materials and Structures. 1979; 1: 457–470. Available at: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1460-2695.1979.tb01333.x (Accessed: 14 October 2018)
48. Scott PM., Thorpe TW and., Silvester DR V. Rate-determining processes for corrosion fatigue crack growth in ferritic steels in seawater. Corrosion Science. 1983; 23(6): 559–575.
49. Appleton RJ. Corrosion fatigue of a C-Mn steel, PhD Thesis. Department of Mechanical Engineering, University of Glasgow; 1985. Available at: http://theses.gla.ac.uk/2176/ (Accessed: 13 February 2018)
50. Thorpe TW., Scott PM., Rance A., Silvester D. Corrosion fatigue of BS4360:50D structural-steel in seawater. International Journal of Fatigue. 1983; 5(3): 123–133.
51. Thompson JWC. PhD Thesis - Phenomenological investigation of the influence of Cathodic Protection on corrosion fatigue crack propagation behaviour, in a BS 4360 50D type structural steel and associated weldment microstructures, in a marine environment. Cranfield University; 1984.
52. Correia JAFO., Blasón S., De Jesus AMP., Canteli AF., Moreira PMGP., Tavares PJ. Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model. Engineering Failure Analysis. 2016; 69: 15–28. Available at: DOI:10.1016/j.engfailanal.2016.04.003 (Accessed: 29 November 2018)
53. Adedipe O., Brennan F., Kolios A. Corrosion fatigue load frequency sensitivity analysis. Marine Structures. Elsevier Ltd; 2015; 42: 115–136. Available at: DOI:10.1016/j.marstruc.2015.03.005
54. Xiong Y., Hu XX. The effect of microstructures on fatigue crack growth in Q345 steel welded joint. Fatigue and Fracture of Engineering Materials and Structures. 2012; 35(6): 500–512. Available at: DOI:10.1111/j.1460-2695.2011.01640.x
55. Laurito DF., Baptista CARP., Torres MAS., Abdalla AJ. Microstructural effects on fatigue crack growth behavior of a microalloyed steel. Procedia Engineering. Elsevier; 2010; 2(1): 1915–1925. Available at: DOI:10.1016/j.proeng.2010.03.206
56. Callister DR. A study of fatigue crack propagation in quenched and tempered and controlled roller HSLA steels. Cranfield Institute of Technology; 1987.
57. Tsay LW., Chern TS., Gau CY., Yang JR. Microstructures and fatigue crack growth of EH36 TMCP steel weldments. International Journal of Fatigue. 1999; 21(8): 857–864. Available at: DOI:10.1016/S0142-1123(99)00021-3
58. Chapetti MD., Miyata H., Tagawa T., Miyata T., Fujioka M. Fatigue crack propagation behaviour in ultra-fine grained low carbon steel. International Journal of Fatigue. 2005; 27(3): 235–243. Available at: DOI:10.1016/j.ijfatigue.2004.07.004
59. Mehmanparast A., Brennan F., Tavares I. Fatigue crack growth rates for offshore wind monopile weldments in air and seawater: SLIC inter-laboratory test results. Materials and Design. 2017; 114: 494–504. Available at: DOI:10.1016/j.matdes.2016.10.070
60. Tavares I., Brennan F. The SLIC Project. 2015. Available at: http://www.ewea.org/offshore2015/conference/allposters/PO081.pdf
61. Li X., Cao L., Wang M., Du F. Groove design and microstructure research of ultra-fine grain bar rolling. Modeling and Numerical Simulation of Material Science. Scientific Research Publishing; 22 October 2012; 02(04): 67–75. Available at: DOI:10.4236/mnsms.2012.24008 (Accessed: 25 September 2018)
62. Saeed-Akbari A. Determination of steels microstructural components based on novel characterisation techniques. RWTH Aachen; 2008. Available at: DOI:10.1007/BF03192151
63. Adedipe O. Integrity of offshore structures. Cranfield University; 2015.
64. Kavishe FPL., Baker TJ. Effect of prior austenite grain size and pearlite interlamellar spacing on strength and fracture toughness of a eutectoid rail steel. Materials Science and Technology. 1986; 2(8): 816–822. Available at: DOI:10.1179/mst.1986.2.8.816
65. Callister WDJ. Materials Science and Engineering An Introduction. 7th (ed.) John Wiley & Sons, Inc; 2007. 226–227 p.
66. Daeubler MA., Thompson AW., Bernstein IM. Influence of microstructure on fatigue behavior and surface fatigue crack growth of fully pearlitic steels. Metallurgical Transactions A. 1990; 21A: 925–932. Available at: https://link.springer.com/content/pdf/10.1007%2FBF02656577.pdf (Accessed: 1 December 2018)
67. Igwemezie V., Mehmanparast A. Waveform and frequency effects on corrosion-fatigue crack growth behaviour in modern marine steels. International Journal of Fatigue. 2020; 134. Available at: DOI:10.1016/J.IJFATIGUE.2020.105484