References
  1. Ezaki T, Kawamura Y, Li N, Li ZY, Zhao L, Shu S. Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov. and Gallicola gen. nov. for members of the genus Peptostreptococcus. Int J Syst Evol Microbiol . 2001;51(Pt 4):1521-1528. doi:10.1099/00207713-51-4-1521
  2. Cho E, Park SN, Kim HK, et al. Draft genome sequence of the novel Peptoniphilus sp . strain ChDC B134, isolated from a human periapical abscess lesion. Genome Announc. 2013;1(pii):e00822–13
  3. Citron DM, Tyrrell KL, Goldstein EJ. Peptoniphilus coxii sp . nov. and Peptoniphilus tyrrelliae sp . nov. isolated from human clinical infections. Anaerobe. 2012;18:244–248.
  4. Kim DS, Jung MY, Kang A, et al. Genome sequence of Peptoniphilus rhinitidis  1-13T, an anaerobic coccus strain isolated from clinical specimens. J Bacteriol. 2012;194:2405–2406.
  5. Mishra AK, Hugon P, Lagier JC, et al. Non contiguous-finished genome sequence and description of Peptoniphilus obesi sp . nov. Stand Genomic Sci. 2013;7:357–369.
  6. Mishra AK, Hugon P, Robert C, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Peptoniphilus grossensis sp . nov. Stand Genomic Sci. 2012;7:320–330.
  7. Rooney AP, Swezey JL, Pukall R, Schumann P, Spring S. Peptoniphilus methioninivorax sp . nov., a Gram-positive anaerobic coccus isolated from retail ground beef. Int J Syst Evol Microbiol. 2011;61:1962–1967.
  8. Song Y, Liu C, Finegold SM. Peptoniphilus gorbachii sp . nov., Peptoniphilus olsenii sp . nov., and Anaerococcus murdochii sp . nov. isolated from clinical specimens of human origin. J Clin Microbiol. 2007;45:1746–1752.
  9. Ulger-Toprak N, Lawson PA, Summanen P, O’Neal L, Finegold SM. Peptoniphilus duerdenii sp . nov. and Peptoniphilus koenoeneniae sp . nov., isolated from human clinical specimens. Int J Syst Evol Microbiol. 2012;62:2336–2341.
  10. Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E, Rhoads D. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) PLoS One. 2008;3:e3326.
  11. Wolcott RD, Gontcharova V, Sun Y, Dowd SE. Evaluation of the bacterial diversity among and within individual venous leg ulcers using bacterial tag-encoded FLX and titanium amplicon pyrosequencing and metagenomic approaches. BMC Microbiol. 2009;9:226.
  12. Smith DM, Snow DE, Rees E, et al. Evaluation of the bacterial diversity of pressure ulcers using bTEFAP pyrosequencing. BMC Med Genomics. 2010;3:41.
  13. Walter G, Vernier M, Pinelli PO, et al. Bone and joint infections due to anaerobic bacteria: an analysis of 61 cases and review of the literature. Eur J Clin Microbiol Infect Dis. 2014 ; [Epub ahead of print]
  14. Wang X, Buhimschi CS, Temoin S, Bhandari V, Han YW, Buhimschi IA. Comparative microbial analysis of paired amniotic fluid and cord blood from pregnancies complicated by preterm birth and early-onset neonatal sepsis. PLoS One. 2013;8:e56131.
  15. Brown K, Church D, Lynch T, Gregson D. Bloodstream infections due to Peptoniphilus spp.: report of 15 cases. Clin Microbiol Infect . 2014;20(11):O857-O860. doi:10.1111/1469-0691.12657
  16. Bellosta R, Luzzani L, Natalini G, et al. Acute limb ischemia in patients with COVID-19 pneumonia [published online ahead of print, 2020 Apr 29]. J Vasc Surg . 2020;S0741-5214(20)31080-6. doi:10.1016/j.jvs.2020.04.483
  17. Silingardi R, Gennai S, Migliari M, Covic T, Leone N. Acute limb ischemia in COVID-19 patients: Could aortic floating thrombus be the source of embolic complications? [published online ahead of print, 2020 Jun 17]. J Vasc Surg . 2020;S0741-5214(20)31351-3. doi:10.1016/j.jvs.2020.06.008
  18. Perini P., Nabulsi B., Massoni C.B., Azzarone M., Freyrie A. Acute limb ischaemia in two young, non-atherosclerotic patients with COVID-19. Lancet. 2020;395:1546.
  19. 3. Helms J., Tacquard C., Severac F., Leonard-Lorant I., Ohana M., Delabranche X. CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46:1089–1098.
  20. Chandler JR, Langenbrunner DJ, Steven ER. The pathogenesis of orbital complications in acute sinusitis. Laryngoscope. 1970;80:1414–28.
  21. Lam Choi VB, Yuen HK, Biswas J, Yanoff M. Update in pathological diagnosis of orbital infections and inflammations. Middle East Afr J Ophthalmol . 2011;18(4):268-276. doi:10.4103/0974-9233.90127
  22. Morgan PR, Morrison WV. Complications of frontal and ethmoid sinusitis. Laryngoscope . 1980;90(4):661-666. doi:10.1288/00005537-198004000-00013
  23. Welsh LW, Welsh JJ. Orbital complications of sinus diseases. Laryngoscope . 1974;84(5):848-856. doi:10.1288/00005537-197405000-00015
  24. Giletto JB, Scherr SA, Mikaelian DO. Orbital complications of acute sinusitis in children. Trans Pa Acad Ophthalmol Otolaryngol . 1981;34(1):60-64.
  25. Chaudhry IA, Al-Rashed W, Arat YO. The hot orbit: orbital cellulitis. Middle East Afr J Ophthalmol . 2012;19(1):34-42. doi:10.4103/0974-9233.92114.
  26. Ophthalmology  2000;107:1454–1458
  27. Kayhan FT, Sayin I, Yazici ZM, Erdur O. Management of orbital subperiosteal abscess. J Craniofac Surg . 2010;21(4):1114-1117. doi:10.1097/SCS.0b013e3181e1b50d
Figure Legend :
Figure 1. Axial sinus CT.
Figure 2. Coronal Sinus CT.
Figure 3. Sagittal Sinus CT.
Figure 4. Endoscopic view of avascular tissue of the left middle meatus. Diamond- left middle turbinate, Star- left maxillary os. Figure 5. Orbital abscess drainage – eye open. Figure 6. Orbital abscess drainage – eye closed.