References:

1. Cody EM, Dixon BP. Hemolytic Uremic Syndrome. Pediatr Clin North Am 2019; 66:235-46.
2. Chiang YN, Penades JR, Chen J. Genetic transduction by phages and chromosomal islands: The new and noncanonical. PLoS Pathog 2019; 15:e1007878.
3. Penades JR, Christie GE. The Phage-Inducible Chromosomal Islands: A Family of Highly Evolved Molecular Parasites. Annual review of virology 2015; 2:181-201.
4. Valilis E, Ramsey A, Sidiq S, DuPont HL. Non-O157 Shiga toxin-producing Escherichia coli-A poorly appreciated enteric pathogen: Systematic review. Int J Infect Dis 2018; 76:82-7.
5. Murinda SE, Ibekwe AM, Rodriguez NG, Quiroz KL, Mujica AP, Osmon K. Shiga Toxin-Producing Escherichia coli in Mastitis: An International Perspective. Foodborne Pathog Dis 2019; 16:229-43.
6. Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nature reviews Microbiology 2015; 13:641-50.
7. Bikard D, Marraffini LA. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages. Curr Opin Immunol 2012; 24:15-20.
8. Hoskisson PA, Smith MC. Hypervariation and phase variation in the bacteriophage ’resistome’. Current opinion in microbiology 2007; 10:396-400.
9. De Ste Croix M, Vacca I, Kwun MJ, Ralph JD, Bentley SD, Haigh R, et al. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS microbiology reviews 2017; 41:S3-S15.
10. Heredia N, Garcia S. Animals as sources of food-borne pathogens: A review. Anim Nutr 2018; 4:250-5.
11. Fatima R, Aziz M. Enterohemorrhagic Escherichia Coli (EHEC). StatPearls. Treasure Island (FL), 2019.
12. Mellor GE, Fegan N, Duffy LL, Mc MK, Jordan D, Barlow RS. National Survey of Shiga Toxin-Producing Escherichia coli Serotypes O26, O45, O103, O111, O121, O145, and O157 in Australian Beef Cattle Feces. J Food Prot 2016; 79:1868-74.
13. Kampmeier S, Berger M, Mellmann A, Karch H, Berger P. The 2011 German Enterohemorrhagic Escherichia Coli O104:H4 Outbreak-The Danger Is Still Out There. Curr Top Microbiol Immunol 2018; 416:117-48.
14. Lee MS, Tesh VL. Roles of Shiga Toxins in Immunopathology. Toxins (Basel) 2019; 11.
15. Schmidt H. Shiga-toxin-converting bacteriophages. Research in microbiology 2001; 152:687-95.
16. Herold S, Karch H, Schmidt H. Shiga toxin-encoding bacteriophages–genomes in motion. Int J Med Microbiol 2004; 294:115-21.
17. Chakraborty D, Clark E, Mauro SA, Koudelka GB. Molecular Mechanisms Governing ”Hair-Trigger” Induction of Shiga Toxin-Encoding Prophages. Viruses 2018; 10.
18. Bloch S, Nejman-Falenczyk B, Pierzynowska K, Piotrowska E, Wegrzyn A, Marminon C, et al. Inhibition of Shiga toxin-converting bacteriophage development by novel antioxidant compounds. J Enzyme Inhib Med Chem 2018; 33:639-50.
19. Fang Y, Mercer RG, McMullen LM, Ganzle MG. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food. Applied and environmental microbiology 2017; 83.
20. Smith DL, Rooks DJ, Fogg PC, Darby AC, Thomson NR, McCarthy AJ, et al. Comparative genomics of Shiga toxin encoding bacteriophages. BMC Genomics 2012; 13:311.
21. Kakoullis L, Papachristodoulou E, Chra P, Panos G. Shiga toxin-induced haemolytic uraemic syndrome and the role of antibiotics: a global overview. J Infect 2019; 79:75-94.
22. Kavanagh D, Raman S, Sheerin NS. Management of hemolytic uremic syndrome. F1000Prime Rep 2014; 6:119.
23. James CE, Stanley KN, Allison HE, Flint HJ, Stewart CS, Sharp RJ, et al. Lytic and lysogenic infection of diverse Escherichia coli and Shigella strains with a verocytotoxigenic bacteriophage. Applied and environmental microbiology 2001; 67:4335-7.
24. Smith DL, Wareing BM, Fogg PC, Riley LM, Spencer M, Cox MJ, et al. Multilocus characterization scheme for shiga toxin-encoding bacteriophages. Applied and environmental microbiology 2007; 73:8032-40.
25. Eichhorn I, Heidemanns K, Ulrich RG, Schmidt H, Semmler T, Fruth A, et al. Lysogenic conversion of atypical enteropathogenic Escherichia coli (aEPEC) from human, murine, and bovine origin with bacteriophage Phi3538 Deltastx2::cat proves their enterohemorrhagic E. coli (EHEC) progeny. Int J Med Microbiol 2018; 308:890-8.
26. Khalil RK, Skinner C, Patfield S, He X. Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia coli strains. Pathog Dis 2016; 74.
27. Smith DL, James CE, Sergeant MJ, Yaxian Y, Saunders JR, McCarthy AJ, et al. Short-tailed stx phages exploit the conserved YaeT protein to disseminate Shiga toxin genes among enterobacteria. Journal of bacteriology 2007; 189:7223-33.
28. Botos I, Noinaj N, Buchanan SK. Insertion of proteins and lipopolysaccharide into the bacterial outer membrane. Philosophical transactions of the Royal Society of London Series B, Biological sciences 2017; 372.
29. Knirel YA, Prokhorov NS, Shashkov AS, Ovchinnikova OG, Zdorovenko EL, Liu B, et al. Variations in O-antigen biosynthesis and O-acetylation associated with altered phage sensitivity in Escherichia coli 4s. Journal of bacteriology 2015; 197:905-12.
30. Golomidova AK, Kulikov EE, Prokhorov NS, Guerrero-Ferreira RC, Knirel YA, Kostryukova ES, et al. Branched lateral tail fiber organization in T5-like bacteriophages DT57C and DT571/2 is revealed by genetic and functional analysis. Viruses 2016; 8.
31. Kulikov EE, Golomidova AK, Prokhorov NS, Ivanov PA, Letarov AV. High-throughput LPS profiling as a tool for revealing of bacteriophage infection strategies. Scientific reports 2019; 9:2958.
32. van der Ley P, de Graaff P, Tommassen J. Shielding of Escherichia coli outer membrane proteins as receptors for bacteriophages and colicins by O-antigenic chains of lipopolysaccharide. Journal of bacteriology 1986; 168:449-51.
33. Kunisaki H, Tanji Y. Intercrossing of phage genomes in a phage cocktail and stable coexistence with Escherichia coli O157:H7 in anaerobic continuous culture. Appl Microbiol Biotechnol 2010; 85:1533-40.
34. Golomidova AK, Kulikov EE, Babenko VV, Kostryukova ES, Letarov AV. Complete genome sequence of bacteriophage St11Ph5, which Infects uropathogenic Escherichia coli strain up11. Genome announcements 2018; 6.
35. Golomidova AK, Naumenko OI, Senchenkova SN, Knirel YA, Letarov AV. The O-polysaccharide of Escherichia coli F5, which is structurally related to that of E. coli O28ab, provides cells only weak protection against bacteriophage attack. Archives of virology 2019; 164:2783-7.
36. Knirel YA, Ivanov PA, Senchenkova SN, Naumenko OI, Ovchinnikova OO, Shashkov AS, et al. Structure and gene cluster of the O antigen of Escherichia coli F17, a candidate for a new O-serogroup. International journal of biological macromolecules 2019; 124:389-95.
37. Zdorovenko EL, Golomidova AK, Prokhorov NS, Shashkov AS, Wang L, Letarov AV, et al. Structure of the O-polysaccharide of Escherichia coli O87. Carbohydrate research 2015; 412:15-8.
38. Zdorovenko EL, Golomidova AK, Prokhorov NS, Shashkov AS, Wang L, Letarov AV, et al. Corrigendum to ”Structure of the O-polysaccharide of Escherichia coli O87” [Carbohydr. Res. 412 (2015) 15-18]. Carbohydrate research 2018; 464:1.
39. Zdorovenko EL, Wang Y, Shashkov AS, Chen T, Ovchinnikova OG, Liu B, et al. O-Antigens of Escherichia coli Strains O81 and HS3-104 Are Structurally and Genetically Related, Except O-Antigen Glucosylation in E. coli HS3-104. Biochemistry Biokhimiia 2018; 83:534-41.
40. Kulikov EE, Golomidova AK, Letarova MA, Kostryukova ES, Zelenin AS, Prokhorov NS, et al. Genomic sequencing and biological characteristics of a novel Escherichia coli bacteriophage 9g, a putative representative of a new Siphoviridae genus. Viruses 2014; 6:5077-92.
41. Golomidova AK, Kulikov EE, Babenko VV, Ivanov PA, Prokhorov NS, Letarov AV. Escherichia coli bacteriophage Gostya9, representing a new species within the genus T5virus. Archives of virology 2019; 164:879-84.
42. Kulikov E, Kropinski AM, Golomidova A, Lingohr E, Govorun V, Serebryakova M, et al. Isolation and characterization of a novel indigenous intestinal N4-related coliphage vB_EcoP_G7C. Virology 2012; 426:93-9.
43. Prokhorov NS, Riccio C, Zdorovenko EL, Shneider MM, Browning C, Knirel YA, et al. Function of bacteriophage G7C esterase tailspike in host cell adsorption. Molecular microbiology 2017; 105:385-98.
44. Zdorovenko EL, Golomidova AK, Prokhorov NS, Shashkov AS, Wang L, Letarov AV, et al. Corrigendum to ”Structure of the O-polysaccharide of Escherichia coli O87” Carbohydrate research 2015; 412:15-8.
45. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold spring harbor laboratory press, New York, 1989.
46. Samson JE, Magadan AH, Sabri M, Moineau S. Revenge of the phages: defeating bacterial defences. Nature reviews Microbiology 2013; 11:675-87.
47. Pawlak A, Rybka J, Dudek B, Krzyzewska E, Rybka W, Kedziora A, et al. Salmonella O48 serum resistance is connected with the elongation of the lipopolysaccharide O-Antigen containing sialic acid. International journal of molecular sciences 2017; 18.
48. Coggon CF, Jiang A, Goh KGK, Henderson IR, Schembri MA, Wells TJ. A novel method of serum resistance by Escherichia coli that causes urosepsis. mBio 2018; 9.
49. Kintz E, Heiss C, Black I, Donohue N, Brown N, Davies MR, et al. Salmonella enterica Serovar Typhi Lipopolysaccharide O-Antigen Modification Impact on Serum Resistance and Antibody Recognition. Infection and immunity 2017; 85.
50. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America 2000; 97:6640-5.
Table 1. Sensitivity of the E. coli strains and their derivative φ24B:cat lysogens to virulent coliphages.
Figure 1. LPS profiles of the E. coli strains used and their derivative φ24B:cat lysogens. The left lane on each of the panels – the wild type cells, other lanes – three lysogenic clones for each strain.
Figure 2. Sensitivity of the E. coli strains and their derivative φ24B:cat lysogens’ growth to the horse serum bactericidal activity. Black lines – the wild type strain, grey lines – three lysogenic clones tested for each original strain.