References
1. Koup JR. Disease States and Drug Pharmacokinetics. J Clin Pharmacol. 1989;29:674-679.
2. Morgan ET. Impact of Infectious and Inflammatory Disease on Cytochrome P450-mediated Drug Metabolism and Pharmacokinetics.Clin Pharmacol Ther. 2009;85(4):434-438.
3. Dostalek M, Akhlaghi F, Puzanovova M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin Pharmacokinet. 2012;51:481-499.
4. Grover B, Auberger C, Sarangarajan R, Cacini W. Functional Impairment of renal organic cation transporter in experimental diabetes.Pharmacol Toxicol. 2002;90(4):181-186.
5. Thomas MC, Tikellis C, Kantharidis P, Burns WC, Cooper ME, Forbes JM. The role of advanced glycation in reduced organic cation transport associated with experimental diabetes. J Pharmacol Exp Ther . 2004;311(2):456-466.
6. King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol . 2004;122:333-338.
7. Nowicki MT, Aleksunes LM, Sawant SP, Dnyanmote AV, Mehendale HM, Manautou JE. Renal and hepatic transporter expression in type 2 diabetic rats. Drug Metab Lett . 2008;2(1):11-17.
8. Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic Phenomena Linked to Diabetic Complications. Nat Rev Endocrinol . 2010;6:665-675.
9. Dostalek M, Court MH, Yan B, Akhlagi F. Significantly reduced cytochrome P450 3A4 expression and activity in liver from humans with diabetes mellitus. Br J Pharmacol . 2011;163:937-947.
10. Ceriello A. The emerging challenge in diabetes: The “metabolic memory”. Vascul Pharmacol . 2012;57:133-138.
11. Cencioni C, Spallotta F, Greco S, Martelli F, Zeiher AM, Gaetano C. Epigenetic mechanisms of hyperglycemic memory. Int J Biochem Cell Biol . 2014;51:155-158.
12. Vahabzadeh M, Mohammadpour AH. Effect of Diabetes Mellitus on the Metabolism of Drugs and Toxins. J Clin Toxicol . 2015;5(2):233. doi:10.4172/2161-0495.1000233
13. Gravel S, Panzini B, Belanger F, Turgeon J, Michaud V. A Pilot Study towards the Impact of Type 2 Diabetes on the Expression and Activities of Drug Metabolizing Enzymes and Transporters in Human Duodenum.Int J Mol Sci . 2019;20(13):3257. doi: 10.3390/ijms20133257.
14. Qiu H, Jin L, Chen J, et al. Comprehensive Glycomic Analysis Reveals that Human Serum Albumin Glycation Specifically Affects the Pharmacokinetics and Efficacy of Different Anticoagulant Drugs in Diabetes. Diabetes . 2020. doi: 10.2337/db19-0738. [Epub ahead of print].
15. Badawi A, Klip A, Haddad P, et al. Type 2 diabetes mellitus and inflammation: Prospects for biomarkers of risk and nutritional intervention. Diabetes Metab Syndr Obes . 2010;3:173-186.
16. Cruz NG, Sousa LP, Sousa MO, Pietrani NT, Fernandes AP, Gomes KB. The linkage between inflammation and Type 2 diabetes mellitus.Diabetes Res Clin Pract . 2013;99:85-92.
17. Domingueti CP, Dusse LMS, Carvalho MG, Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications . 2016;30(4):738-745.
18. American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes - 2019. Diabetes Care. 2019;42(Suppl. 1):S13–S28.
19. King GL. The Role of Inflammatory Cytokines in Diabetes and Its Complications. J Periodontol . 2008;79(8S):1527-1534.
20. Bian RW, Lou QL, Gu LB, et al. Delayed gastric emptying is related to cardiovascular autonomic neuropathy in Chinese patients with type 2 diabetes. Acta Gastroenterol Belg . 2011;74(1):28-33.
21. de Moraes NV, Lauretti GR, Lanchote VL. Effects of type 1 and type 2 diabetes on the pharmacokinetics of tramadol enantiomers in patients with neuropathic pain phenotyped as cytochrome P450 2D6 extensive metabolizers. J Pharm Pharmacol . 2014;66(9):1222-1230.
22. Alfarisi O, Mave V, Gaikwad S, et al. Effect of Diabetes Mellitus on the Pharmacokinetics and Pharmacodynamics of Tuberculosis Treatment.Antimicrob Agents Chemother . 2018;62(11):e01383-18. doi: 10.1128/AAC.01383-18.
23. Iida M, Ikeda M, Kishimoto M, et al. Evaluation of gut motility in type II diabetes by the radiopaque marker method. J Gastroenterol Hepatol . 2000;15(4):381-385.
24. Chiu YC, Kuo MC, Rayner CK, et al. Decreased Gastric Motility in Type II Diabetic Patients. Biomed Res Int . 2014;2014:894087. doi: 10.1155/2014/894087.
25. Preston RA, Epstein M. Effects of diabetes on cardiovascular drug metabolism. Emerging Clinical Implications. Diabetes Care . 1999;22(6):982-988.
26. Preston RA, Chung M, Gaffney M, Alonso A, Baltodano NM, Epstein M. Comparative pharmacokinetics and pharmacodynamics of amlodipine in hypertensive patients with and without type II diabetes mellitus.J Clin Pharmacol. 2001;41(11):1215-1224.
27. Cheng PY, Morgan ET. Hepatic cytochrome P450 regulation in disease states. Curr Drug Metab . 2001;2(2):165-183.
28. Reed MJ, Meszaros K, Entes LJ, et al. A new rat model of type 2 diabetes: The fat-fed, streptozotocin-treated rat. Metabolism . 2000;49(11):1390-1394.
29. Qian C, Zhu C, Yu W, Jiang X, Zhang F. High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes in Rats Impacts Osteogenesis and Wnt Signaling in Bone Marrow Stromal Cells. PLoS One 2015; 10(8):e0136390. doi: 10.1371/journal.pone.0136390.
30. Yeh SY, Pan HJ, Lin CC, Kao YH, Chen YH, Lin CJ. Hyperglycemia induced down-regulation of renal P-glycoprotein expression. Eur J Pharmacol . 2012;690(1-3):42-50.
31. Dash RP, Ellendula B, Agarwal M, Nivsarkar M. Increased intestinal P-glycoprotein expression and activity with progression of diabetes and its modulation by epigallocatechin-3-gallate: Evidence from pharmacokinetic studies. Eur J Pharmacol . 2015;767:67-76.
32. Backonja M, Beydoun A, Edwards KR, et al. Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA . 1998;280(21):1831-1836.
33. Serpell MG, Neuropathic pain study group. Gabapentin in neuropathic pain syndromes: a randomised, double-blind, placebo-controlled trial.Pain . 2002;99(3):557-566.
34. Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and metaanalysis.Lancet Neurol . 2015;14:162-173.
35. Kammerman PR, Finnerup NB, de Lima L, et al. Gabapentin for neuropathic pain: an application to the 21st meeting of the WHO Expert Committee on Selection and Use of Essential Medicines for the inclusion of gabapentin on the WHO Model List of Essential Medicines. 2016. https://doi.org/10.6084/m9figshare.3814206.v2 http://www.who.int/selection_medicines/committees/expert/21/applications/s2_gabapentin.pdf Accessed July 7, 2017.
36. Panebianco M, Al-Bachari S, Weston J, Hutton JL, Marson AG. Gabapentin add-on for drug-resistant focal epilepsy. Cochrane Database Syst Rev . 2018;10. https://doi.org/10.1002/
14651858.CD001415.pub3.
37. Boyd RA, Türck D, Abel RB, Sedman AJ, Bockbrader HN. Effects of Age and Gender on Single-dose Pharmacokinetics of Gabapentin.Epilepsia. 1999;40:474-9.
38. Patsalos PN, Zugman M, Lake C, James A, Ratnaraj N, Sander JW. Serum protein binding of 25 antiepileptic drugs in a routine clinical setting: a comparison of free non-protein-bound concentrations. Epilepsia . 2017;58:1234-1243.
39. Mclean MJ. Clinical pharmacokinetics of gabapentin.Neurology . 1994;44(6):S17-22; discussion S31-2.
40. Mclean MJ. Gabapentin in the management of convulsive disorders.Epilepsia. 1999;40:S39-50.
41. Urban TJ, Brown C, Castro RA, et al. Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther . 2008;83:416-421.
42. Lal R, Sukbuntherng J, Luo W, et al. Clinical pharmacokinetic drug interaction studies of gabapentin enacarbil, a novel transported prodrug of gabapentin, with naproxen and gabapentin. Br J Clin Pharmacol . 2010;69(5):498-507.
43. Feng B, Hurst S, Lu Y, et al. Quantitative prediction of renal transporter-mediated clinical drug-drug interactions. Mol Pharm . 2013;10:4207-4215.
44. Costa ACC, Yamamoto PA, Lauretti GR, et al. Cetirizine Reduces Gabapentin Plasma Concentrations and Effect: Role of Renal Drug Transporters for Organic Cations. J Clin Pharmacol . 2020. doi: 10.1002/jcph.1603. [Epub ahead of print].
45. Treede RD, Jensen TS, Campbell JN, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes.Neurology . 2008;70:1630-1635.
46. Geber C, Baumgärtner U, Schwab R, et al. Revised definition of neuropathic pain and its grading system: an open case series illustrating its use in clinical practice. Am J Med . 2009;122:S3-S12.
47. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med . 2009;150:604-12.
48. Yamamoto PA, Benzi JRL, Azeredo FJ, et al. Pharmacogenetics-based population pharmacokinetic analysis of gabapentin in patients with chronic pain: Effect of OCT2 and OCTN1 gene polymorphisms. Basic Clin Pharmacol Toxicol. 2019; 124:266-272.
49. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometrics Syst Pharmacol . 2012;1:e6. doi: 10.1038/psp.2012.4.
50. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development - Part 2: Introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol . 2013;2:e38. doi: 10.1038/psp.2013.14.
51. Nguyen TH, Mouksassi MS, Holford N, et al. Model evaluation of continuous data pharmacometric models: Metrics and graphics. CPT Pharmacometrics Syst Pharmacol . 2017;6(2):87-109.
52. REFARGEN – Rede Nacional de Farmacogenética: Projeto REFARGEN-PGENI. Available on: www.refargen.org.br/IMG/pdf/doc-3.pdf. Accessed on: Dez 5th, 2016 and May 10th, 2018.
53. Blum RA, Comstock TJ, Sica DA, et al. Pharmacokinetics of gabapentin in subjects with various degree of renal function. Clin Pharmacol Ther . 1994;56(2):154-159.
54. Zand L, McKian KP, Qian Q. Gabapentin Toxicity in Patients with Chronic Kidney Disease: A Preventable Cause of Morbidity. Am J Med . 2010;123(4):367-373.
55. Lal R, Sukbuntherng J, Luo W, et al. Clinical Pharmacokinetics of Gabapentin After Administration of Gabapentin Enacarbil Extended-Release Tablets in Patients With Varying Degrees of Renal Function Using Data From an Open-Label, Single-Dose Pharmacokinetic Study. Clin Ther . 2012;34(1):201-213.
56. Raouf M, Atkinson TJ, Crumb MW, Fudin J. Rational dosing of gabapentin and pregabalin in chronic kidney disease. J Pain Res . 2017;10:275-278.
57. Benzi JRL, Yamamoto PA, Stevens JH, Baviera AM, de Moraes NV. The role of organic cation transporter 2 inhibitor cimetidine, experimental diabetes mellitus and metformin on gabapentin pharmacokinetics in rats.Life Sci . 2018;200:63-68.
58. Pihl L, Persson P, Fasching A, Hansell P, DiBona GF, Palm F. Insulin induces the correlation between renal blood flow and glomerular filtration rate in diabetes: implications for mechanisms causing hyperfiltration. Am J Physiol Regul Integr Com Physiol . 2012;303(1):R39-47.
59. Dodhia SS, Barasara J, Joshi VS. Glycemic control affects progression of kidney disease
in patients with type 2 diabetes mellitus. Int J Med Sci Health . 2016;5(7):1305-1308.
60. Xue R, Gui D, Zheng L, Zhai R, Wang F, Wang N. Mechanistic Insight and Management of Diabetic Nephropathy: Recent Progress and Future Perspective. Diabetes Res . 2017;1839809. doi: 10.1155/2017/1839809.
61. Garud MS, Kulkarni YA. Hyperglycemia to Nephropathy via Transforming Growth Factor Beta. Curr Diabetes Rev . 2014;10:182-189.
62. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative Stress and Stress-Activated Signaling Pathways: A Unifying Hypothesis of Type 2 Diabetes. Endocr Rev . 2002;23(5):599-622.
63. Schena FP, Gesualdo L. Pathogenetic Mechanisms of Diabetic Nephropathy.J Am Soc Nephrol . 2005;16:S30-S33.
64. Volpe CMO, Villar-Delfino PH, dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis . 2018;9(2):119. doi: 10.1038/s41419-017-0135-z.
65. Tsuruoka S, Ioka T, Wakaumi M, Sakamoto K, Ookami H, Fujimura A. Severe arrhythmia as a result of the interaction of cetirizine and pilsicainide in a patient with renal insufficiency: first case presentation showing competition for excretion renal multidrug resistance protein 1 and organic cation transporter 2. Clin Pharmacol Ther . 2006;79:389-396.
66. Tsuda M, Terada T, Ueba M, et al. Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J Pharmacol Exp Ther . 2009;329:185-191.
67. Grover A, Benet LZ. Effects of Drug Transporters on Volume of Distribution. AAPS J . 2009;11(2):250-261.
68. Benet LZ. Clearance (née Rowland) concepts: a downdate and an update. J Pharmacokinet Pharmacodyn . 2010;37(6):529-539.
69. Stewart BH, Kugler AR, Thompson PR, Bockbrader HN. A saturable transport mechanism in the intestinal absorption of gabapentin is the underlying cause of the lack of proportionality between increasing dose and drug levels in plasma. Pharm Res . 1993;10:276-281.
70. Futatsugi A, Masuo Y, Kawabata S, Nakamichi N, Kato Y. L503F variant of carnitine/organic cation transporter 1 efficiently transports metformin and other biguanides. J Pharm Pharmacol . 2016;68:1160-1169.
71. Xu C, Zhu L, Chan T, et al. The Altered Renal and Hepatic Expression of Solute Carrier Transporters (SLCs) in Type 1 Diabetic Mice.PLoS One . 2015;10(3):e0120760. doi: 10.1371/jornal.pone.0120760.
72. Akamine T, Koyanagi S, Kusunose N, et al. Dosing Time-Dependent Changes in the Analgesic Effect of Pregabalin on Diabetic Neuropathy in Mice. J Pharmacol Exp Ther . 2015;354:65-72.
73. Pineda M, Fernández E, Torrents D, et al. Identification of a membrane protein, LAT-2, that co-express with 4F2 heavy chain, an L-type amino acid transporter activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem . 1999;274(28):19738-19744.
74. Fraga S, Pinho MJ, Soares-da-Silva P. Expression of LAT1 and LAT2 amino acid transporters in human and rat intestinal epithelial cells.Amino Acids . 2005;29(3):229-233.
75. Del Amo EM, Urtti A, Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci . 2008;35(3):161-174.
76. Bolger MB, Lukacova V, Woltosz WS. Simulations of the Nonlinear Dose Dependence for Substrate of Influx and Efflux Transporters in the Human Intestine. AAPS J . 2009;11(2):353-363.
77. Nguyen TV, Smith DE, Fleisher D. PEPT1 Enhances the Uptake of Gabapentin via Trans-Stimulation of b0,+ Exchange. Pharm Res . 2007;24(2):353-360.
78. Bikhazi AB, Skoury MM, Zwainy DS, et al. Effect of Diabetes Mellitus and Insulin on the Regulation of the PepT 1 Symporter in Rat Jejunum.Mol Pharm . 2004;1(4):300-308.
79. Gürke J, Hirche F, Thieme R, et al. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.PLoS One . 2015;10(5):e0127465. doi: 10.1371/journal.pone.0127465.
80. Dickens D, Webb SD, Antonyuk S, et al. Transport of gabapentin by LAT1 (SLC7A5). Biochem Pharmacol . 2013;85(11):1672-1683.
81. Yamamoto Y, Sawa R, Wake I, Morimoto A, Okimura Y. Glucose-mediated inactivation of AMP-activated protein kinase reduces the levels of L-type amino acid transporter 1 mRNA in C2C12 cells. Nutr Res . 2017;47:13-20.
82. Prasad PD, Wang H, Huang W, et al. Human LAT1, a subunit of system L amino acid transporter: molecular cloning and transport function.Biochem Biophys Res Commun . 1999;255(2):283-288.
83. Medhasi S, Pinthong D, Pasomsub E, et al. Pharmacogenomic Study Reveals New Variants of Drug Metabolizing Enzyme and Transporter Genes Associated with Steady-State Plasma Concentrations of Risperidone and 9-Hydroxyrisperidone in Thai Autism Spectrum Disorder Patients.Front Pharmacol . 2016;7:475. doi: 10.3389/fphar.2016.00475.
84. Wright J, Karns R, Mizuno T, et al. Pharmacogenetic variants associated with differential sirolimus clearance in pediatric patients.J Clin Oncol . 2015;33(15):2562. doi: 10.1200/jco.2015.33.15_suppl.2562.
Table 1. Demographic, clinical and genetic characteristics of participants with neuropathic pain investigated (n=29).