References
1. Koup JR. Disease States and Drug Pharmacokinetics. J Clin
Pharmacol. 1989;29:674-679.
2. Morgan ET. Impact of Infectious and Inflammatory Disease on
Cytochrome P450-mediated Drug Metabolism and Pharmacokinetics.Clin Pharmacol Ther. 2009;85(4):434-438.
3. Dostalek M, Akhlaghi F, Puzanovova M. Effect of diabetes mellitus on
pharmacokinetic and pharmacodynamic properties of drugs. Clin
Pharmacokinet. 2012;51:481-499.
4. Grover B, Auberger C, Sarangarajan R, Cacini W. Functional Impairment
of renal organic cation transporter in experimental diabetes.Pharmacol Toxicol. 2002;90(4):181-186.
5. Thomas MC, Tikellis C, Kantharidis P, Burns WC, Cooper ME, Forbes JM.
The role of advanced glycation in reduced organic cation transport
associated with experimental diabetes. J Pharmacol Exp Ther .
2004;311(2):456-466.
6. King GL, Loeken MR. Hyperglycemia-induced oxidative stress in
diabetic complications. Histochem Cell Biol . 2004;122:333-338.
7. Nowicki MT, Aleksunes LM, Sawant SP, Dnyanmote AV, Mehendale HM,
Manautou JE. Renal and hepatic transporter expression in type 2 diabetic
rats. Drug Metab Lett . 2008;2(1):11-17.
8. Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic Phenomena
Linked to Diabetic Complications. Nat Rev Endocrinol .
2010;6:665-675.
9. Dostalek M, Court MH, Yan B, Akhlagi F. Significantly reduced
cytochrome P450 3A4 expression and activity in liver from humans with
diabetes mellitus. Br J Pharmacol . 2011;163:937-947.
10. Ceriello A. The emerging challenge in diabetes: The “metabolic
memory”. Vascul Pharmacol . 2012;57:133-138.
11. Cencioni C, Spallotta F, Greco S, Martelli F, Zeiher AM, Gaetano C.
Epigenetic mechanisms of hyperglycemic memory. Int J Biochem Cell
Biol . 2014;51:155-158.
12. Vahabzadeh M, Mohammadpour AH. Effect of Diabetes Mellitus on the
Metabolism of Drugs and Toxins. J Clin Toxicol . 2015;5(2):233.
doi:10.4172/2161-0495.1000233
13. Gravel S, Panzini B, Belanger F, Turgeon J, Michaud V. A Pilot Study
towards the Impact of Type 2 Diabetes on the Expression and Activities
of Drug Metabolizing Enzymes and Transporters in Human Duodenum.Int J Mol Sci . 2019;20(13):3257. doi: 10.3390/ijms20133257.
14. Qiu H, Jin L, Chen J, et al. Comprehensive Glycomic Analysis Reveals
that Human Serum Albumin Glycation Specifically Affects the
Pharmacokinetics and Efficacy of Different Anticoagulant Drugs in
Diabetes. Diabetes . 2020. doi: 10.2337/db19-0738. [Epub ahead
of print].
15. Badawi A, Klip A, Haddad P, et al. Type 2 diabetes mellitus and
inflammation: Prospects for biomarkers of risk and nutritional
intervention. Diabetes Metab Syndr Obes . 2010;3:173-186.
16. Cruz NG, Sousa LP, Sousa MO, Pietrani NT, Fernandes AP, Gomes KB.
The linkage between inflammation and Type 2 diabetes mellitus.Diabetes Res Clin Pract . 2013;99:85-92.
17. Domingueti CP, Dusse LMS, Carvalho MG, Sousa LP, Gomes KB, Fernandes
AP. Diabetes mellitus: The linkage between oxidative stress,
inflammation, hypercoagulability and vascular complications. J
Diabetes Complications . 2016;30(4):738-745.
18. American Diabetes Association. 2. Classification and diagnosis of
diabetes: Standards of Medical Care in Diabetes - 2019. Diabetes Care.
2019;42(Suppl. 1):S13–S28.
19. King GL. The Role of Inflammatory Cytokines in Diabetes and Its
Complications. J Periodontol . 2008;79(8S):1527-1534.
20. Bian RW, Lou QL, Gu LB, et al. Delayed gastric emptying is related
to cardiovascular autonomic neuropathy in Chinese patients with type 2
diabetes. Acta Gastroenterol Belg . 2011;74(1):28-33.
21. de Moraes NV, Lauretti GR, Lanchote VL. Effects of type 1 and type 2
diabetes on the pharmacokinetics of tramadol enantiomers in patients
with neuropathic pain phenotyped as cytochrome P450 2D6 extensive
metabolizers. J Pharm Pharmacol . 2014;66(9):1222-1230.
22. Alfarisi O, Mave V, Gaikwad S, et al. Effect of Diabetes Mellitus on
the Pharmacokinetics and Pharmacodynamics of Tuberculosis Treatment.Antimicrob Agents Chemother . 2018;62(11):e01383-18. doi:
10.1128/AAC.01383-18.
23. Iida M, Ikeda M, Kishimoto M, et al. Evaluation of gut motility in
type II diabetes by the radiopaque marker method. J Gastroenterol
Hepatol . 2000;15(4):381-385.
24. Chiu YC, Kuo MC, Rayner CK, et al. Decreased Gastric Motility in
Type II Diabetic Patients. Biomed Res Int . 2014;2014:894087. doi:
10.1155/2014/894087.
25. Preston RA, Epstein M. Effects of diabetes on cardiovascular drug
metabolism. Emerging Clinical Implications. Diabetes Care .
1999;22(6):982-988.
26. Preston RA, Chung M, Gaffney M, Alonso A, Baltodano NM, Epstein M.
Comparative pharmacokinetics and pharmacodynamics of amlodipine in
hypertensive patients with and without type II diabetes mellitus.J Clin Pharmacol. 2001;41(11):1215-1224.
27. Cheng PY, Morgan ET. Hepatic cytochrome P450 regulation in disease
states. Curr Drug Metab . 2001;2(2):165-183.
28. Reed MJ, Meszaros K, Entes LJ, et al. A new rat model of type 2
diabetes: The fat-fed, streptozotocin-treated rat. Metabolism .
2000;49(11):1390-1394.
29. Qian C, Zhu C, Yu W, Jiang X, Zhang F. High-Fat Diet/Low-Dose
Streptozotocin-Induced Type 2 Diabetes in Rats Impacts Osteogenesis and
Wnt Signaling in Bone Marrow Stromal Cells. PLoS One 2015;
10(8):e0136390. doi: 10.1371/journal.pone.0136390.
30. Yeh SY, Pan HJ, Lin CC, Kao YH, Chen YH, Lin CJ. Hyperglycemia
induced down-regulation of renal P-glycoprotein expression. Eur J
Pharmacol . 2012;690(1-3):42-50.
31. Dash RP, Ellendula B, Agarwal M, Nivsarkar M. Increased intestinal
P-glycoprotein expression and activity with progression of diabetes and
its modulation by epigallocatechin-3-gallate: Evidence from
pharmacokinetic studies. Eur J Pharmacol . 2015;767:67-76.
32. Backonja M, Beydoun A, Edwards KR, et al. Gabapentin for the
symptomatic treatment of painful neuropathy in patients with diabetes
mellitus: a randomized controlled trial. JAMA .
1998;280(21):1831-1836.
33. Serpell MG, Neuropathic pain study group. Gabapentin in neuropathic
pain syndromes: a randomised, double-blind, placebo-controlled trial.Pain . 2002;99(3):557-566.
34. Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for
neuropathic pain in adults: a systematic review and metaanalysis.Lancet Neurol . 2015;14:162-173.
35. Kammerman PR, Finnerup NB, de Lima L, et al. Gabapentin for
neuropathic pain: an application to the 21st meeting of the WHO Expert
Committee on Selection and Use of Essential Medicines for the inclusion
of gabapentin on the WHO Model List of Essential Medicines. 2016.
https://doi.org/10.6084/m9figshare.3814206.v2
http://www.who.int/selection_medicines/committees/expert/21/applications/s2_gabapentin.pdf
Accessed July 7, 2017.
36. Panebianco M, Al-Bachari S, Weston J, Hutton JL, Marson AG.
Gabapentin add-on for drug-resistant focal epilepsy. Cochrane
Database Syst Rev . 2018;10. https://doi.org/10.1002/
14651858.CD001415.pub3.
37. Boyd RA, Türck D, Abel RB, Sedman AJ, Bockbrader HN. Effects of Age
and Gender on Single-dose Pharmacokinetics of Gabapentin.Epilepsia. 1999;40:474-9.
38. Patsalos PN, Zugman M, Lake C, James A, Ratnaraj N, Sander JW. Serum
protein binding of 25 antiepileptic drugs in a routine clinical setting:
a comparison of free non-protein-bound concentrations. Epilepsia .
2017;58:1234-1243.
39. Mclean MJ. Clinical pharmacokinetics of gabapentin.Neurology . 1994;44(6):S17-22; discussion S31-2.
40. Mclean MJ. Gabapentin in the management of convulsive disorders.Epilepsia. 1999;40:S39-50.
41. Urban TJ, Brown C, Castro RA, et al. Effects of genetic variation in
the novel organic cation transporter, OCTN1, on the renal clearance of
gabapentin. Clin Pharmacol Ther . 2008;83:416-421.
42. Lal R, Sukbuntherng J, Luo W, et al. Clinical pharmacokinetic drug
interaction studies of gabapentin enacarbil, a novel transported prodrug
of gabapentin, with naproxen and gabapentin. Br J Clin Pharmacol .
2010;69(5):498-507.
43. Feng B, Hurst S, Lu Y, et al. Quantitative prediction of renal
transporter-mediated clinical drug-drug interactions. Mol Pharm .
2013;10:4207-4215.
44. Costa ACC, Yamamoto PA, Lauretti GR, et al. Cetirizine Reduces
Gabapentin Plasma Concentrations and Effect: Role of Renal Drug
Transporters for Organic Cations. J Clin Pharmacol . 2020. doi:
10.1002/jcph.1603. [Epub ahead of print].
45. Treede RD, Jensen TS, Campbell JN, et al. Neuropathic pain:
redefinition and a grading system for clinical and research purposes.Neurology . 2008;70:1630-1635.
46. Geber C, Baumgärtner U, Schwab R, et al. Revised definition of
neuropathic pain and its grading system: an open case series
illustrating its use in clinical practice. Am J Med .
2009;122:S3-S12.
47. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate
glomerular filtration rate. Ann Intern Med . 2009;150:604-12.
48. Yamamoto PA, Benzi JRL, Azeredo FJ, et al. Pharmacogenetics-based
population pharmacokinetic analysis of gabapentin in patients with
chronic pain: Effect of OCT2 and OCTN1 gene polymorphisms. Basic
Clin Pharmacol Toxicol. 2019; 124:266-272.
49. Mould DR, Upton RN. Basic concepts in population modeling,
simulation, and model-based drug development. CPT Pharmacometrics
Syst Pharmacol . 2012;1:e6. doi: 10.1038/psp.2012.4.
50. Mould DR, Upton RN. Basic concepts in population modeling,
simulation, and model-based drug development - Part 2: Introduction to
pharmacokinetic modeling methods. CPT Pharmacometrics Syst
Pharmacol . 2013;2:e38. doi: 10.1038/psp.2013.14.
51. Nguyen TH, Mouksassi MS, Holford N, et al. Model evaluation of
continuous data pharmacometric models: Metrics and graphics. CPT
Pharmacometrics Syst Pharmacol . 2017;6(2):87-109.
52. REFARGEN – Rede Nacional de Farmacogenética: Projeto
REFARGEN-PGENI. Available on:
www.refargen.org.br/IMG/pdf/doc-3.pdf.
Accessed on: Dez 5th, 2016 and May
10th, 2018.
53. Blum RA, Comstock TJ, Sica DA, et al. Pharmacokinetics of gabapentin
in subjects with various degree of renal function. Clin Pharmacol
Ther . 1994;56(2):154-159.
54. Zand L, McKian KP, Qian Q. Gabapentin Toxicity in Patients with
Chronic Kidney Disease: A Preventable Cause of Morbidity. Am J
Med . 2010;123(4):367-373.
55. Lal R, Sukbuntherng J, Luo W, et al. Clinical Pharmacokinetics of
Gabapentin After Administration of Gabapentin Enacarbil Extended-Release
Tablets in Patients With Varying Degrees of Renal Function Using Data
From an Open-Label, Single-Dose Pharmacokinetic Study. Clin Ther .
2012;34(1):201-213.
56. Raouf M, Atkinson TJ, Crumb MW, Fudin J. Rational dosing of
gabapentin and pregabalin in chronic kidney disease. J Pain Res .
2017;10:275-278.
57. Benzi JRL, Yamamoto PA, Stevens JH, Baviera AM, de Moraes NV. The
role of organic cation transporter 2 inhibitor cimetidine, experimental
diabetes mellitus and metformin on gabapentin pharmacokinetics in rats.Life Sci . 2018;200:63-68.
58. Pihl L, Persson P, Fasching A, Hansell P, DiBona GF, Palm F. Insulin
induces the correlation between renal blood flow and glomerular
filtration rate in diabetes: implications for mechanisms causing
hyperfiltration. Am J Physiol Regul Integr Com Physiol .
2012;303(1):R39-47.
59. Dodhia SS, Barasara J, Joshi VS. Glycemic control affects
progression of kidney disease
in patients with type 2 diabetes mellitus. Int J Med Sci Health .
2016;5(7):1305-1308.
60. Xue R, Gui D, Zheng L, Zhai R, Wang F, Wang N. Mechanistic Insight
and Management of Diabetic Nephropathy: Recent Progress and Future
Perspective. Diabetes Res . 2017;1839809. doi:
10.1155/2017/1839809.
61. Garud MS, Kulkarni YA. Hyperglycemia to Nephropathy via Transforming
Growth Factor Beta. Curr Diabetes Rev . 2014;10:182-189.
62. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative Stress and
Stress-Activated Signaling Pathways: A Unifying Hypothesis of Type 2
Diabetes. Endocr Rev . 2002;23(5):599-622.
63. Schena FP, Gesualdo L. Pathogenetic Mechanisms of Diabetic
Nephropathy.J Am Soc Nephrol . 2005;16:S30-S33.
64. Volpe CMO, Villar-Delfino PH, dos Anjos PMF, Nogueira-Machado JA.
Cellular death, reactive oxygen species (ROS) and diabetic
complications. Cell Death Dis . 2018;9(2):119. doi:
10.1038/s41419-017-0135-z.
65. Tsuruoka S, Ioka T, Wakaumi M, Sakamoto K, Ookami H, Fujimura A.
Severe arrhythmia as a result of the interaction of cetirizine and
pilsicainide in a patient with renal insufficiency: first case
presentation showing competition for excretion renal multidrug
resistance protein 1 and organic cation transporter 2. Clin
Pharmacol Ther . 2006;79:389-396.
66. Tsuda M, Terada T, Ueba M, et al. Involvement of human multidrug and
toxin extrusion 1 in the drug interaction between cimetidine and
metformin in renal epithelial cells. J Pharmacol Exp Ther .
2009;329:185-191.
67. Grover A, Benet LZ. Effects of Drug Transporters on Volume of
Distribution. AAPS J . 2009;11(2):250-261.
68. Benet LZ. Clearance (née Rowland) concepts: a downdate and an
update. J Pharmacokinet Pharmacodyn . 2010;37(6):529-539.
69. Stewart BH, Kugler AR, Thompson PR, Bockbrader HN. A saturable
transport mechanism in the intestinal absorption of gabapentin is the
underlying cause of the lack of proportionality between increasing dose
and drug levels in plasma. Pharm Res . 1993;10:276-281.
70. Futatsugi A, Masuo Y, Kawabata S, Nakamichi N, Kato Y. L503F variant
of carnitine/organic cation transporter 1 efficiently transports
metformin and other biguanides. J Pharm Pharmacol .
2016;68:1160-1169.
71. Xu C, Zhu L, Chan T, et al. The Altered Renal and Hepatic Expression
of Solute Carrier Transporters (SLCs) in Type 1 Diabetic Mice.PLoS One . 2015;10(3):e0120760. doi: 10.1371/jornal.pone.0120760.
72. Akamine T, Koyanagi S, Kusunose N, et al. Dosing Time-Dependent
Changes in the Analgesic Effect of Pregabalin on Diabetic Neuropathy in
Mice. J Pharmacol Exp Ther . 2015;354:65-72.
73. Pineda M, Fernández E, Torrents D, et al. Identification of a
membrane protein, LAT-2, that co-express with 4F2 heavy chain, an L-type
amino acid transporter activity with broad specificity for small and
large zwitterionic amino acids. J Biol Chem .
1999;274(28):19738-19744.
74. Fraga S, Pinho MJ, Soares-da-Silva P. Expression of LAT1 and LAT2
amino acid transporters in human and rat intestinal epithelial cells.Amino Acids . 2005;29(3):229-233.
75. Del Amo EM, Urtti A, Yliperttula M. Pharmacokinetic role of L-type
amino acid transporters LAT1 and LAT2. Eur J Pharm Sci .
2008;35(3):161-174.
76. Bolger MB, Lukacova V, Woltosz WS. Simulations of the Nonlinear Dose
Dependence for Substrate of Influx and Efflux Transporters in the Human
Intestine. AAPS J . 2009;11(2):353-363.
77. Nguyen TV, Smith DE, Fleisher D. PEPT1 Enhances the Uptake of
Gabapentin via Trans-Stimulation of b0,+ Exchange. Pharm Res .
2007;24(2):353-360.
78. Bikhazi AB, Skoury MM, Zwainy DS, et al. Effect of Diabetes Mellitus
and Insulin on the Regulation of the PepT 1 Symporter in Rat Jejunum.Mol Pharm . 2004;1(4):300-308.
79. Gürke J, Hirche F, Thieme R, et al. Maternal Diabetes Leads to
Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.PLoS One . 2015;10(5):e0127465. doi: 10.1371/journal.pone.0127465.
80. Dickens D, Webb SD, Antonyuk S, et al. Transport of gabapentin by
LAT1 (SLC7A5). Biochem Pharmacol . 2013;85(11):1672-1683.
81. Yamamoto Y, Sawa R, Wake I, Morimoto A, Okimura Y. Glucose-mediated
inactivation of AMP-activated protein kinase reduces the levels of
L-type amino acid transporter 1 mRNA in C2C12 cells. Nutr Res .
2017;47:13-20.
82. Prasad PD, Wang H, Huang W, et al. Human LAT1, a subunit of system L
amino acid transporter: molecular cloning and transport function.Biochem Biophys Res Commun . 1999;255(2):283-288.
83. Medhasi S, Pinthong D, Pasomsub E, et al. Pharmacogenomic Study
Reveals New Variants of Drug Metabolizing Enzyme and Transporter Genes
Associated with Steady-State Plasma Concentrations of Risperidone and
9-Hydroxyrisperidone in Thai Autism Spectrum Disorder Patients.Front Pharmacol . 2016;7:475. doi: 10.3389/fphar.2016.00475.
84. Wright J, Karns R, Mizuno T, et al. Pharmacogenetic variants
associated with differential sirolimus clearance in pediatric patients.J Clin Oncol . 2015;33(15):2562. doi:
10.1200/jco.2015.33.15_suppl.2562.
Table 1. Demographic, clinical and genetic characteristics of
participants with neuropathic pain investigated (n=29).