\(\overset{\overline{}}{U}=\overset{\overline{}}{y}\) |
\(\frac{3.464101615}{\sqrt{\text{Re}_{x}}}\) |
\(\frac{1.1547}{\sqrt{\text{Re}_{L}}}\) |
\(\overset{\overline{}}{U}=\frac{3}{2}\overset{\overline{}}{y}-\frac{1}{2}{\overset{\overline{}}{y}}^{3}\) |
\(\frac{4.64}{\sqrt{\text{Re}_{x}}}\) |
\(\frac{1.292}{\sqrt{\text{Re}_{L}}}\) |
\(\overset{\overline{}}{U}=2\overset{\overline{}}{y}-{\overset{\overline{}}{y}}^{2}\) |
\(\frac{5.48}{\sqrt{\text{Re}_{x}}}\) |
\(\frac{1.46}{\sqrt{\text{Re}_{L}}}\) |
\(\overset{\overline{}}{U}=\sin{\frac{\pi}{2}\overset{\overline{}}{y}}\) |
\(\frac{4.795}{\sqrt{\text{Re}_{x}}}\) |
\(\frac{1.31}{\sqrt{\text{Re}_{L}}}\) |
Blasius Exact Solution |
\(\frac{5}{\sqrt{\text{Re}_{x}}}\) |
\(\frac{1.328}{\sqrt{\text{Re}_{L}}}\) |