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Abstract:

We consider a SEIR-SEI Vector-host mathematical model of malaria transmission described and
built on 7-dimensional nonlinear ordinary differential equations. We compute the basic
reproduction number of the model, examine the positivity and boundedness of the model
compartments in a region, verify the existence of the Disease-Free (DFE) and Endemic (EDE)

equilibrium points.

Using the Gaussian elimination method and the Routh-hurwitz criterion, we convey stability
analyses at DFE and EDE points which indicates that the DFE (malaria-free) and the EDE
(epidemic outbreak) point occurs when the basic reproduction number is less than one and
greater than one respectively.

We obtain a solution to the model using the Variational iteration method (VIM) (an
unprecedented method) and verify the efficiency, reliability and validity of the proposed method
by comparing the respective solutions via tables and combined plots with the computer in-built
Runge-kutta-Felhberg of fourth-fifths order (RKF-45).

We speculate that VIM is efficient to conduct analysis on Malaria models and other

epidemiological models.
Keywords:

SEIR-SEI, Basic Reproduction number, Disease-Free equilibrium point (DFE), Endemic
equilibrium point, Stability, Variational iteration method (VIM), Runge-Kutta-Felhberg (RKF-
45).



1. Introduction

Malaria is a mosquito-borne infectious disease that is life threatening to humans and other
animals (Malaria fact sheet, 2014) [16]. This infectious disease is widely spread throughout the
globe and predominantly present in tropical and sub-tropical regions of the earth including some
parts of Europe.

The wide spread of this vector-borne disease (malaria) has urged numerous researchers and
health organizations to study the epidemiology and transmission dynamics of the disease; so as
to be able to implement an appropriate intervention strategy on its ubiquitous nature.

Because of its nature of being a fatal disease, this is why 25" of April is set aside as the world’s
annual malaria day for the global alertness against the disease. Malaria causes symptoms that
typically include fever, tiredness, vomiting, and headaches (Caraballo, 2014). In severe cases it
can cause yellow skin, seizures, coma, or death. (Caraballo, 2014) [15]. These symptoms usually
begin ten to fifteen days after being bitten by an infected mosquito and if not properly treated,
people may have recurrences of the disease months later (Malaria fact sheet W.H.O, 2014) [16].
Malaria is caused by single-celled microorganisms of the plasmodium group (Malaria Fact sheet
W.H.O, 2014). The disease is most commonly spread by an infected female Anopheles
mosquito. The mosquito bite introduces the parasites from the mosquito’s saliva into the Host
(Human). There are five different plasmodium species leading to malaria infection and disease
among humans; These are: Plasmodium Falciparum (P. falciparum), Plasmodium vivax (P.
vivax), Plasmodium Ovale (P. ovale), Plasmodium malariae (P. malariae), Plasmodium

knowlesi (P. knowlesi) [8].

Most deaths are caused by P. falciparum as it is the most dangerous of all plamodium species [8,
13]. P. vivax, P. ovale, and P. malariae generally cause milder form of malaria while the P.
knowlesi rarely cause disease in humans. This P. falciparum is mainly found in Africa as it is
common and causing deaths worldwide. In addition, Plasmodium knowlesi is a type of malaria
that infects macaques in Southeast Asia; also infect humans causing malaria that is transmitted

from animal to human (zoonotic malaria) [8, 13-14].



WHO Malaria report (2013) shows that approximately 80% of malaria cases and 90% of deaths
are estimated to occur in most countries of this sub-Saharan Africa [9]. In 2015, WHO estimates
that 212 million clinical cases of malaria occurred and 429,000 people died of malaria, most of
them were children in Africa [10]. The world Malaria Report in 2018 [38] shows an
unprecedented period of success in global malaria control. An estimated 219 million cases of
malaria occurred worldwide (95% confidence interval (Cl): 203-262 million), compared with
239 million cases in 2010 (95% CI: 219-285 million) [11] and 217 million cases in 2016 (95%
ClI: 200-259 million) [12] with 92% cases in the African region, 5% in the South-East Asia
region and 2% in the WHO Eastern Mediterranean region.

Very recently, in the common wealth malaria reports (April, 2019) [39]; a historic partnership of
governments, civil society, the private sector and multilateral organizations, came together in
London for a momentous malaria summit. Delivering US $4.1 billion for the global malaria fight
and two days later at the commonwealth heads of Government meeting (CHOGM), all 53 leaders
committed to halve malaria in the commonwealth within five years.

The report here shows that the commonwealth countries: The Gambia, Belize, Bangladesh, India,
Malaysia, Mozambique and Nigeria are already on a trajectory to achieve the target to halve
malaria in 2023. See [39].

Due to the everyday attempt to control the epidemic and prevalent nature of malaria, several
models have been developed by mathematicians; so as to understand the transmission dynamics
of this infectious disease and implement a control strategy. Majority of these models are being
described by differential equations of the nonlinear type. The first malaria model for malaria
transmission and control was by Ronald Ross [4] which was later improved by Macdonald
(1957) [5] considering some biological assumptions. Since then, many models have been
developed like Ngwa and Shu (1999) [18] Jia Li (2011) [3], Prashant Goswami et al (2012) [20],
Olaniyi S and Obabiyi (2013) [2], Shah NH and Gupta. J (2013) [21], Hal-Feng Huo and Guang-
ming Qiu(2014) [23], Altaf Khan et al (2015) [22], Oti eno (2016), Osman et al (2017) [1],
Osman et al (2018) [24], Traore Bakare (2018) [7] to mention a few. Researchers and
mathematicians have endeavored to proffer solution to these models including that of malaria via

different methods so as to understand the transmission dynamics better in Nigar Ali et al. (2019)



using Adomian Decomposition method [25], Abioye adesoye idowu et al (2018) using
Differential transform method [28], Peter olumuyiwa james et al (2018) solved using Multi-step
Homotopy analysis method [30]. Morufu oyedunsi olayiwola (2017) using the Variational
iteration method solved a SEIRS epidemic model [26]. Yullita mollig Rangkuti (2014) obtained
a numerical analytical solution of SIR model of Dengue fever disease in South sulawesi using
HPM and VIM [19], Fazal Haq et al (2017) by Laplace Adomian decomposition method solved
an epidemic model of a vector borne disease [17].

Of all the semi-analytical methods implemented to solve epidemic models including malaria,
none have solved the malaria model using the variational iteration method and as a result, less
attention has been paid using this method on malaria models. This method is unprecedented.
The main reason of this paper is to validate the efficiency of variational iteration method and also
speculate its capability as alternative approach in solving and analyzing epidemiological models

including malaria.

The huge advantage of this method over other methods include: the simplicity and straight-
forwardness, less computational stress or efforts of the method with no linearization of the
nonlinear term, no computation of Adomian or He’s polynomials, yet yielding highly accurate
and rapidly convergent results devoid of errors when compared numerically and graphically.

In this research, we consider an existing SEIR model of Osman et al (2017), conduct a stability
analysis, and then obtain semi-analytic solution via Variational iteration method (VIM).

The model presented here in this research is of two compartmental system of nonlinear ordinary
differential equation involving the host which is the human and the Vector which is the
mosquito. The human (host) is described by four differential equations and the mosquito by three

differential equations.

The subsequent organization of this research work is structured as follows: Section 2 elucidates
the compartmental model of the malaria transmission dynamics as well as the flow diagram of
the model; Section 3 focuses on the mathematical analysis of the model which includes the
analysis on the feasible region I' of the model, so as to verify the epidemiological validity of the

model; the disease-free equilibrium point (DFE), basic reproduction number, the endemic



equilibrium point (EDE), stability of the DFE via Gaussian elimination method and the EDE

with theorems, lemmas, and proofs were all computed here.

Semi-analytic solution was then proffered to the seven (7) compartments of the vector-host
model using He’s variational iteration method (VIM) in Section 4.

Lastly, numerical result comparison were made for the solved compartments via tables and
combined plots of Runge-Kutta-Felhberg 45 (RKF-45) and VIM, results were then interpreted

and discussed before the final conclusion in section 5 and 6 respectively.

2. The Model
The model consists of two classes of population, the human population and the mosquito
population. The human N population is subdivided into four compartments, the susceptible, the
exposed, the infected, and the recovered. While the mosquito N population is subdivided into
three compartments, the susceptible, the exposed, the infected as it is assumed that mosquitoes
don’t recover. We then have that the SEIR model for the humans (host) and the SEI model for
the mosquito (vector). (Table 1)

2.1 Model Assumptions

The Population of the susceptible human SH (t) is increased by the recruitment of
individuals at a rate A, , and by the recovered individuals returning back to the compartment due
to loss of immunity at a rate p, they acquire infection at a rate 3, the population is then
decreased by natural death of humans at a rate uy. (Fig 1)

The population of the Exposed human E,, (t) is generated by the infection of the susceptible
individuals at a rate 8 , decreased by humans whose infection has developed to the infectious
compartment at a rate a, , and further decreased by natural death u. (Fig 2)

The population of the infected |, (t) is generated by humans who are infectious at a rate a;,

increased by newborn baby with infection at rate ¢ , then decreased by natural death py ,

malaria induced death, and humans who have recovered at rates uy , 6 , and a, respectively.
(Fig 3)



The Recovered population RH('[) Is generated by those who are infected but are being treated

and recovering from malaria at a rate a,. It is then decreased by those who die naturally and lose

their immunity at rates uy and p respectively. (Fig 4)

The susceptible mosquito population S, (t) is generated by the recruitment of mosquitoes into
the compartment at a rate 4, decreased by infection and death by natural cause with rates Sy,
and uy . (Fig 5)

The Exposed mosquito’s population E, (t) is generated by susceptible mosquitoes exposed to

the malaria pathogen infection at a rate S, decreased by mosquitoes that have developed into the
infectious state, and by natural cause at rates a5 , and py,. (Fig 6)

The Infected mosquito’s population |, (t) is generated by exposed mosquito whose state has

moved to the infectious state at the rate a5, and decreased by natural cause p,. (Fig 7)
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Table 1: State Variables and parameter description of the SEIR-SEI model

3.0 MATHEMATICAL ANALYSIS OF THE MODEL

3.1  Positivity and Boundedness of Solution

Here, results are presented and verifications are made as to guarantee that the malaria model
governed by the system (1) is epidemiologically and mathematically well-posed in a feasible
regionT ; given by: T'=T, xI,, < R! <R3

Where,

T, ={(SH,EH,|H,RH)E«R1:SH+EH+|H+RH <Aw s S0, >0, >0,R, zo},

Hy

T, ={(SV,EV,|V)emi:sV+EV+|V <M s S0, 201, zo}.
)7y

3.1.1 Theorem1:
The feasible region of the system (1) given by

o (SH,EH,IH,RH,SV,EV,IV):SH(t)+EH(t)+IH(t)+RH(t)st—”;sv(t)+Ev(t)+Iv(t)si\lv—V;SH >0,
- H

E, >0,1,>0,R, >0,S, >0,E, 20,1, >0

is a positive invariant set and Bounded.



Proof: Let us consider the Host Population governed by the system

dsgt(t) = Ay =SSy — 11, Sy + PR,
%:ﬂHsHlH—(aﬁyH)EH (2)
%zalEH —(ap + py + )1y +yly

W%m—(ﬂﬁp)m

N, =S, {t)+E, @t)+1,(t)+R, (t)is the human net population.
Now from the derivatives of sums;

AN, (8) _ S, () , dE,(®  dl () dR, () 3)
dt dt dt dt dt

This implies that,

dN,, (t
CT'[( ) =(Ay = BySuly —uy Sy + PR+ (B Sy ly — (o + 14)E,)

HonEy = (o, +py + ) +yl) + (el — (i + P)RY)

Then,
dN,, (t
#():AH — 1y Sy +Ep+1 +Ry) - (6-w)ly
dN,, (t
.'.d—Ht()zAH — Ny = (6 —y)ly

This implies that % <A, - u,N,, when we remove the parameter (5 —w)l,, .

dN,, (t
-.-d#()_i':uHNH <Ay (4)
t
By solving the first order linear differential inequality (4) using integrating factor method we
have;
A
N, (t) < —H + pe ! (5)
Hy

Where p is a constant of integration.

Then by applying Birkhoff and Rota’s theorem [31] on the differential inequality (5), it follows
that



: Ay
lim Ny, (t) <— (6)

Hy

This is commonly known as the carrying capacity of the system and hence shows Boundedness.

It then follows that N, (1 {{SH ()+E, ©+1,0+R, (O} ! sA—“}

Hy
This proves the boundedness of the solution inside the region I',,

Now for other classes of the population we have;

3.1.2 Other Compartments

We consider the rate of change of the population in the Susceptible Human compartment

ds,, (t
#()ZAH = BuSuly — 1y Sy + PRy, (7)
S%WL(/UH + Py IH)SH =Ay + PRy

Let (IIJH +/BHIH):¢H’

ds, (t)
Coodt

We then can write that

Then +9,5, = Ay + PRy

s, (1),
dt

(9)

By separation of variables we obtain that;

»,S, >0

JEs [, (10)

= In(S, (t))> —g,t+c
=S, (1) >e et

Let A =e°thenwe have; Sy, (t) > Ae "

At the initial state whent =0, S, (0) > A>0.



- S, () =S,, (0)e ™" = Ae™" > OHolds and this implies that S,, (t) > O holds.

Indicating that S, (t) stays and remains positive.

Similarly, we consider the non-linear ODE for the exposed human

dE, (1

dt =BuSuly — (o + ) Ey

. dEd()+( 4+ 10,)E, = £,S 1, 11

From f,S,, 1, on the right hand side of the equation (11), we have that S, >0,S,, # Ofrom

our previous proof. Now for I, > 0we have that dEC';t(t) +(a, + 44, )E, =0when 1, =0 and

%_‘_(al_‘_/uH)EH >0 whenl, >0;
dE t
: ()+(a1+ﬂH)E (12)
dt
Solving the differential inequality (12) using separation of variable
We have
dE, (t
JED > [y e
H
Let &y = (o + 44y)
= [ (t)>j o

~In(Ey )=, t+c
= E, (t)>e " .¢°
Whent =0, we have
E,(0)>Ae’=A
~E,(0)=A=0
= E, (t)=E, (0)e "' >0

Hence, E,, (t) =0 Holds.



Similarly, we consider the nonlinear differential equations of other state variables I (t) and

Ry (t) of the Infected and the recovered class; we let y,, = (e, + 24, + ) and g, = (1 + p)

dRy

respectively and solve the differential inequalities % + yyly =0, —

+ ey Ry = 0 with the
initial conditions.
We obtain the solutions to the ODEs and we have that I, (t) >0and R, (t) >0 hold

respectively.

3.1.3 Mosquito Model (Vector)
We consider the governing equation of the vector (SEI) model which is the Mosquito.

dS(\j,t(t) =Ay B Sy Iy — 1Sy
%Zﬂvsvlv_(as"'ﬂv)lzv (14)
dl,, (t

(\;t( ) =B, -y ly

The total Population density gives
N, () =S, (1) +E, () +1, () (15)
From Cauchy’s differential theorem,

dN, () _ N, (©) dS, | aN, () dE,  oN (1) di,
dt 6s, dt oE, dt al, dt

(16)

We have that
ON, (t) ON,(t) ON,(t)
oS, OE, al,

ANy @) _ds, | dE,
oodt dt dt o dt

1, a7)

.-.%:(AV —BSuly =4Sy )+ (B SNy — (o +14,)E, )+ (B, — 4, 1,)  (18)
We then have,
d
Nd+(t)+,u\, N, <A, (29)

By solving the differential inequality by method of integrating factor and apply Birkhoff and
Rota’s theorem [31]



jim N, () < 2 (20)
Ly

tow

It then follows that N, (t) = S, (t) + E, (t) + I, (t) <
Ly

This proves boundedness.

Similarly as the Host model, S, (t) > 0, E,(t) = 0, I,(t) = 0 holds for the mosquito
population.

This completely proves our theorem 1.

3.2 Disease-Free equilibrium points and the Reproduction Number
The points at which the differential equation is equal to zero are referred to as the equilibrium
points or steady-state solutions.
The model consists of just two equilibrium points which is the disease-free and the Endemic
equilibrium points
The point or time at which the disease wiped out and the entire population is susceptible is the
Disease-free equilibrium point while the point at which the disease persists in the population
(Epidemic outbreak) is the Endemic equilibrium point.
At Equilibrium,
dS,, (t) _ dE,, (t) _ dl, (®) _ dR,(t) _dS, () _dE, () _di, ()
dt dt dt dt dt dt dt
By substituting (21) into the system of equations (1),
0=Ay = BuSaly — 1S + PR}
0=y Silh — (e + 44y ES
0=a,E) —(a, + py +)15 +uyd]
0=a,ly — (1, +p)R;
0=A, = A, S — 14, S
0= 4,501y = (o + 11, )Ey
0=a,E) — 1)

=0 (21



Then the DFE for the SEIR-SEI system is given by:

E°=(S5.EX 15, RS SV EY, IS)z[A—H,O,O,O,A—V,O,O,OJ (22)
Hy Hy

3.2.1 The Basic Reproduction Number R, of the SEIR-SEI Model of Malaria

Transmission

An important concept of Epidemiological models is the basic reproduction number which is

usually denoted by R, this number is the average number of secondary infections in the E,, (t)

compartment, infected by an infectious individual in the 1, (t) compartment in a completely

susceptible population. The Reproduction number in this model would be calculated using the
Next generation matrix method. Since our model is a vector-Host model, we define the Next

generation as a square matrix ‘G’ in which the individual of type j which accounts for the

infection using the reproduction number assuming that the population of type i is susceptible
[21, 6].

The assumption that the population is susceptible implies that the reproduction number would be

computed at DFE point. Since there are two classes of population, we have the 2 x 2 matrix

ol ke B) @
921 92) \Rw 0
Let the reproduction number of the model be denoted by R,;.
From |G—-Al |=0
where A is an identity matrix.
=|G-Al |=A*-R,,R, =0 (24)

S A= Ry Ry
=R = \ Ron Rov (25)



From the human nonlinear system of ODEs;

dS(;.t(t) = Ay = BuSuly — 14y Sy + PRy
0o
dlgt(t) =B, — (0, + pty +0)1, +,
%:0{2 n = (n + )Ry

Using the next generation matrix method,

Let
X =(Ey. 11, Ry (26)
Then
CdE, T
dt
dl,, ﬂHSHIH_(al"',UH)EH
_ dX, _| dt |_ By — (o, + 1y +0)1, +yly (27)
" dt ds,, Ay = BySyly — 1, Sy + PRy
dt a1y —(py + PRy
dr,
L dt |

By splitting the matrix in the equation (27) we have;

BuSuly (o + 1) Ey
dXy _ 0 ~ -4 E, +(a, + p, +0)1, -yl (28)
dt 0 Ay + BySuly + 1445y — PRy
0 —a, 1y +(uy + )Ry

This is now in the form

dX,,

= R (X) -V, (X) (29)




F
F
=
F

[

N

w

V(X)) =

(o + 1y Ey
—aE, +(a, + 4y + )1, —yly,
Ay + BuSuly + 1y Sy — PR,

—a,l, + (e, + P)R,

V,
V.

[N

N

V.

w

Where F,(X) is the matrix of new infections and V,(X) is the matrix of other transfer terms [6]

The next step here is to linearize the matrix F (X) andV,(X) by taking the jacobian of each term

in the matrices at Disease free equilibrium point

Let J[F(X)]=Fyand J[V,(X)]=V,

0 0
“F, :5'3()()’\/H _oVi(X) At DFE F, (E%) = ok (E ),VH(EO): oVi(E")
oX, j oX,
OF.(E®) OF,(E°) OF(E°) OR(E°) V,(E®) OV,(E®) OV,(E®) &V,(EY)
OE,, al,, 23S, oR,, oE,, al,, s, oR,,
OF,(E°) OF,(E°) OF,(E°) &F,(E°) V,(E®) OV,(E®) OV,(E°) &V,(E)
oF (E°) OE,, al,, 2s,, R, | aV.(E%) oE,, al,, 35, oR,,
X; | OF,(E®) OF,(E°) OF,(E%) OFR,(E%) | X, | OV,(E®) OV,(E®) OV,(E®) &V,(E®)
OE,, al,, 35, oR,, oE,, al,, 35, oR,,
OF,(E°) OF,(E°) OF,(E°) F,(E°) OV,(E®) OV,(E®) OV,(E°) &V,(E%)
OE,, al,, 35, oR,, oE,, al,, a5, oR,,

For the Reproduction number, we only need terms in the Exposed and the infected compartments

[27].

Then we have the matrix

;VH =

(al-‘rﬂH)

0
(0t + py +5-y)

|

Row Is the spectral radius or dominant Eigen value of (FHV,f)that is‘(FHVH’l)—/ll‘ =0;lisan

identity matrix.




By computing the spectral radius, the reproduction number is given as;

_ afuy
iy (o + )@, + py +6 =)

(30)

ROH

Similarly, by considering the nonlinear system in the Mosquito’s model

%zl\v =BSyly =4Sy
%zﬂ\/svlv — (a3 + 1 )E,
dl,, (t

%:C%Ev -y ly

Similarly, using the Next generation matrix approach on the vectors system of equations above
we have the Mosquito’s reproduction number as
a3, A

Rov —_ 3NV (31)

iy (astua,)

From equation (25) we have that Rg =+/Ry Ry then by putting the equation (30) and (31) into
(25) we have the general reproduction number of the SEIR-SEI system as:

R — \/ P Py Ay Ay

G 2
f iy (0 + gy Mgt e, + iy +0—y)

This gives the reproduction number of the complete system

(32)

By alternative notations, if we let
( +py) =&y
(aytiy) =4 (33)
(o, + pty +6—w) =7y

Then,

R, = \/alasﬂHA/AH Ay (33)

:quu\/zéHfV?/H
_ a5 B A Ay
,UH:uvngfﬂ/H

3.3 Existence of the Endemic Equilibrium Points

= R2 (34)



The SEI-SEI model of Malaria transmission possesses an endemic equilibrium point

* *

E" = (S0 EL RSB (3)

At this point, there is persistence of the disease in the system and hence an epidemic outbreak.
At equilibrium,

dS,,(t) _ dE,(t) _ dl, (t) _dR, () _dS, () _dE, () _di, (1) _

0
dt dt dt dt dt dt dt

Then,

Ay =BuSuly =1y Sy + PRy =0
BuSilu — (o + 1 JEL =0

a,E, —(a2 + Uy, +5—l//)|; =0

al, —(uy + p)Ry =0 (36)
Ay = B,Syly — Sy =0

BSuly =+, )E; =0

asEy — a1y =0

We solve the system of equation (36) simultaneously for the corresponding endemic point

*

s. From 0= o,E,, —(a, + 44, + 9)1,, +w |1, in the system, we can write that

B, = (a, + p, +5 —w)l;, Thus we have

e _ (@t u +5-yp)ly
-
al

(37)

Put (37) into %We have the relation,

S5-I
Sl —(alw“)(%;““ A LU, (38)
1

This implies that

(a+pay )2 + g +5—y)
o

=0 Where I, #0

IH {IBHSH -



(0‘1+IUH)(0’2 +phy +5-y)

= PuSu — =0;
o
. + + 4y +0—
S;, = (o + ) (0t + 14y v) (39)
Bacy
Again from ngt(t) , We have
. a,l,
R, = —2H _ (40)
" (IUH +,0)
o . dS,, (1) . . :
By substituting (39) and (40) into —H>~ and solving accordingly we have;

dt

o _ APt +p) =t (1 +p) (0 + ) (@ + iy +5—y)

41
Bt +p) (o + ) (o + pay + 6=y )= By poyar, “h

Similarly by solving the system (36) appropriately, we obtain the endemic point

o (st + Sy @Bl (s +p) = o (4 + ) (@ + 1) (2 + iy +6-v/) ]
= (42)
afy [(ﬂH +p)(on+ iy ) (@ + py +§—1//)—pala2}

o ooy — g (on+ g ) (o + 1y +5-y)

_ 43
"By I:(:“H +p) (0 + ) (o + +5—1//)—a1a2p] )
My (0‘3 +:uv)
= B, 9
*:aaﬂvAv_:U\f(as"'auv) 45
~ apfy (a3+:uv) )
I =Avﬂla3_lu\f(a3+'uV) (46)

By (0t + 14,

3.4  Stability of the Disease-Free Equilibrium
We now check for the stability of the model at DFE by taking the jacobian of the seven

dimensional ODES in equation (1) and obtaining its corresponding Eigen values.



The SEIR-SEI is stable if all of the Eigen values obtained from the linearized system are
negative real values.

We have the jacobian of the model to be given as:
‘](SH’EH’IH’RH’SV’EV’IV)

—Baln — 1y 0 —BSy p 000
Baly _(0‘1+ﬂH) BSy 0000
0 a, —(a, + py +0—y) 0 00O
= 0 0 a, —~(uy+p) 0 0 0
0 0 0 0 —B,1,-u 00
0 0 0 0 Al —(a+m) AS,
0 0 0 0 0 a —4 (47)
At Disease-Free equilibrium point,
—y 0 g D p 000
Hy
AH
0 —(an+my) B 0 00O
Hy
0 a, —(a, + 1y +0 —y) 0O 0 0O
J(E®)= ~(uy+p) 0 0 O
0 0 a, A
0 —u, 0 —pB =L
0 0 0 Hv A
0 0 0 A
0 0 —(ay+ —
0 0 a —u (48)
By inserting our alternative notation
Let
(o + 1) =S4 K,=8 A_H
1~ MH ’
(agtuy) =4y Hy
(o + 1y +0-y) =7y, K :ﬂVA_v- (“9)
2 ’
(g +p) =¢y; iy

We have,



— Uy 0 -K; p 0 0 O
0 <&, K 0 00O
0 o Iy 0 00O
J(E®)=| O 0 a, -& 0 00
0 0 0 0 —u 0 -K,
0 0 0 0 0 =&, K,
0 0 0 0 0 a; —u4 (50)
For the Eigen-values of the matrix,
-, —A 0 -K, p 0 00
0 £, —A K, 0 00O
0 o -7y —A 0 00O
JE-Al|=| O 0 a, —e,—A 0 0 0
0 0 0 0 —u -4 0 -K,
0 0 0 0 0 -4 -1 K,
0 0 0 0 0 a5 —u—4 (51)

Now by applying some matrix techniques on equation (51), it is clear that the first column of

(51) contains a diagonal term “ —z,, — A’ only. Hence, 4 =—z,, and we eliminate the first row

and column in (51) to have a new matrix J,(E°)

&, =4 K, 0 0 00
o, Yy —A 0 0 00
3,(E%) 0 a, —&y —A 0 0O (52)
0 0 0 -1, -4 0 =K,
0 0 0 0 -& -4 K,
0 0 0 0 a —u, -4

It also clear from (52) that the third and fourth column contains only diagonal terms ‘ —z, — A’

and ‘ —¢,, — A’ which produces two Eigen values 1, =—u, and 4, = —¢,, . Hence we eliminate the

third and fourth rows and columns so as to have a new matrix J,(E°) .

& -1 K 0 0
L 3(EY) = o, Yy —A 0 0 (53)
o 0 0 &, -1 K,



£, -4 K 0 0 & K. 0 0 A0 00
3.(EY) = o, V= A 0 0 | s 0 0 ~ 0 42 00 (54)
: 0 -£-4 K, 0 0 -4 K,|[|00 20
0 0 o, —ty —A 0 0 a —u 0 0 0 2
Let
—v Koo 00
a -y 0 0
JL(EDY=| 7 : (55)
0 0 _gv Kz
0 0 o -—u
2 3,E%) =3, (E°)- 21 (56)
By performing the following row transformation (Gaussian elimination method) on the matrix
(55) with the operations,
R, =R, +2R,;

\
* a
R2=R2+§R1;

We have the new Jacobian matrix

_é:H K, 0 0
0 -y, + “S;Kl 0 0
JA(E") = : 57
w(EY) 0 0 _z K, (57)
0 0 0 —p + %K
=
For the Eigen values,
& - K, 0 0
0 (—yH + “1K1} A0 0
-3, (E%) = H (58)
0 0 & -2 K,
0 0 0 [—,uv + “3K2J—/1
&

By applying the same matrix techniques which was applied on (51) accordingly and replacing

alternative notations, we have the 7 Eigen values for the model as:



A =—py, A==y A=~y + p) Ay = (g + 1), As = —(a 3+ 14,),

/’LB:_(]/H_algﬁLAHJ’%:_(%_a}ﬂV/;\VJ (59)

Clearly all our Eigen values are negative real values, and then the Disease-free equilibrium
(DFE) is stable.

3.4.1 Theorem 2:
The Disease Free equilibrium (DFE) is locally asymptotically stable if Ry <1.

Proof:

From the Eigen-values A, and A,

A A
\ v
_ afy Ay ~R AN, -R
Since ~ ToH 2 W
§H/UH7H 5\/#\/
Then,
o, By A
=—y 1_Mj=_?/ 1—
% " [ Sh M Y H( ROH) .
o, X, A
v

Equation (62) and (63) above holds if and only if Ry, <land R, <1holds respectively.
Thus, the DFE is stable if R, <1, R,, <1.

From equation (26), R = /Ry, Ry, » Which implies that RS = Ry, Ry, -

Then if



Ry <L Ry <1
~RZ=R,,R, <1
= R; <1

Showing that R; < 1 holdsm
This proves theorem 2.

3.5  Stability of the Endemic Equilibrium Point
We evaluate ‘J (E)-4l ‘ =0, ‘J (E\j )— Al ‘ = 0 for the Host and Vector respectively.

From the Human 4-dimensional differential equations we have the Jacobian as:

= Baly — 1 0 ~ .S, _p
I — S 0
‘J(SHlEH,IH,RH)z ﬂHOH (a1+:uH) ﬂH H
o —(ag+,uH+5—y/) 0
° 0 @ _(ﬂH+,0)
At Endemic points
Bl — 0 ~B.S;, —p
* ok gk ,BH|; —(0[1+/1H) ﬁHs;" 0
J(S,,E,,I,,R, )=
(H HrlH H) 0 o, _(0‘2+ﬂH+5—l//) 0 (64)
° 0 % _(IUHJFP)

By substituting equation (35) and alternative notations in (49)

(ﬂH€H§H7H —afyAyéy _'UHJ_;L 0 _Sulu —p
EnSHYH — P o
‘J(E;)—/ll‘: afuAyéy _:quHgHyHJ g - Sullu 0 =0
EGHYn —Ha,pP a
0 a, — Yy —A 0
0 0 a, —&, A




The Characteristic equation for the above matrix gives

‘J(E;)—Z"=Q4i4+Q313+Q212+Q11+Q0 (65)

Where
Q4 =1

Q,= (5H vy +7H)_(,UH0510‘1P_0‘1:BHAH5H ﬂ’

EqSuTn — P

oo p—ofuAye
Q,= (§H7/H+§H8H+7H5H+§H7H)_(8H+§H+7/H{IuH 14~ & Py Hj;
EwGnTn —UP

(04 A&, — & 2.2 o N
Q1=£68H7H PuNnén — My HgH}/HJ_(fH]/H+§HgH+7H€H +§H7H)('uH ap—a By, H);
Tl e Eqlary —ona,p

Q _|:‘§H7Ha1ﬁHAH‘95| _lquligliyli +pa1a2:3HAH5H _p/quHSEM/Halaz}(%)
)y =
&y §H7H —oQ, P 8H§H Y — 0,0

Using the Routh-Hurwitz criterion for quartic polynomials, the characteristic equation (65) yields
negative Eigen-values (stable) if and only if: Q, >0,Q, >0,Q, >0,Q, > 0,Q, > 0 holds and

this clearly seen. Also from this criterion, the characteristic equation has negative eigen values

(Stable) if the inequalities:

Q3Q2 - Ql > O’ Q3Q2Q1 - Q12 - Q32Qo > O’ QngQlQo - Q4Q12Qo >0 are

satisfied. This is trivial as well and has been verified; hence the endemic equilibrium is stable

and we can hence have the Lemma.

351 Lemmaa3:

The endemic equilibrium EH of the SEIR-SEI vector host malaria transmission model is locally

asymptotically stable if the inequalities

Q;Q, —Q, >0,Q,Q,Q, _Q12 - Q32Q0 >0,Q,Q,Q,Q, - Q4Q12Q0 >0 are satisfied
3.5.2 Lemma4:

The positive equilibrium E; of Human is locally asymptotically stable if R, > 1.



Proof:

Using the Routh- Hurwitz criterion in the Characteristic polynomial in equation (2), we have that
Q4 > 01 Q3 > O’Qz > 01Q1 > O;QO > O must hold.

Here,

Q _|:§H7HalﬂHAHgli _/quliéliyli _'_palaZﬁHAHgH _pﬂH5H§H7Ha1a2:|
) =
EQSHYn —UoLP EnSnlu — 40P

By mathematical manipulations of Q,in terms of the human reproduction number, we have

Q _|:/quE|§E|7/E| + L0, PE S Y My :|(alﬁHAH _]J
) =
EqSnIH —U,P HySu7n 67)

2

o, :{ﬂHeﬁfwﬁ + 040, PEY Ep Vi M }(ROH _1)>0
EnSnrn —UQP

— {ﬂﬁﬁfﬁﬁ. + o, PEL S Y 1 My :|(ROH _1) >0
EWSHYn — 040LP (68)
The Inequality (68) will hold if and only if Ry, > 1. This Proves the Lemma 4m

Similarly for the Vector Population (Mosquitoes), considering the Vector system of differential
equations

%zAv -BSuly — a4 Sy
dEst(t)::BvSvlv — (a3 + 14 )E,
di, (t) _

dt By — 1y

By taking the Jacobian at the Endemic point E;; = (Sy, Ey;, I;) we have;



2 f—
Llu\/gv a3ﬂVAV luvj_i 0 _ﬂvs\’/‘
My Sy
. a, Py A, — .
“](Ev)_ll‘: Sy~ Moy &1 BSy
My Sy
0 a, -y —A
(69)
The Characteristic equation of the above matrix is given as:
J(EY) = A|= AL+ AL+ AL+ A, 70

Where,

A, =LA = (O[ZBV;\V + (‘:gv + Ly )} A = (O[SIBV Avﬁfﬁv A )} Ay =a3 Ay - ﬂ\fé:v :

It has been clearly verified using Routh-Hurwitz criterion that the system has all its eigen value

to be negative if and only if A, >0, Ay >0, A,A > A holds. This is very trivial and hence the

Endemic equilibrium is stable.

3.5.3 Lemmab:

The positive endemic equilibrium E, of the vector (mosquito) population is locally

asymptotically stable if Ry, >1.

Proof:

By considering the condition for Routh-Hurwitz stability A, > 0 we have that
A =B Ay —15&, > 0;

sy Ay~ ugé, >0

a. by A a.fby A
= ﬂ\?‘fv[ 3ﬂ2v . _1] >0;Ryy = 3182\/ :
Ly Sy Sy



e, [O‘BA?—;V—@ = 128, (Ry, —1)>0

:>/U\3‘fv (Rov _1)>O

The inequality (5) holds if and only if Ry, > 1.

This completes the proof and hence proves the Lemma 5m

3.5.4 Theorem 3:

The Endemic equilibrium E;V of the Vector-Host system (Human and Mosquito) is locally

asymptotically stable if R; >1.
Proof:
We have that Ry, >1, R,, >1for the Host (Human) and the Vector (Mosquito) respectively
from Lemma 4 and Lemma 5.Then,
Ry >1L Ry >1
= Ry, Ry, >1;
S RE=R, Ry, >1
= R2 >1;R, >/1;
"o Rg > 1.

This proves the Theorem 3.

4.0  Semi-Analytical Solution to the Seir-Sei Vector Host Model of Malaria
Transmission by Variational Iteration Method (VIM)

The implementation of semi-analytical algorithms or methods has spontaneously developed over

the years in the field of numerical analysis and computational mathematics.

Numerous researchers have implemented some methods appropriately in providing exact

solutions to ordinary and partial differential equations viz [40-43]. Very recently, Loyinmi



Adedapo C. and Akinfe Timilehin K. (2020) implemented an algorithm using the Elzaki
transform to provide exact solutions to the Burgers-Huxley equation of three distinct cases as a
result of variation in the equation parameters [44], Again in (2019), using a hybrid algorithm
involving Elzaki transform and homotopy perturbation method (EHTPM), they proffered exact
solution to the family of Fisher’s reaction-diffusion equation which is well applicable in genetics,
stochastic processes, nuclear reactor theory, and so on. See ref [49]

Nadeem M, Li F, Ahmad H (2019) solved the fourth-order parabolic partial differential equation
with variable coefficients using modified Laplace variational iteration method [45] and so on
[46-48]

The idea of Variational iteration method (VIM) was introduced by Ji-Huan He (1998) [29] who
modified the general Lagrange multiplier proposed by Inokuti (1978) [32] to solve nonlinear
problems. Abbasbandy and Shivanian (2009) [33], Abdou and Soliman (2005) [35], Mosmani
and Abuasad (2006) [34] have implemented this method to solve effectively, easily and
accurately, a large class of nonlinear problems with approximations which converges quickly to
accurate solutions.

The implementation of asymptotic techniques/methods is quite an interesting and demanding
field of computational mathematics as there is no single best method or algorithm for a
problem/model. The suitability of an algorithm to a problem depends on the simplicity,
computational stress and radius/rate of convergence of such algorithm or method.

Adedapo Loyinmi C. and Akinfe Timilehin K. and other authors have buttressed these facts with

their convergence analyses [49]



4.1 Basic Idea of VIM

Consider a non-linear differential equation

Lu(t) + Nu(t) = g(t) -

L is the linear operator, N is the nonlinear operator and g(t) is a known analytic function. We

construct a correction functional for the equation (1) which is given as:

Upa (0 =, ®) + [ 2(x)[Lu, () + N, (x) - g (x)Jox

(71)
Where 77 is a lagragian multiplier which can be obtained optimally and expressed as:
(1) -1
7T(X) = (=1} (x—t)°
(71)

Where n is the highest order of the differential equation.

4.2 Solution of the Model using Variational Iteration Method
We consider the model’s system of equations in (1), Subject to the initial condition (State

Variables) Adopted from [1]. We have,

S, (0)=0.83,E,, (0) =0.08, I, (0) = 0.07, R,, (0) = 0.02S, (0) = 0.7,
E,(0)=0.2,1,(0) =0.1

*Table 2: Parameter description and Values of model



4.2.1 VIM Application to Model Equations

We have the correction functional of the system of equation governing this malaria model as:

S st (1) = S O+ [, 0015ty + S T + 1Sy = Ay = PRy i
E oyt 8 = Eny O+ [, 00[Exyy + (o, + 10 )Eryy — By Sy T i
L (0= Lot @+ [ 2500 + (@ + p1y + 8 =)y — By X
Ry (€) = Ry (1) + j; 7, ()[R0 + (g + P)Ryy — 1,1, JX

Sy = S O+ [ 00[S1y + 41, S + s S Tow = A i

E i () = Eny (0 + [ 00[Eny + (s + 24,)Epy — By S T Jix

I(n+1)V (t) = Inv (t) + J;% (X)[I rIIV Ty Inv - asEnV ]dX (72)

Subject to the initial conditions

S, (0) =0.83,E,, (0) =0.08, 1, (0) = 0.07, R,, (0) = 0.02S, (0) = 0.7, E, (0) = 0.2, I, (0) = 0.1

”1()(): ”z(x): 72'3()(): 774(X):"': 777(X): -1
By putting the model parameters and the value of the lagrangian multiplier in eq. (72); we obtain

an iteration formula for the seven (7) compartments as:
St (1) = Sy (1) = [[S;4 +0.006388,,,1,,, +0.01155,,, ~1.2-0.00017R,,, Jx
E oy (1) = Ey (1) = [|Eyy +0.0615E,,, —0.00638S,,, 1., ix

Ly ©) = 1oy O = []1;,4 +0.08011 , —0.05E,,, Jix

Ryt () = Ry () = [ Ry, +0.01167R,,, ~0.00351,,, Jix
Sy () =Sy (0 = [[S,, +0.055,, +0.6968,,1,,, —0.7Jix
E ey (1) = Ey (0) — [[E;y +0.133E,,, ~0.06965 1., Jix

1{
Ly ©) = 1y @© = [, +0.051,,, —0.083E,, Jx



We obtain the iterated values for each population/compartments as:

S,, (t) = 0.83+1.190087722t-0.007104328345t* +0.00003194682064t*
—7.001923802 x107"t* +8.456685994 x10'°t® +1.163198684 x10 **t°
—3.423963937 x10°t” +5.342315808 x10*°t® —3.723617710x10*°t°
+6.322821679 %1021 —2.271139500 x10t** +- .-

E,, (t) = 0.08-0.004549322000t+0.0004012165808t>-0.00001258921184t°
+0.1061638566 x10°t*-6.061655945x10°t°+1.270625328 x10™*'t°
-2.077566160x10"°t”-5.342315808 x10*°t®+3.723617710x10"8t°
-6.322821679x10%'t*°+2.271139500 x 10 %™ +- - -

l,, (t) =0.07-0.001607000000t — 0.00004937270000t° —1.370365576 x 10"t
+1.788543167 x107°t> —1.196734896 x 10 °t° + 2.494651094 x 10 *t’
—6.806885860x107""t® — 2.967953227 x107°t” +1.861808855x 10 °t" + .-

R, (t) = 0.02+0.0000116000000t-0.2879936000x 10°°t*-4.30259846 x10°t*
-2.017061262x10°t*-3.199583573x10°t>+2.406919418 x10*8t®
-6.934725980x10™°t" +3.028880838 x 101"

S, (t) = 0.7 +0.6601280000t—0.01908302144 t*+ 2.040227226 x10*t*
+1.303653606x10°t* +1.519901404x10°°t° + 2.043333541x107"t°
+6.022746410x10°t" —7.190253944x107"°t® +1.796296797 x 10 *'t°
—2.018406198x10 "t — 2.474577295x10 “t" +9.727190967 x 10~ *°t** +. ..



E, (t) =0.2-0.02172800000t + 0.004024733440t* + 0.0000435937856t°
—7.18167845x10°t* +3.93765013x10 't°> — 2.744923850x10 " t°
—1.432467516x107°t" +6.147220304x10*°t® — 2.319266431x10 *t°
+2.479625495x10 " + 2.651694009 10 *t** +- ..

l, (t) = 0.1+0.01160000t- 0.001191712000t* +0.0001312128252t°
—2.97650627 x10°t* +3.88118335x10't> + 6.846185837 x10°t°
—2.099291186x107°t" —7.998304105x10**t® + 2.968697857 x10"°t°
+2.512090497 x10°t*° — 7.265313407 x10 " t** +- ..

This gives the Semi-analytic solution of the SEIR-SEI model of malaria Transmission.

5.0  Numerical Results

The analytical Results for the SEIR-SEI model is illustrated and demonstrated in this section.
This results were achieved using Computer Software and by using the parameter values and
state variable values in the table 2 whose source were mainly from prominent literatures as well
as assumptions.

The results obtained by our proposed VIM were compared with the Computer In-built Runge-
kutta felhberg of fourth-fifth order (RKF-45) with degree four interpolant. In which a table of
values obtained from all compartments is presented.

Table 3 and 4 presents the results comparison of Sy (t), Ey (t), Iy (t), Ry (t), Sy (t), Ey (t),

and I, (t) between VIM and RKF-45.

*5.1 Table 3: The Host (Human) Population Model
Comparison between Variational iteration Method and Runge-Kutta-Felhberg-45 (VIM vs RKF-

45)

*5.2 Table 4: The Vector (Mosquito) Population Model
Comparison between Variational iteration Method and Runge-Kutta-Felhberg-45 (VIM vs RKF-

45)



5.3  Interpretation of Results

The Results obtained from the Numerical simulation and the stability analysis of the proposed
SEIR-SEI Vector-host Malaria Transmission model shows that the Disease-free equilibrium is
stable when a mosquito doesn’t infect more than one individual. That is, when R, does not
exceed unity (R, < 1); and moment the converse happens (when R, > 1) then there is an
epidemic outbreak (endemic equilibrium).

Furthermore, the population of the susceptible human undergoes an exponential growth pattern,
and the graph is perfectly linear.

The Population of the exposed and the infected human decays (decreases) in a logistic manner
and hence a logistic decay which implies that there is a possibility of zero population (At DFE).
While the Recovered Human, Susceptible, Exposed and infected mosquito follows a logistic
growth pattern.

All these imply that the populations in the system are prone to the infection since the population
in the susceptible compartment is increasing.

As a result, serious attention should be focused on this compartment as regards an appropriate
intervention strategy to combat the contact of malaria infection at a time when the infected and

the exposed population is stable (when R, < 1).

5.4  Discussion of Results

A SEIR-SEI Vector-Host model of malaria transmission built on 7-dimensional system of
ordinary differential was analyzed and solved numerically using the Variational iteration method
(VIM) with initial conditions and parameter values from prominent existing literature.

The stability analyses show that there is a possibility of the malaria infection going into
extinction if one mosquito does not infect more than one individual (when R, < 1). Similarly,
epidemic outbreak of the disease is visible and might occur when R, > 1.

The Semi-analytical solution to the Malaria model using VIM when compared favorably with the
Computer software in-built Runge-Kutta-Felhberg of fourth-fifths order (RKF-45) shows a
high level of agreement, convergence and similarities. The two methods follow the same pattern
and behavior when plotted.

Having used our proposed method, it is now crystal clear that the variational iteration method is

suitable, perfect and efficient in conducting and conveying analysis on Malaria models.



6.0  Conclusion

We have studied a nonlinear 7-dimensional ordinary differential equation that describes the
transmission dynamics of malaria by carrying asymptotic stability analyses at the malaria-free
and endemic equilibriums using the Gaussian elimination method and the routh-hurwitz criterion
with three (3) theorems and three (3) lemmas. We also have solved the model using the
variational iteration method (VIM). This method is unprecedented.

From all these, we have come to a conclusion that the variational is an efficient alternative for
conducting analyses on malaria models and other epidemiological models and as a matter of fact
can be implemented in the classroom to provide solutions to a wider class of ordinary differential
equations and epidemiological models.
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TABLES
Table 1: State Variables and parameter description of the SEIR-SEI model

State Variables Description

Ey(t) Exposed Human at time t

Ry (t) Recovered Human at time t

Ey(t) Exposed mosquito at time t

Ay Recruitment rate of Humans

ay Development from exposure to being infectious (Humans)

as Development from exposure to being infectious (mosquito)

Wy Natural Death of Mosquitoes

qu Probability of transmission from an infectious mosquito to a susceptible

Human




mosquito

Ny Mosquito Biting Rate

Bu Infection rate of Humans( qy X ny)

By Infection rate of Mosquito (q, X ny)
p Loss of Immunity for Humans

Y Newborn’s birth with infection

Table 2: Parameter description and Values of model

Parameter Description Of Parameter Value Source
A Recruitment Rate of Humans 1.2 Osman et al.(2017) [1]
H
A, Recruitment Rate of 0.7 Osman et al. (2017) [1]
Mosquitoes
a Rate of Development from E(t)  0.05 S. Olaniyi et al. (2013) [2]
& to I(t) for Humans
o Recovery Rate of Humans 0.0035 Shah NH et al. (2013) [21]
2
a Rate of Development from E(t)  0.083 Shah NH et al. (2013) [21]
E to I(t) for Mosquitoes
Ly, Death Rate of Humans 0.0115 Estimated
Ly Death Rate of Mosquitoes 0.05 Macdonald G. (1957) [5]
n Mosquito Biting rate 0.46 Jia Li (2015) [35]
Vv
q Probability of transmission 0.022 Chitnis N et al. (2008) [37]
H from an infectious mosquito to
Human
q Probability of transmission 0.24 Chitnis N et al. (2008) [37]
v from an infectious Human to
Mosquito
B Infection Rate of Humans 0.00638 Osman et al. (2017) [1]
ﬂv Infection Rate of Mosquitoes 0.0696 Osman et al. (2017) [1]
o Disease Induced Death Rate in  0.0681 Assumed

Humans




Newborn’s birth rate with
infection
Loss of immunity in Humans

0.0003

0.00017

Osman et al. (2017) [1]

Ishikawa H. [36]

et al. (2013)

Table 3: The Host (Human) Population Model
Comparison between Variational iteration Method and Runge-Kutta-Felhberg-45 (VIM vs RKF-

45)

TIME VIM RKF-45 VIM RKF-45 VIM RKF-45
Day(s) 5@ Su(®) Ep () En () 12(0) 11(0)

0 0.83000000 0.83000000 0.08000000 0.08000000 0.07000000 0.07000000
1 2.01301561 2.01301561 0.07583878 0.07583879 0.06835131 0.06835133
2 3.18201621 3.18201617 0.07240199 0.07240198 0.06664753 0.06664754
3 4.33719361 433719354 0.06961551 0.06961550 0.06492588 0.06492590
4 5.47873683 5.47873677 0.06741038 0.06741037 0.06321729 0.06321730
5 6.60683104 6.60683104 0.06572332 0.06572332 0.06154712 0.06154713
6 7.72165743 7.72165743 0.06449681 0.06449684 0.05993590 0.05993589
7 8.82339237 8.82339237 0.06367926 0.06367934 0.05839999 0.05839989
8 9.91220582 9.91220759 0.06322463 0.06322496 0.05695224 0.05695186
9 10.98826994 10.98826993 0.06309231 0.06309337 0.05560260 0.05560147
10 12.05174144 12.05174145 0.06324656 0.06324953 0.05435880 0.05435584
TIME VIM RKF-45

Day(s) Rn(®) Rn(®)

0 0.02000000 0.02000000

1 0.02000868 0.02000868

2 0.02001142 0.02001142

3 0.02000815 0.02000815

4 0.01999895 0.01999895

5 0.01998396 0.01998396

6 0.01996344 0.01996344

7 0.01993768 0.01993768

8 0.01990702 0.01990702

9 0.01987184 0.01987184

10 0.01983256 0.01983256




Table 4: The Vector (Mosquito) Population Model
Comparison between Variational iteration Method and Runge-Kutta-Felhberg-45 (VIM vs RKF-

45)
TIME VIM RKF-45 VIM RKF-45 VIM RKF-45
Day(s

YO TS ® S,(0) 0 E, ) Iy (0) Iy (0)
0 0.70000000 0.70000000 0.20000000 0.20000000 0.10000000 0.10000000
1 1.34126043 1.34126044 0.18222063 0.18222068 0.11053636 0.11053636
2 1.94571554 1.94571556 0.17196734 0.17196734 0.11943083 0.11943067
3 2.51484441 2.51484462 0.16860461 0.16860489 0.12734893 0.12734679
4 3.05014134 3.05014133 0.17149462 0.17149495 0.13486396 0.13486393
5 3.55302285 3.55302267 0.18008280 0.18008282 0.14248463 0.14248433
6 4.02476836 4.02476839 0.19394581 0.19394865 0.15064626 0.15064609
7 4.46648246 4.46648299 0.21276299 0.21283345 0.16002117 0.15973839
8 4.87907270 4.87907287 0.23664713 0.23664911 0.17011741 0.17011742
9 5.26322652 5.26323337 0.26472804 0.26547877 0.18212468 0.18212189
10 5.61944102 5.61944155 0.28884690 0.29957234 0.19608738 0.19608754

FIGURE LEGENDS

Fig 1

Solution comparison plot of the susceptible human population between variational iteration
method (VIM) and Runge-Kutta-Felhberg 45 (RKF-45)

Fig 2

Solution comparison plot of the exposed human population between variational iteration method
(VIM) and Runge-Kutta-Felhberg 45 (RKF-45)

Fig 3

Solution comparison plot of the infected human population between variational iteration method
(VIM) and Runge-Kutta-Felhberg 45 (RKF-45)

Fig 4

Solution comparison plot of the Recovered human population between variational iteration
method (VIM) and Runge-Kutta-Felhberg 45 (RKF-45)

Fig 5

Solution comparison plot of the susceptible mosquito population between variational iteration
method (VIM) and Runge-Kutta-Felhberg 45 (RKF-45)



Fig 6
Solution comparison plot of the exposed mosquito population between variational iteration
method (VIM) and Runge-Kutta-Felhberg 45 (RKF-45)

Fig 7
Solution comparison plot of the infected mosquito population between variational iteration
method (VIM) and Runge-Kutta-Felhberg 45 (RKF-45)



