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Abstract: 

We consider a SEIR-SEI Vector-host mathematical model of malaria transmission described and 

built on 7-dimensional nonlinear ordinary differential equations. We compute the basic 

reproduction number of the model, examine the positivity and boundedness of the model 

compartments in a region, verify the existence of the Disease-Free (DFE) and Endemic (EDE) 

equilibrium points. 

Using the Gaussian elimination method and the Routh-hurwitz criterion, we convey stability 

analyses at DFE and EDE points which indicates that the DFE (malaria-free) and the EDE 

(epidemic outbreak) point occurs when the basic reproduction number is less than one and 

greater than one respectively. 

We obtain a solution to the model using the Variational iteration method (VIM) (an 

unprecedented method) and verify the efficiency, reliability and validity of the proposed method 

by comparing the respective solutions via tables and combined plots with the computer in-built 

Runge-kutta-Felhberg of fourth-fifths order (RKF-45). 

We speculate that VIM is efficient to conduct analysis on Malaria models and other 

epidemiological models. 

Keywords:  

SEIR-SEI, Basic Reproduction number, Disease-Free equilibrium point (DFE), Endemic 

equilibrium point, Stability, Variational iteration method (VIM), Runge-Kutta-Felhberg (RKF-

45). 

 

 

 

 

 

 

 



 

1. Introduction 

Malaria is a mosquito-borne infectious disease that is life threatening to humans and other 

animals (Malaria fact sheet, 2014) [16]. This infectious disease is widely spread throughout the 

globe and predominantly present in tropical and sub-tropical regions of the earth including some 

parts of Europe. 

The wide spread of this vector-borne disease (malaria) has urged numerous researchers and 

health organizations to study the epidemiology and transmission dynamics of the disease; so as 

to be able to implement an appropriate intervention strategy on its ubiquitous nature. 

 

Because of its nature of being a fatal disease, this is why 25th of April is set aside as the world’s 

annual malaria day for the global alertness against the disease. Malaria causes symptoms that 

typically include fever, tiredness, vomiting, and headaches (Caraballo, 2014). In severe cases it 

can cause yellow skin, seizures, coma, or death. (Caraballo, 2014) [15]. These symptoms usually 

begin ten to fifteen days after being bitten by an infected mosquito and if not properly treated, 

people may have recurrences of the disease months later (Malaria fact sheet W.H.O, 2014) [16]. 

Malaria is caused by single-celled microorganisms of the plasmodium group (Malaria Fact sheet 

W.H.O, 2014). The disease is most commonly spread by an infected female Anopheles 

mosquito. The mosquito bite introduces the parasites from the mosquito’s saliva into the Host 

(Human). There are five different plasmodium species leading to malaria infection and disease 

among humans; These are: Plasmodium Falciparum (P. falciparum), Plasmodium vivax (P. 

vivax), Plasmodium Ovale (P. ovale), Plasmodium malariae (P. malariae), Plasmodium  

knowlesi (P. knowlesi) [8].  

 

Most deaths are caused by P. falciparum as it is the most dangerous of all plamodium species [8, 

13]. P. vivax, P. ovale, and P. malariae generally cause milder form of malaria while the P. 

knowlesi rarely cause disease in humans. This P. falciparum is mainly found in Africa as it is 

common and causing deaths worldwide. In addition, Plasmodium knowlesi is a type of malaria 

that infects macaques in Southeast Asia; also infect humans causing malaria that is transmitted 

from animal to human (zoonotic malaria) [8, 13-14].  



WHO Malaria report (2013) shows that approximately 80% of malaria cases and 90% of deaths 

are estimated to occur in most countries of this sub-Saharan Africa [9]. In 2015, WHO estimates 

that 212 million clinical cases of malaria occurred and 429,000 people died of malaria, most of 

them were children in Africa [10]. The world Malaria Report in 2018 [38] shows an 

unprecedented period of success in global malaria control. An estimated 219 million cases of 

malaria occurred worldwide (95% confidence interval (CI): 203-262 million), compared with 

239 million cases in 2010 (95% CI: 219-285 million) [11] and 217 million cases in 2016 (95% 

CI: 200-259 million) [12] with 92% cases in the African region, 5% in the South-East Asia 

region and 2% in the WHO Eastern Mediterranean region.  

 

Very recently, in the common wealth malaria reports (April, 2019) [39]; a historic partnership of 

governments, civil society, the private sector and multilateral organizations, came together in 

London for a momentous malaria summit. Delivering US $4.1 billion for the global malaria fight 

and two days later at the commonwealth heads of Government meeting (CHOGM), all 53 leaders 

committed to halve malaria in the commonwealth within five years. 

The report here shows that the commonwealth countries: The Gambia, Belize, Bangladesh, India, 

Malaysia, Mozambique and Nigeria are already on a trajectory to achieve the target to halve 

malaria in 2023. See [39]. 

 

Due to the everyday attempt to control the epidemic and prevalent nature of malaria, several 

models have been developed by mathematicians; so as to understand the transmission dynamics 

of this infectious disease and implement a control strategy. Majority of these models are being 

described by differential equations of the nonlinear type. The first malaria model for malaria 

transmission and control was by Ronald Ross [4] which was later improved by Macdonald 

(1957) [5] considering some biological assumptions. Since then, many models have been 

developed like Ngwa and Shu (1999) [18] Jia Li (2011) [3], Prashant Goswami et al (2012) [20], 

Olaniyi S and Obabiyi (2013) [2], Shah NH and Gupta. J (2013) [21], Hal-Feng Huo and Guang-

ming Qiu(2014) [23], Altaf Khan et al (2015) [22], Oti eno (2016), Osman et al (2017) [1], 

Osman et al (2018) [24], Traore Bakare (2018) [7] to mention a few.  Researchers and 

mathematicians have endeavored to proffer solution to these models including that of malaria via 

different methods so as to understand the transmission dynamics better in Nigar Ali et al. (2019) 



using Adomian Decomposition method [25], Abioye adesoye idowu et al (2018) using 

Differential transform method [28], Peter olumuyiwa james et al (2018) solved using Multi-step 

Homotopy analysis method [30]. Morufu oyedunsi olayiwola (2017) using the Variational 

iteration method solved a SEIRS epidemic model [26]. Yullita molliq Rangkuti (2014) obtained 

a numerical analytical solution of SIR model of Dengue fever disease in South sulawesi using 

HPM and VIM [19], Fazal Haq et al (2017) by Laplace Adomian decomposition method solved 

an epidemic model of a vector borne disease [17]. 

 Of all the semi-analytical methods implemented to solve epidemic models including malaria, 

none have solved the malaria model using the variational iteration method and as a result, less 

attention has been paid using this method on malaria models. This method is unprecedented. 

The main reason of this paper is to validate the efficiency of variational iteration method and also 

speculate its capability as alternative approach in solving and analyzing epidemiological models 

including malaria.  

 

The huge advantage of this method over other methods include: the simplicity and straight-

forwardness, less computational stress or efforts of the method with no linearization of the 

nonlinear term, no computation of Adomian or He’s polynomials, yet yielding highly accurate 

and rapidly convergent results devoid of errors when compared numerically and graphically. 

In this research, we consider an existing SEIR model of Osman et al (2017), conduct a stability 

analysis, and then obtain semi-analytic solution via Variational iteration method (VIM). 

The model presented here in this research is of two compartmental system of nonlinear ordinary 

differential equation involving the host which is the human and the Vector which is the 

mosquito. The human (host) is described by four differential equations and the mosquito by three 

differential equations. 

 

The subsequent organization of this research work is structured as follows: Section 2 elucidates 

the compartmental model of the malaria transmission dynamics as well as the flow diagram of 

the model; Section 3 focuses on the mathematical analysis of the model which includes the 

analysis on the feasible region  of the model, so as to verify the epidemiological validity of the 

model; the disease-free equilibrium point (DFE), basic reproduction number, the endemic 



equilibrium point (EDE), stability of the DFE via Gaussian elimination method and the EDE 

with theorems, lemmas, and proofs were all computed here. 

 

Semi-analytic solution was then proffered to the seven (7) compartments of the vector-host 

model using He’s variational iteration method (VIM) in Section 4. 

Lastly, numerical result comparison were made for the solved compartments via tables and 

combined plots of Runge-Kutta-Felhberg 45 (RKF-45) and VIM, results were then interpreted 

and discussed before the final conclusion in section 5 and 6 respectively. 

 

2. The Model 

The model consists of two classes of population, the human population and the mosquito 

population. The human 𝑁 population is subdivided into four compartments, the susceptible, the 

exposed, the infected, and the recovered. While the mosquito 𝑁 population is subdivided into 

three compartments, the susceptible, the exposed, the infected as it is assumed that mosquitoes 

don’t recover. We then have that the 𝑆𝐸𝐼𝑅 model for the humans (host) and the 𝑆𝐸𝐼 model for 

the mosquito (vector). (Table 1) 

 

2.1   Model Assumptions 

The Population of the susceptible human )(tSH  is increased by the recruitment of 

individuals at a rate
H , and by the recovered individuals returning back to the compartment due 

to loss of immunity at a rate 𝜌, they acquire infection at a rate 𝛽𝐻, the population is then 

decreased by natural death of humans at a rate 𝜇𝐻. (Fig 1) 

 The population of the Exposed human )(tEH  is generated by the infection of the susceptible 

individuals at a rate  𝛽𝐻 , decreased by humans whose infection has developed to the infectious 

compartment at a rate 𝛼1 , and further decreased by natural death 𝜇𝐻. (Fig 2) 

The population of the infected )(tIH  is generated by humans who are infectious at a rate 𝛼1, 

increased by newborn baby with infection at rate 𝜓 , then decreased by natural death  𝜇𝐻 , 

malaria induced death, and humans who have recovered at rates  𝜇𝐻 , 𝛿 , and 𝛼2 respectively. 

(Fig 3) 



The Recovered population )(RH t  is generated by those who are infected but are being treated 

and recovering from malaria at a rate 𝛼2. It is then decreased by those who die naturally and lose 

their immunity at rates 𝜇𝐻 and 𝜌 respectively. (Fig 4) 

The susceptible mosquito population )(tSV  is generated by the recruitment of mosquitoes into 

the compartment at a rate ᴧ𝑉, decreased by infection and death by natural cause with rates 𝛽𝑉 

and 𝜇𝑉 . (Fig 5) 

The Exposed mosquito’s population )(tEV  is generated by susceptible mosquitoes exposed to 

the malaria pathogen infection at a rate 𝛽𝑉, decreased by mosquitoes that have developed into the 

infectious state, and by natural cause at rates 𝛼3 , and 𝜇𝑉 . (Fig 6) 

The Infected mosquito’s population )(tIV  is generated by exposed mosquito whose state has 

moved to the infectious state at the rate 𝛼3, and decreased by natural cause 𝜇𝑉 . (Fig 7) 
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Table 1: State Variables and parameter description of the SEIR-SEI model 

3.0 MATHEMATICAL ANALYSIS OF THE MODEL 

3.1 Positivity and Boundedness of Solution  

Here, results are presented and verifications are made as to guarantee that the malaria model 

governed by the system (1) is epidemiologically and mathematically well-posed in a feasible 

region ; given by: 34
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3.1.1 Theorem 1:  

The feasible region of the system (1) given by 




























0,0,0,0,0,0

,0;)()()(;)()()()(:),,,,,,(

VVVHHH

H

V

V
VVV

H

H
HHHHVVVHHHH

IESRIE

StItEtStRtItEtSIESRIES
  

is a positive invariant set and Bounded. 



Proof: Let us consider the Host Population governed by the system
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By solving the first order linear differential inequality (4) using integrating factor method we 

have;  
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Where p is a constant of integration. 

Then by applying Birkhoff and Rota’s theorem [31] on the differential inequality (5), it follows 

that 
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This is commonly known as the carrying capacity of the system and hence shows Boundedness. 
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This proves the boundedness of the solution inside the region H    

Now for other classes of the population we have; 

 

3.1.2 Other Compartments 

We consider the rate of change of the population in the Susceptible Human compartment 
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We then can write that  
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At the initial state when 0t , 0)0(  ASH . 
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Indicating that )(tSH stays and remains positive.  

           

Similarly, we consider the non-linear ODE for the exposed human  
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 Solving the differential inequality (12) using separation of variable  

We have  
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Hence, 0)( tEH Holds. 

 



Similarly, we consider the nonlinear differential equations of other state variables 𝐼𝐻(𝑡) and 

𝑅𝐻(𝑡) of the Infected and the recovered class; we let )( 2   HH
and )(   HH

respectively and solve the differential inequalities 
𝑑𝐼𝐻
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+ 𝛾𝐻𝐼𝐻 ≥ 0,

𝑑𝑅𝐻

𝑑𝑡
+ 𝜀𝐻𝑅𝐻 ≥ 0 with the 

initial conditions. 

We obtain the solutions to the ODEs and we have that 0)( tIH and 0)( tRH hold 

respectively.  

 

3.1.3 Mosquito Model (Vector) 

We consider the governing equation of the vector (SEI) model which is the Mosquito. 
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The total Population density gives 

( ) ( ) ( ) ( )V V V VN t S t E t I t  
                       

(15)  

From Cauchy’s differential theorem, 

( ) ( ) ( ) ( )V V V V V V V

V V V

dN t N t dS N t dE N t dI

dt S dt E dt I dt

  
     

  
              

(16)  

We have that 

   

( ) ( ) ( )
1,V V V

V V V

N t N t N t

S E I

  
  

  

                                                      

(17)

  
( )V V V VdN t dS dE dI

dt dt dt dt
     

     3 3

( )
( )V

V V V V V V V V V V V V V V

dN t
S I S S I E E I

dt
                        (18)  

We then have, 

 
( )V

V V V

dN t
N

dt
   

                               

(19)  

By solving the differential inequality by method of integrating factor and apply Birkhoff and 

Rota’s theorem [31] 



V

V
V

t
tN







)(lim

    

(20)  

It then follows that 
V

V
VVVV tItEtStN




 )()()()(   

This proves boundedness. 

Similarly as the Host model, 𝑆𝑉(𝑡) > 0, 𝐸𝑉(𝑡) ≥ 0, 𝐼𝑉(𝑡) ≥ 0 holds for the mosquito 

population. 

This completely proves our theorem 1. 

 

3.2 Disease-Free equilibrium points and the Reproduction Number 

The points at which the differential equation is equal to zero are referred to as the equilibrium 

points or steady-state solutions. 

The model consists of just two equilibrium points which is the disease-free and the Endemic 

equilibrium points 

The point or time at which the disease wiped out and the entire population is susceptible is the 

Disease-free equilibrium point while the point at which the disease persists in the population 

(Epidemic outbreak) is the Endemic equilibrium point. 

At Equilibrium, 
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(21)  

By substituting (21) into the system of equations (1), 
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EIS
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



























 



Then the DFE for the SEIR-SEI system is given by: 

 0 0 0 0 0 0 0 0, , , , , , ,0,0,0, ,0,0,0VH
H H H H V V V

H V

E S E I R S E I
 

 
   

          

(22)  

3.2.1 The Basic Reproduction Number 0R   of the SEIR-SEI Model of Malaria 

Transmission 

An important concept of Epidemiological models is the basic reproduction number which is 

usually denoted by 0 ,R this number is the average number of secondary infections in the (t)HE  

compartment, infected by an infectious individual in the (t)HI  compartment in a completely 

susceptible population. The Reproduction number in this model would be calculated using the 

Next generation matrix method. Since our model is a vector-Host model, we define the Next 

generation as a square matrix ‘G’ in which the individual of type j  which accounts for the 

infection using the reproduction number assuming that the population of type i is susceptible  

[21, 6]. 

The assumption that the population is susceptible implies that the reproduction number would be 

computed at DFE point. Since there are two classes of population, we have the 2 × 2 matrix  

011 12

021 22

0

0

V

H

Rg g
G

Rg g

  
    
               

(23)       

Let the reproduction number of the model be denoted by 𝑅𝐺 .  

From | | 0G I 
   

where   is an identity matrix. 

    
2

0 0| | 0H VG I R R     
          

(24)   

0 0H VR R 

 

0 0G H VR R R 

      

(25)                             



From the human nonlinear system of ODEs; 

HHH
H

HHHH
H

HHHHH
H

HHHHHHH
H

RI
dt

tdR

IIE
dt

tdI

EIS
dt

tdE

RSIS
dt

tdS

)(
)(

)(
)(

)(
)(

)(

2

21

1

















 

Using the next generation matrix method, 

Let  

 THHHH RSIEX ,,,         (26)   

Then 

1

1 2'

2

( )

( )

( )

H

H H H H H
H

H H H HH
H

H H H H H H HH

H H H

H

dE

dt
S I EdI

E I IdX dt
X

S I S RdSdt

dt I R

dR

dt

  

    

  

  

 
 
    
 

 
    

    
     
 

    
 
 
     

(27)  

By splitting the matrix in the equation (27) we have; 

1

1 2

2

( )

( )0

0

( )0

H HH H H

H H H HH

H H H H H H H

H H H

ES I

E I IdX

S I S Rdt

I R

 

    

  

  

  
  
    
   
      
  

        

(28)  

This is now in the form  

( ) ( )H
i i

dX
F X V X

dt
 

            
(29)  



1 1 1

2 1 2 2

3 3

4 2 4

( )

( )0
( ) ; ( )

0

( )0

H HH H H

H H H H

i i

H H H H H H H

H H H

F E VS I

F E I I V
F X V X

F S I S R V

F I R V

 

    

  

  

      
      

    
         
          
      

         

 

Where ( )iF X  is the matrix of new infections and ( )iV X is the matrix of other transfer terms [6] 

The next step here is to linearize the matrix ( )iF X  and ( )iV X by taking the jacobian of each term 

in the matrices at Disease free equilibrium point    . 

Let  ( )i HJ F X F and  ( )i HJ V X V  

( ) ( )
,i i

H H

j j

F X V X
F V

X X

 
  

 
    At DFE 

0 0
0 0( ) ( )

( ) , ( )i i
H H

j j

F E V E
F E V E

X X

 
 

 
 

0 0 0 0

1 1 1 1

0 0 0 0

2 2 2 2

0

0 0 0 0

3 3 3 3

0 0 0 0

4 4 4 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
;

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

H H H H

H H H Hi

j

H H H H

H H H H

F E F E F E F E

E I S R

F E F E F E F E

E I S RF E V

X F E F E F E F E

E I S R

F E F E F E F E

E I S R

    
 

    
    
 

     
      
 

    
 
    

     

0 0 0 0

1 1 1 1

0 0 0 0

2 2 2 2

0

0 0 0 0
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4 4 4 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
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H H H Hi

j

H H H H
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E I S R
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E I S RE
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E I S R

V E V E V E V E

E I S R

    
 

    
    
 

    
      
 

    
 
    

     

 

For the Reproduction number, we only need terms in the Exposed and the infected compartments 

[27]. 

Then we have the matrix  

 
 

1

1 2

0 0
;

0 0

H
H H

HH H

H

F V
  


    

 
  

           
 

 

  

HR0 Is the spectral radius or dominant Eigen value of  1

HHVF that is   01  IVF HH  ; I is an 

identity matrix. 



  By computing the spectral radius, the reproduction number is given as; 

1
0

1 2( )( )

H H
H

H H H

R
 

      




   
            

(30)  

Similarly, by considering the nonlinear system in the Mosquito’s model 

VVV
V

VVVVV
V

VVVVVV
V

IE
dt

tdI

EIS
dt

tdE

SIS
dt

tdS













3

3

)(

)(
)(

)(

 

Similarly, using the Next generation matrix approach on the vectors system of equations above 

we have the Mosquito’s reproduction number as  

3
0

3( )

V V
V

V V

R
 

  





        

(31)  

From equation (25) we have that VHG RRR 00 then by putting the equation (30) and (31) into 

(25) we have the general reproduction number of the SEIR-SEI system as:  

))()(( 231

2

31










HVHVH

VHVH
GR   (32) 

This gives the reproduction number of the complete system 

By alternative notations, if we let  

1

3

2

( )

( )

( )

H H

V V

H H

  

  

    

 

 

   

             (33)  

     

Then, 

1 3

2

H V H V
G

H V H V H

R
   

    

 
                (33)  

2 1 3

2

H V H V
G

H V H V H

R
   

    

 
          (34)  

3.3 Existence of the Endemic Equilibrium Points  



The SEI-SEI model of Malaria transmission possesses an endemic equilibrium point 

 * * * * * * * *,E , I ,R , ,E , IH H H H V V VE S S
   

(35)
   

 

 At this point, there is persistence of the disease in the system and hence an epidemic outbreak.  

At equilibrium,
 

0
)()()()()()()(


dt

tdI

dt

tdE

dt

tdS
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tdR

dt
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tdS VVVHHHH
   

Then, 
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 

0
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0

0

0

0
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*

1
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1

*

2

*

1

*

1
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











VVV
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HHH

HHH

HHHHH

HHHHHHH

IE

EIS

SIS

RI

IE

EIS

RSIS















   (36) 

We solve the system of equation (36) simultaneously for the corresponding endemic point 

s. From 
* * *

1 20 ( )H H H HE I I         in the system, we can write that 

* *

1 2( )H H HE I        Thus we have 

                                                   

*
* 2

1

( )H H
H

I
E

   



  
   (37) 

Put (37) into 
(t)HdS

dt
we have the relation, 

                                          
  1 2

1

0
H H H

H H H

I
S I

     




   
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This implies that  
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1

0
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

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  

 
 Where 0HI   



  1 2

1

0
H H

H HS
     




   
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  1 2*

1

H H

H

H

S
     

 

   
   (39) 

Again from
(t)HdR

dt
, we have 

 

*
* 2 H
H

H

I
R



 



     (40) 

By substituting (39) and (40) into 
(t)HdS

dt
 and solving accordingly we have; 

     

   
1 1 2*

1 2 1 2

H H H H H H H

H
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I
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

     
  (41) 

Similarly by solving the system (36) appropriately, we obtain the endemic point

       

   
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           

            
       

 (42) 
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           

     


       

   (43) 

 3*

3

V V

V

V

S
  

 


     (44)  

 

 

2

3 3*

3 3

V V V V

V

V V

E
    

   

  



   (45)  

 

 

2

3 3*

3

V V V V

V

V V V

I
    

   

  



   (46)  

 

 

3.4 Stability of the Disease-Free Equilibrium 

We now check for the stability of the model at DFE by taking the jacobian of the seven 

dimensional ODES in equation (1) and obtaining its corresponding Eigen values. 

 



The SEIR-SEI is stable if all of the Eigen values obtained from the linearized system are 

negative real values. 

We have the jacobian of the model to be given as: 
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    
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(47)

 

 

At Disease-Free equilibrium point, 
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By inserting our alternative notation 

Let 
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We have, 
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For the Eigen-values of the matrix, 

1

1

1

0

2

2

2

3

0 0 0 0

0 0 0 0 0

0 0 0 0 0

( ) 0 0 00 0

0 00 0 0

0 00 0 0

0 00 0 0

H

H

H

H

V

V

V

K

K

J E I

K

K

  

 

  
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 

 

  

   
 

  
  
 

    
   
 

  
     (51)

 

Now by applying some matrix techniques on equation (51), it is clear that the first column of 

(51) contains a diagonal term ‘
H   ’ only. Hence, 

1 H   and we eliminate the first row 

and column in (51) to have a new matrix 0

0 ( )J E  

1

1
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  
    

  (52) 

It also clear from (52) that the third and fourth column contains only diagonal terms ‘
V   ’ 

and ‘
H   ’ which produces two Eigen values 

2 V   and
3 H   . Hence we eliminate the 

third and fourth rows and columns so as to have a new matrix
0

1( )J E . 

1
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  (53) 



1 1
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1
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0 0 0 0 0 0 0
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     
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       
     

         

(54) 

Let  

1
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1

2

3
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H

H

A

V

V

K

J E
K


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
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 
 

 

     (55) 

 0 0

1 1(E ) J IAJ E         (56) 

By performing the following row transformation (Gaussian elimination method) on the matrix 

(55) with the operations,  

* 3
4 4 3

* 1
2 2 1

;

;

V

H

R R R

R R R









 

 

 

We have the new Jacobian matrix 

1

1 1

0

1

2

3 2

0 0

0 0 0

( )
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0 0 0

H

H

H

A

V

V

V

K

K

J E
K

K














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  
 

  
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 
  

 

   (57) 

For the Eigen values, 

1

1 1

0

1

2

3 2

0 0

0 0 0

( )
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H

H

H

V

V

V
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K

J E
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K

 


 



 


 



  
 

      
 

  
  

 
      
  

 (58) 

By applying the same matrix techniques which was applied on (51) accordingly and replacing 

alternative notations, we have the 7 Eigen values for the model as: 



1 2 3 4 1 5 3

31
6 7

, , ( ), ( ), ( ),

,

H V H H V

V VH H
H V

H H V V

            

  
   

   

            

   
       

   

(59) 

Clearly all our Eigen values are negative real values, and then the Disease-free equilibrium 

(DFE) is stable. 

3.4.1 Theorem 2:  

The Disease Free equilibrium (DFE) is locally asymptotically stable if 1GR  . 

 

Proof: 

From the Eigen-values 6  and 7   

1 1
6 1H H H H

H H

H H H H H

   
  

    

    
        

   

 

    (60) 

3 3
7 2

1V V V V
V V

V V V V

   
  

   
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        

   
     (61) 

Since V
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H
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HH RR 02

3
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1 ; 
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







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Then, 

 1
6 01 1H H

H H H

H H H

R
 

  
  

 
      

 

   

(62)  

      

 3
7 02

1 1V V
V V V

V V

R
 

  
 

 
      

 

   

(63)

 
Equation (62) and (63) above holds if and only if 10 HR and 0 1VR  holds respectively.  

Thus, the DFE is stable if 0 01, 1H VR R  . 

From equation (26),
0 0G H VR R R , which implies that 

2

0 0G H VR R R . 

Then if  



0 0

2

0 0

1, 1

1

1

H V

G H V

G

R R

R R R

R

 

  

 

 

Showing that 𝑅𝐺 < 1 holds∎ 

This proves theorem 2. 

3.5 Stability of the Endemic Equilibrium Point 

We evaluate   0,0)( **  IEJIEJ VH  for the Host and Vector respectively. 

From the Human 4-dimensional differential equations we have the Jacobian as: 
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 
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At Endemic points 

 
 

 
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0
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 
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(64) 

By substituting equation (35) and alternative notations in (49) 
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The Characteristic equation for the above matrix gives

 * 4 3 2

4 3 2 1 0HJ E I Q Q Q Q Q         
   (65) 

Where 

 
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;
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1

1 2 1 2

;H H H H H H H H H H H H H
H H H H H H H H

H H H H H H

Q
               

       
           

      
       
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2 2 2 2

1 1 2 1 2
0

1 2 1 2

H H H H H H H H H H H H H H H H

H H H H H H

Q
                  

           

    
  

  
(66)

 

Using the Routh-Hurwitz criterion for quartic polynomials, the characteristic equation (65) yields 

negative Eigen-values (stable) if and only if: 0,0,0,0,0 01234  QQQQQ holds and 

this clearly seen. Also from this criterion, the characteristic equation has negative eigen values 

(Stable) if the inequalities: 

0,0,0 0

2

1401230

2

3

2

1123123  QQQQQQQQQQQQQQQQ are 

satisfied. This is trivial as well and has been verified; hence the endemic equilibrium is stable 

and we can hence have the Lemma.

 
3.5.1 Lemma 3:  

The endemic equilibrium
*

HE of the SEIR-SEI vector host malaria transmission model is locally 

asymptotically stable if the inequalities 

0,0,0 0

2

1401230

2

3

2

1123123  QQQQQQQQQQQQQQQQ  are satisfied 

3.5.2 Lemma 4: 

The positive equilibrium 
*

HE of Human is locally asymptotically stable if 𝑅𝐺 > 1. 



Proof:  

Using the Routh- Hurwitz criterion in the Characteristic polynomial in equation (2), we have that 

0,0,0,0,0 01234  QQQQQ must hold.  

Here, 



























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By mathematical manipulations of 𝑄0in terms of the human reproduction number, we have 

2 2 2

1 2 1
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1H H H H H H H H H H

H H H H H H

Q
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    (67)
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 
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The Inequality (68) will hold if and only if  𝑅0𝐻 > 1. This Proves the Lemma 4∎ 

Similarly for the Vector Population (Mosquitoes), considering the Vector system of differential 

equations 
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 By taking the Jacobian at the Endemic point 𝐸𝑉
∗ = (𝑆𝑉

∗ , 𝐸𝑉
∗ , 𝐼𝑉

∗) we have; 
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The Characteristic equation of the above matrix is given as: 

01

2

2

3

3

* )( AAAAIEJ V  
  (70) 

Where, 
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It has been clearly verified using Routh-Hurwitz criterion that the system has all its eigen value 

to be negative if and only if 01202 ,0,0 AAAAA  holds. This is very trivial and hence the 

Endemic equilibrium is stable. 

3.5.3 Lemma 5:  

The positive endemic equilibrium 
*

VE of the vector (mosquito) population is locally 

asymptotically stable if 10 VR . 

Proof: 

By considering the condition for Routh-Hurwitz stability 00 A we have that
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The inequality (5) holds if and only if 𝑅0𝑉 > 1. 

This completes the proof and hence proves the Lemma 5∎ 

 

3.5.4 Theorem 3:  

The Endemic equilibrium 
*

HVE of the Vector-Host system (Human and Mosquito) is locally 

asymptotically stable if 1GR . 

Proof:  

We have that 1,1 00  VH RR for the Host (Human) and the Vector (Mosquito) respectively 

from Lemma 4 and Lemma 5.Then, 
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This proves the Theorem 3.  

 

4.0 Semi-Analytical Solution to the Seir-Sei Vector Host Model of Malaria 

Transmission by Variational Iteration Method (VIM) 

The implementation of semi-analytical algorithms or methods has spontaneously developed over 

the years in the field of numerical analysis and computational mathematics. 

Numerous researchers have implemented some methods appropriately in providing exact 

solutions to ordinary and partial differential equations viz [40-43]. Very recently, Loyinmi 



Adedapo C. and Akinfe Timilehin K. (2020) implemented an algorithm using the Elzaki 

transform to provide exact solutions to the Burgers-Huxley equation of three distinct cases as a 

result of variation in the equation parameters [44], Again in (2019), using a hybrid algorithm 

involving Elzaki transform and homotopy perturbation method (EHTPM), they proffered exact 

solution to the family of Fisher’s reaction-diffusion equation which is well applicable in genetics, 

stochastic processes, nuclear reactor theory, and so on. See ref [49] 

 Nadeem M, Li F, Ahmad H (2019) solved the fourth-order parabolic partial differential equation 

with variable coefficients using modified Laplace variational iteration method [45] and so on 

[46-48] 

The idea of Variational iteration method (VIM) was introduced by Ji-Huan He (1998) [29] who 

modified the general Lagrange multiplier proposed by Inokuti (1978) [32] to solve nonlinear 

problems. Abbasbandy and Shivanian (2009) [33], Abdou and Soliman (2005) [35], Mosmani 

and Abuasad (2006) [34] have implemented this method to solve effectively, easily and 

accurately, a large class of nonlinear problems with approximations which converges quickly to 

accurate solutions. 

The implementation of asymptotic techniques/methods is quite an interesting and demanding 

field of computational mathematics as there is no single best method or algorithm for a 

problem/model. The suitability of an algorithm to a problem depends on the simplicity, 

computational stress and radius/rate of convergence of such algorithm or method. 

 Adedapo Loyinmi C. and Akinfe Timilehin K. and other authors have buttressed these facts with 

their convergence analyses [49] 

 

 

 



4.1 Basic Idea of VIM 

Consider a non-linear differential equation 

)()()( tgtNutLu 
    (70)  

L  is the linear operator, N  is the nonlinear operator and )(tg  is a known analytic function. We 

construct a correction functional for the equation (1) which is given as: 
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Where   is a lagragian multiplier which can be obtained optimally and expressed as: 
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Where n  is the highest order of the differential equation. 

 

4.2 Solution of the Model using Variational Iteration Method 

We consider the model’s system of equations in (1), Subject to the initial condition (State 

Variables) Adopted from [1]. We have, 

1.0)0(,2.0)0(

,7.0)0(02.0)0(,07.0)0(,08.0)0(,83.0)0(





VV

VHHHH

IE

SRIES
  

 

 

*Table 2: Parameter description and Values of model 
 

 

 

 



4.2.1 VIM Application to Model Equations 

We have the correction functional of the system of equation governing this malaria model as: 
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Subject to the initial conditions 
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By putting the model parameters and the value of the lagrangian multiplier in eq. (72); we obtain 

an iteration formula for the seven (7) compartments as: 
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 We obtain the iterated values for each population/compartments as: 
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This gives the Semi-analytic solution of the SEIR-SEI model of malaria Transmission. 

 

5.0 Numerical Results 

The analytical Results for the SEIR-SEI model is illustrated and demonstrated in this section. 

This results were achieved using Computer Software and by using the parameter values and 

state variable values in the table 2 whose source were mainly from prominent literatures as well 

as assumptions.  

The results obtained by our proposed VIM were compared with the Computer In-built Runge-

kutta felhberg of fourth-fifth order (RKF-45) with degree four interpolant. In which a table of 

values obtained from all compartments is presented. 

Table 3 and 4 presents the results comparison of 𝑆𝐻(𝑡), 𝐸𝐻(𝑡), 𝐼𝐻(𝑡), 𝑅𝐻(𝑡), 𝑆𝑉(𝑡), 𝐸𝑉(𝑡),

𝑎𝑛𝑑 𝐼𝑉(𝑡) between VIM and RKF-45. 

 

*5.1 Table 3: The Host (Human) Population Model 

Comparison between Variational iteration Method and Runge-Kutta-Felhberg-45 (VIM vs RKF-

45) 

 

*5.2 Table 4: The Vector (Mosquito) Population Model 

Comparison between Variational iteration Method and Runge-Kutta-Felhberg-45 (VIM vs RKF-

45) 

 

 



5.3 Interpretation of Results  

The Results obtained from the Numerical simulation and the stability analysis of the proposed 

SEIR-SEI Vector-host Malaria Transmission model shows that the Disease-free equilibrium is 

stable when a mosquito doesn’t infect more than one individual. That is, when 𝑅0 does not 

exceed unity (𝑅0 < 1); and moment the converse happens (when 𝑅0 > 1) then there is an 

epidemic outbreak (endemic equilibrium). 

Furthermore, the population of the susceptible human undergoes an exponential growth pattern, 

and the graph is perfectly linear.  

The Population of the exposed and the infected human decays (decreases) in a logistic manner 

and hence a logistic decay which implies that there is a possibility of zero population (At DFE). 

While the Recovered Human, Susceptible, Exposed and infected mosquito follows a logistic 

growth pattern. 

All these imply that the populations in the system are prone to the infection since the population 

in the susceptible compartment is increasing. 

As a result, serious attention should be focused on this compartment as regards an appropriate 

intervention strategy to combat the contact of malaria infection at a time when the infected and 

the exposed population is stable (when 𝑅0 < 1). 

 

5.4 Discussion of Results 

A SEIR-SEI Vector-Host model of malaria transmission built on 7-dimensional system of 

ordinary differential was analyzed and solved numerically using the Variational iteration method 

(VIM) with initial conditions and parameter values from prominent existing literature. 

The stability analyses show that there is a possibility of the malaria infection going into 

extinction if one mosquito does not infect more than one individual (when 𝑅0 < 1). Similarly, 

epidemic outbreak of the disease is visible and might occur when 𝑅0 > 1.  

The Semi-analytical solution to the Malaria model using VIM when compared favorably with the 

Computer software in-built Runge-Kutta-Felhberg of fourth-fifths order (RKF-45) shows a 

high level of agreement, convergence and similarities. The two methods follow the same pattern 

and behavior when plotted.  

Having used our proposed method, it is now crystal clear that the variational iteration method is 

suitable, perfect and efficient in conducting and conveying analysis on Malaria models. 



 

6.0 Conclusion 

We have studied a nonlinear 7-dimensional ordinary differential equation that describes the 

transmission dynamics of malaria by carrying asymptotic stability analyses at the malaria-free 

and endemic equilibriums using the Gaussian elimination method and the routh-hurwitz criterion 

with three (3) theorems and three (3) lemmas. We also have solved the model using the 

variational iteration method (VIM). This method is unprecedented. 

From all these, we have come to a conclusion that the variational is an efficient alternative for 

conducting analyses on malaria models and other epidemiological models and as a matter of fact 

can be implemented in the classroom to provide solutions to a wider class of ordinary differential 

equations and epidemiological models. 
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TABLES 

Table 1: State Variables and parameter description of the SEIR-SEI model 

State Variables Description  

𝑺𝑯(𝒕) Susceptible Human at time t  

𝑬𝑯(𝒕) Exposed Human at time t  

𝑰𝑯(𝒕) Infected Human at time t  

𝑹𝑯(𝒕) Recovered Human at time t  

𝑺𝑽(𝒕) Susceptible mosquito at time t  

𝑬𝑽(𝒕) Exposed mosquito at time t  

𝑰𝑽(𝒕) Infected mosquito at time t  

  
Parameters  Description  

ᴧ𝑯 Recruitment rate of Humans  

ᴧ𝑽 Recruitment rate of Mosquitoes  

𝜶𝟏 Development from exposure to being infectious (Humans)  

𝜶𝟐 Recovery rate of Humans  

𝜶𝟑 Development from exposure to being infectious (mosquito)  

𝝁𝑯 Natural Death of Humans  

𝝁𝑽 Natural Death of Mosquitoes  

𝜹 Malaria induced death rate for Humans  

𝒒𝑯 Probability of transmission from an infectious mosquito to a susceptible 

Human  

𝒒𝑽 Probability of Transmission from an infectious Human to a susceptible 



mosquito  

𝜼𝑽 Mosquito Biting Rate  

𝜷𝑯 Infection rate of Humans(  𝑞𝐻 × 𝜂𝑉)         

𝜷𝑽 Infection rate of Mosquito (𝑞𝑉 × 𝜂𝑉)  

                    𝝆 Loss of Immunity for Humans  

𝝍 Newborn’s birth with infection  

 

 

Table 2: Parameter description and Values of model 

 

Parameter  Description Of Parameter  Value  Source  

H  Recruitment Rate of Humans  1.2  Osman et al.(2017) [1] 

V  Recruitment Rate of 

Mosquitoes  

0.7  Osman et al. (2017) [1] 

1  
Rate of Development from E(t) 

to I(t) for Humans  

0.05  S. Olaniyi et al. (2013) [2]   

2  
Recovery Rate of Humans  0.0035  Shah NH et al. (2013) [21] 

3  
Rate of Development from E(t) 

to I(t) for Mosquitoes  

 0.083  Shah NH et al. (2013) [21] 

H  
Death Rate of Humans  0.0115  Estimated  

V  
Death Rate of Mosquitoes  0.05  Macdonald G. (1957) [5] 

V  
Mosquito Biting rate  0.46  Jia Li (2015) [35] 

Hq  Probability of transmission 

from an infectious mosquito to 

Human  

0.022  Chitnis N et al. (2008) [37] 

Vq  
Probability of transmission 

from an infectious Human to 

Mosquito  

0.24  Chitnis N et al. (2008) [37] 

H  Infection Rate of Humans  0.00638  Osman et al. (2017) [1] 

V  Infection Rate of Mosquitoes  0.0696  Osman et al. (2017) [1] 

  Disease Induced Death Rate in 

Humans  

0.0681  Assumed  



  Newborn’s birth rate with 

infection  

0.0003  Osman et al. (2017) [1] 

  Loss of immunity in Humans  0.00017  Ishikawa H.   [36] 

et al. (2013)  

 

 

Table 3: The Host (Human) Population Model 

Comparison between Variational iteration Method and Runge-Kutta-Felhberg-45 (VIM vs RKF-

45) 

 

TIME 

Day(s) 

VIM RKF-45      VIM  RKF-45     VIM    RKF-45 

𝑆𝐻(𝑡) 𝑆𝐻(𝑡) 𝐸𝐻(𝑡) 𝐸𝐻(𝑡) 𝐼𝐻(𝑡) 𝐼𝐻(𝑡) 

0 0.83000000 0.83000000 0.08000000 0.08000000 0.07000000 0.07000000 

1 2.01301561 2.01301561 0.07583878 0.07583879 0.06835131 0.06835133 

2 3.18201621 3.18201617 0.07240199 0.07240198 0.06664753 0.06664754 

3 4.33719361 4.33719354 0.06961551 0.06961550 0.06492588 0.06492590 

4 5.47873683 5.47873677 0.06741038 0.06741037 0.06321729 0.06321730 

5 6.60683104 6.60683104 0.06572332 0.06572332 0.06154712 0.06154713 

6 7.72165743 7.72165743 0.06449681 0.06449684 0.05993590 0.05993589 

7 8.82339237 8.82339237 0.06367926 0.06367934 0.05839999 0.05839989 

8 9.91220582 9.91220759 0.06322463 0.06322496 0.05695224 0.05695186 

9 10.98826994 10.98826993 0.06309231 0.06309337 0.05560260 0.05560147 

10 12.05174144 12.05174145 0.06324656 0.06324953 0.05435880 0.05435584 

 

TIME 

Day(s) 

VIM RKF-45 

𝑅𝐻(𝑡) 𝑅𝐻(𝑡) 

0 0.02000000 0.02000000 

1 0.02000868 0.02000868 

2 0.02001142 0.02001142 

3 0.02000815 0.02000815 

4 0.01999895 0.01999895 

5 0.01998396 0.01998396 

6 0.01996344 0.01996344 

7 0.01993768 0.01993768 

8 0.01990702 0.01990702 

9 0.01987184 0.01987184 

10 0.01983256 0.01983256 

 

 

 

 

 



Table 4: The Vector (Mosquito) Population Model 

Comparison between Variational iteration Method and Runge-Kutta-Felhberg-45 (VIM vs RKF-

45) 

 

TIME 

Day(s) 

VIM RKF-45 VIM RKF-45 VIM RKF-45 

𝑆𝑉(𝑡) 𝑆𝑉(𝑡) 𝐸𝑉(𝑡) 𝐸𝑉(𝑡) 𝐼𝑉(𝑡) 𝐼𝑉(𝑡) 

0 0.70000000 0.70000000 0.20000000 0.20000000 0.10000000 0.10000000 

1 1.34126043 1.34126044 0.18222063 0.18222068 0.11053636 0.11053636 

2 1.94571554 1.94571556 0.17196734 0.17196734 0.11943083 0.11943067 

3 2.51484441 2.51484462 0.16860461 0.16860489 0.12734893 0.12734679 

4 3.05014134 3.05014133 0.17149462 0.17149495 0.13486396 0.13486393 

5 3.55302285 3.55302267 0.18008280 0.18008282 0.14248463 0.14248433 

6 4.02476836 4.02476839 0.19394581 0.19394865 0.15064626 0.15064609 

7 4.46648246 4.46648299 0.21276299 0.21283345 0.16002117 0.15973839 

8 4.87907270 4.87907287 0.23664713 0.23664911 0.17011741 0.17011742 

9 5.26322652 5.26323337 0.26472804 0.26547877 0.18212468 0.18212189 

10 5.61944102 5.61944155 0.28884690 0.29957234 0.19608738 0.19608754 

 

 

FIGURE LEGENDS 

Fig 1  

Solution comparison plot of the susceptible human population between variational iteration 

method (VIM) and Runge-Kutta-Felhberg 45 (RKF-45) 

Fig 2  

Solution comparison plot of the exposed human population between variational iteration method 

(VIM) and Runge-Kutta-Felhberg 45 (RKF-45) 

Fig 3 

Solution comparison plot of the infected human population between variational iteration method 

(VIM) and Runge-Kutta-Felhberg 45 (RKF-45) 

Fig 4 

Solution comparison plot of the Recovered human population between variational iteration 

method (VIM) and Runge-Kutta-Felhberg 45 (RKF-45) 

Fig 5 

Solution comparison plot of the susceptible mosquito population between variational iteration 

method (VIM) and Runge-Kutta-Felhberg 45 (RKF-45) 

 

 



Fig 6 

Solution comparison plot of the exposed mosquito population between variational iteration 

method (VIM) and Runge-Kutta-Felhberg 45 (RKF-45) 

Fig 7 

Solution comparison plot of the infected mosquito population between variational iteration 

method (VIM) and Runge-Kutta-Felhberg 45 (RKF-45) 

 

 

 

 


