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We considered an incompressible fluid-saturated porous layer bounded by two8

infinite parallel plates. Boussinesq approximation and Darcy’s law are applied.9

The permeability is assumed to be a linear function of the depth z. The linear10

stability is investigated. The long wavelength expansion method is applied to11

conduct the weakly nonlinear stability analysis. The evolution equation is derived12

and analyzed. A uniformly valid periodic solution of the evolution equation13

is obtained by the application of Poincaré-Lindstedt method. Some numerical14
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1 Introduction19

The greenhouse effects of carbon dioxide is one of the most urgent problems that face20

the humaneness. The greenhouse gas emissions can be reduced through the geologi-21

cal carbon dioxide sequestration in deep rock formulations. Geological carbon dioxide22

sequestration is the process of trapping CO2 that produced by buring fossil fuels or23

any other chemical or biological processes and placing it in a deep rock formulation24

(thousands of feet deep) for long-term storage so that it will not affect the atmosphere.25

1Corresponding author. Email: m.assi@psut.edu.jo
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This process comprising of three stages: Capturing, transporting, and injecting CO226

into geological formulation such as gas reservoirs, unmineable coal seams, and Basalt27

formulations [1]-[4]. The capacity of such formulations is estimated worldwide to be28

between 675-900 Gt carbons in the gas reservoirs, between 1000-10000 Gt for Saline29

aquifers, and for unmineable coal is between 3-200 Gt of carbon. Depends on the30

geothermal gradient and the fluid properties CO2 migrates and reacts with the rocks31

formulation. Hence, many trapping mechanisms such as structure trapping, residual-32

phase trapping, solubility trapping, and mineral trapping have been contributed to33

retention the CO2 sequestration for a very long period [5].34

In the past few decades, the interest in the understanding of the convection in porous35

media has been increased. Vast of studies have been made in several branches of engi-36

neering and sciences[6]-[23]. Natural convection in porous media has been explored in37

numerous articles. Horton and Rogers in 1945 and Lapwood in 1948, have studied the38

stability analysis of the convection of a fluid in a porous medium for a horizontal fluid39

layer problem. The critical Rayleigh number was 4π2 [6, 7]. Foster [8, 9], applied the40

amplification theory to study a time dependent coefficients of a system of partial dif-41

ferential equations. They determined the onset of instability in terms of critical time.42

King et. al., use the amplification method to study the carbon dioxide sequestration43

problem in anisotropic porous media [10, 11]. The problem of convection of carbon44

dioxide storage in saline aquifers has been investigated by Hassanzadeh et. al. [12]-[14]45

and Emami-Meybodi et. al. [15, 16]. A step-function base profile has been considered46

by Wanstall and Hadji [17]. They conducted the stability analysis by performing the47

normal modes approach. They investigated the linear and nonlinear stability analysis48

to obtain the minimum thickness of the layer of the saturated brine that is required to49

the fluid motion.50

Neufeld et. al. [18], performed laboratory experiments to study the convective be-51

havior of CO2 brine. Their numerical simulations depicted the relation between the52

convective flux and the Rayleigh number. To study the dissolution of CO2 into brine,53

Neufeld et. al. [19] used mixtures of methanol and ethylene-glycol solutions in water in54

their laboratory experiments. Batchelor and Nitsche [20], considered the small distur-55

bance to stationary stratified fluid. They showed numerically that the growth rate is a56

function of the Rayleigh number, the Prandtl number, and the horizontal wavenumber57

of the disturbance. A nonlinear stability analysis of a convection in porous layer with58

finite conducting boundaries has been conducted by Riahi [21]. Hill and Morad [22],59

have studied the convective stability in an anisotropic porous medium. They consid-60

ered a water-saturated porous layer bounded by two horizontal parallel plates. The61

Darcy equation with variable permeability is used to govern the fluid motion.62

Vo and Hadji [23], investigated the linear and weakly nonlinear stability analyses of63

the convection induced by sequestration of CO2 in a perfectly impervious geological64

formulation. They considered a horizontal layer of brine saturated porous medium65
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confined between two horizontal planes that are impermeable to mass flow. They used66

the classical normal modes to investigate the linear stability. The weakly nonlinear67

stability is conducted by applying the long wavelength asymptotic expansion method68

that is valid for small Damköhler numbers. They determined that the Rayleigh number69

and its corresponding wavenumber are independent of the depth of the formulation.70

Vo and Hadji [23], described the model that mimics the Rayleigh-Taylor instability71

to study the carbon sequestration. They considered the heavy carbon-saturated layer72

,(Z0 1] on the top of light free-carbon layer, [0 Z0). This situation leads to very thin73

unstable stratified layer at z = Z0 a cross which buoyancy diffuses. The stratified basic74

profile is defined as step function and the reference carbon concentration in porous75

media is defined by76

Cref (z) =

0 0 < z < Z0

z − Z0

1− Z0

Z0 < z < 1.

The basic temperature profile is defined by TB = T1 + (T2 − T1)H(z − Z0), where T177

and T2 are temperature values at the lower region and the upper region, respectively78

and H is the Heaviside function.79

In this paper, we considered the same model that has been proposed by Hill and Morad80

[22]. Where the instability is quantified in term of long time evolution with the Dirich-81

let and Neumann boundary conditions at the top and lower walls respectively.82

83

This paper is organized as follows: In section (2), a full description of the problem is84

presented and the problem is governed by a mathematical model. Moreover, the basic85

profile of the concentration is derived. In section (3), the steady-state linear stability is86

conducted. The weakly nonlinear stability is investigated by the application of the long87

wavelength exapansion method in section (4). In section (5), The Poincaré-Lindstedt88

method is used to obtain a uniformly valid periodic solution. Numerical simulations89

are intoduced and the results are concluded in section (6).90

2 Mathematical Formulation91

In this section we considered the mathematical model that has been discussed by Hill92

and Morad [22], Wanstall and Hadji [17], and Vo and Hadji [23]. That is we consid-93

ered an incompressible fluid-saturated porous layer bounded by two infinite horizontal94

parallel plates. We assumed that the Boussinesq approximation and the Darcy’s law95

are applied and the fluid motion is governed by the Darcy equation. Therefore, the96

nondimensionalized governing system of equations comprised of Darcy’s equation, con-97

tinuity equation, the conservation of carbon dioxide equation, and the equation of98

solute balance is given by99

∇ · u = 0 (1a)
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1

F(z)
u = ∇ p− ck (1b)

100

∂ c

∂ t̂
+ u · ∇ c+

(
dM(z)

dz

)
w =

ξ

R
∇2
H c+

1

R

(
∂2c

∂z2
−Da c

)
(1c)

101

ρ = ρ0 [1 + γc (c− C0)] (1d)

where M(z) is the basic profile of concentration, p is the pressure, k is the vertical unit102

vector, ρ0 is the reference density, ξ =
κh
κv

is the ratio of the horizontal and vertical103

solutal difusion, F(z) is the z-dependent dimensionless permeability, Da =
β H2

ψp κv
is104

the Damökhler number, β is the reaction rate and the control parameter, namely, the105

Rayleigh-Darcy number R =
γc g H K0C0

φp ν κν
, where γc is the solutal expansion, g is the106

gravitational constant, H is the distance between the two plates, K0 is the reference107

permeability value, C0 is the reference concentration of CO2, φp is the porosity, ν is108

the kinematic viscosity, and κν is the vertical CO2 diffusion coefficient. Subject to the109

following boundary conditions:110

u = 0, at z = 0, z = 1

and111

∂c

∂z
= 0, at z = 0, z = 1

For more details about this model please refer to [22], [17] and [23]. Figure (1), describes112

the problem with its boundary conditions.113

114

The step function base state is modeled by the partial differential equation115

∂CB

∂t̂
=

1

R

(
∂2CB
∂z2

−DaCB
)
, 0 ≤ z ≤ 1, t > 0 (2)

subject to the boundary conditions116

∂CB
∂z

= 0 at z = 0, z = 1

and initial condition117

CB(z, 0) =

{
0 0 ≤ z < Z0

1 Z0 ≤ z ≤ 1.

The solution of equation (2) is given by118

CB(z, t̂) = 1− Z0 − 2
∞∑
n=1

sin(nπ Z0)

nπ
cos(nπ z) exp(−Da+ n2 π2

R
t̂) (3)
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Figure 1: An incompressible fluid-saturated porous layer bounded by two infinite hor-

izontal parallel plates.
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Figure 2: The plot of the concentration profile cB(z) as a function of the depth of the

fluid layer z and t = 0.001 (dotted line), t = 0.015 (dashed line) and t = 0.025 (solid

line).

Figure (2) bellow shows the plot of the concentration basic profile as a function of z119

for some values of t.120

121
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Following [17], the basic concentration profile consists of a light layer 0 < z < Z0122

under a heavier one, Z0 < z < 1 which can be described by the Heaviside function i.e.123

M(z) = H(z−Z0). Upon subtracting the basic state profiles, introducing the poloidal124

representation for the velocity field u = ∇ × (∇ × φk), and considering the vertical125

component of the velocity we removed the pressure term and the system of equations126

(1a)-(1d) reduced to127

F(z)∇2φ−F ′(z)
dφ

d z
= −F2(z) c (4a)

128

ct̂ + (∇Hφz) · (∇H c)−∇2
H φ cz = −∇2

H φ δ(z−Z0) +
ξ

R
∇2
Hc+

1

R

(
∂2c

∂z2
−Da c

)
(4b)

where φ is the poloidal representation for the divergence velocity field, δ(z−Z0) is the129

Dirac delta function, c is the deviation of the concentration in volume fraction from130

the diffusive state, R is Rayleigh-Decay number, and ∇H = (∂/∂x, ∂/∂y). Subject to131

the following Boundary conditions132

φ = 0 at z = 0, 1, and
∂c

∂z
= 0 at z = 0, z = 1 (5)

Upon introducing the transformation Φ = Rφ and
∂

∂t
= R

∂

∂t̂
the equations (4a) and133

(4b) reduced to134

F(z)∇2Φ−F ′(z)
dΦ

d z
= −RF2(z) c (6a)

135

ct + (∇HΦz) · (∇H c)−∇2
H Φ cz = −∇2

H Φ δ(z − Z0) + ξ∇2
Hc+

(
∂2c

∂z2
−Da c

)
(6b)

Subject to the following Boundary conditions136

Φ = 0 at z = 0, 1, and
∂c

∂z
= 0 at z = 0, z = 1 (7)

To investigate the linear and weakly nonlinear stability we will assume ξ = 1, the137

convection effect dominates over the reaction effect i.e. Da = 0 and F(z) = 1 +138

λz, |λ| < 1, see [22]. Hence, equations (6a) and (6b) become139

(1 + λz)∇2Φ− λ dΦ

d z
= −R (1 + λz)2 c (8a)

140

ct + (∇HΦz) · (∇H c)−∇2
H Φ cz = −∇2

H Φ δ(z − Z0) +∇2
Hc+

∂2c

∂z2
(8b)

Subject to the following Boundary conditions141

Φ = 0 at z = 0, 1, and
∂c

∂z
= 0 at z = 0, z = 1 (9)
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3 Steady-state linear stability analysis142

Following the standard procedure used in [24], we obtained the following linearized143

system of equations governing the convective perturbations144

(1 + λz)∇2φ− λdΦ

dz
= −(1 + λz)2Rc (10a)

145

∇2c = −∇2
H φ δ(z − Z0) (10b)

Subject to the following Boundary conditions146

Φ = 0 at z = 0, 1, and
∂c

∂z
= 0 at z = 0, z = 1 (11)

To investigate the linear stability we will introduce the normal modes147

Φ = eiα·xW (z)(z), c = eiα·xS(z). (12)

where x = (x, y) and |α| = α, we obtained148

(1 + λz)(D2W (z)− α2W (z)) = −(1 + λz)2RS(z) (13a)
149

(D2 − α2)S(z) = α2W (z) δ(z − Z0) (13b)

where D = d
d z

. The corresponding Dirichlet and Neumann boundary conditions are150

W = 0 at z = 0, 1, DS = 0 at z = 0, 1.151

Expand W,S and R in terms the small wave number α and keep λ of order 1.152

W = W0 + α2W2 + · · · , S = S0 + α2S2 + · · · and R = R0 + α2R2. The O(1) problem153

is given by154

D

[
1

1 + λz
DW0

]
= −R0 S0 (14a)

155

D2S0 = 0 (14b)

Subject to the boundary conditions W0(0) = W0(1) = 0 and DS0(0) = DS0(1) = 0.

The solution of the equations (14a) and (14b) is given by

S0 = 1

W0 = −R0G

6

[
(3z2 + 2λz3)− L1(2z + λz2)

]
Where L1 = ((3/2) + λ)(1− λ/2).156

157

Proceeding to the next order O(α2), the equation of the concentration becomes158

D2S2 − S0 = W0 δ(z − Z0) (15)
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which has a unique solution if and only if the follwing condition is satisfied:∫ 1

0

S∗0 [S0 +W0 δ(z − Z0)] dz = 0

where S∗0 is the solution of the adjoint problem of equation (14b), namely D2S∗0 = 0

with corresponding boundary conditions DS∗0(0) = DS∗0(1) = 0 to get S∗0 = 1. Upon

applyong the Fredholm alternative at O(α2) we obtain that the critical Rayleigh-Darcy

number

R0 =
6

L1(2Z0 + λZ2
0)− (3Z2

0 + 2λZ3
0)

As λ→ 0 the critical Raleigh-Dracy number becomes R0 =
2

Z0 − Z2
0

which is consistent159

with what had been obtained in [17]. Figure (3) depicts that plot of the critical160

Rayleigh-Dracy number R0 is decresded as the values of λ have increased in the right161

figure and the left figure shows that the minimum value of the critical Rayleigh-Dracy162

number R0 is at Z0 = 0.5 and it goes to infinity as Z0 approaches 0 or 1.
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Figure 3: (Right) Plot of the critical Rayleigh-Dracy number R0 as a function of λ for

Z0 = 0.1 (solid line) and Z0 = 0.5 (dashed line). Plot of the critical Rayleigh-Dracy

number R0 as a function of Z0 for λ = 0 (solid line), λ = −0.5 (dashed line) and

λ = 0.5 (dotted line). (Left)

163

4 Weakly nonlinear stability164

In this section we will investigate the weakly nonlinear stability by deriving the evolu-

tion equation. Following the long wavelength analysis procedure used in [25] and [26]

we introduce the small parameter ε� 1 and we scale X = εx, Z = z, τ = ε4t and keep

λ of O(1) quantity in equations (8a) and (8b). Moreover, we expand

Φ = Φ0 + ε2Φ2 + · · · , c = c0 + ε2c2 + ε4c4 + · · ·

and R = R0 + ε2µ̂2. The solution of leading order proplem that is described by165

(1 + λZ)D2Φ0 − λDΦ0 = −(1 + λZ)2R0 c0 (16a)
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166

D2c0 = 0 (16b)

with boundary conditions Φ0(0) = Φ0(1) = 0 and Dc0(0) = Dc0(1) = 0 is given by

Φ0 = −R0 h

6

[
(3Z2 + 2λZ3)− L1 (2Z + λZ2)

]
c0 = h(X, τ)

where L1 = (1.5 + λ)(1− λ/2).167

Proceeding to the next order, the O(ε2) problem is described by168

D2Φ2 − λDΦ2 + (Φ0)XX = −(1 + λZ)[R0 c2 + µ̂2 c0] (18a)
169

(DΦ0)X (c0)X = −(Φ0)XX δ(Z − Z0) +D2c2 + (c0)XX (18b)

Application of the solvability condition on equation (18b), yields170

R0 =
6 + 3λ

(3 + 2λ)(Z0 + (λ/2)Z2
0)− (3Z2

0 + 2λZ3
0)(1 + λ/2)

(19)

As λ→ 0 the critical Raleigh-Dracy number becomes R0 =
2

Z0 − Z2
0

which is consistent171

with what had been obtained in [17]. Proceeding to solve O(ε2) problem and because172

of the appearance of the δ(Z − Z0) term we will divide the problem in two cases and173

equation (18b) will be divided into two equations174

The light layer when 0 < Z < Z0:D
2c−2 = −R0 (c0)

2
X (Z + λZ2)− (c0)XX (20a)

175

The heavy layer when 0 < Z < Z0:D
2c+2 = −R0 (c0)

2
X (Z + λZ2)− (c0)XX (20b)

with boundary conditions Dc−2 (0) = 0 and Dc+2 (1) = 0. Thus, the solutions of equa-

tions (20a) and (20b) are

c−2 = −R0 (hX)2

36
[6Z3 + 3λZ4 − L1(3Z

2 + λZ3)]− hXX
2

Z2 + A−

c+2 = −R0 (hX)2

36
[6Z3 + 3λZ4 − L1(3Z

2 + λZ3)]− hXX
2

(Z2 − 2Z) + A+

where A− = Z0 hXX + A+ and176

177

A+ =
R0 (hX)2

720
[(30 + 12λ)− 5L1(4 + λ)]− hXX

6
(2 + 3Z2

0). Similarly, the solu-

tion of equation (18a) is given by

Φ−2 = −R0 hXX
10080

[
92λ3 Z7 + (182− 35L1)λ

2 Z6 − (588λ+ 98λ2 L1)Z
5 − (840 + 140λL1)Z

4
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+L1 − ((1680Z2
0 − 3360Z0 + 1120)λ− 280L1)Z

3 − (2520Z2
0 − 5040Z0 + 1680)Z2

]
+
R2

0 (hX)2

30240

[
72λ2 Z7 + (294λ− 35L1)Z

6 + (252− 210λL1)Z
5 − 210L1 Z

4 − (168λ2) + 420λ

−70L1(4λ+ λ2))Z3 − (252λ+ 630− 105L1 (4 + λ))Z2
]
− µ̂

2 h

6
(2λZ3+3Z2)+

B−

2
(λZ2+2Z)

Φ+
2 = −R0 hXX

10080

[
92λ3 Z7 + (182− 35L1)λ

2 Z6 − (588λ+ 98λ2 L1)Z
5 + (1260λ− 3360− 70λL1)Z

4

−((1680Z2
0 + 1120)λ− 1680− 280L1)Z

3 − (2520Z2
0 + 1680)Z2

]
+
R2

0 (hX)2

30240

[
72λ2 Z7 + (294λ− 35L1)Z

6 + (252− 210λL1)Z
5 − 210L1 Z

4 − (168λ2) + 420λ

−70L1(4λ+ λ2))Z3 − (252λ+ 630− 105L1 (4 + λ))Z2
]
− µ̂

2 h

6
(2λZ3+3Z2)+

B+

2
(λZ2+2Z)+A++

where

B+ =
R0 hXX

15120 (2 + λ)

[
(288λ3 − 546λ2 − (1260Z4

0 + 5040Z2
0 + 1344)λ+ 5040Z3

0 + 7560Z2
0 + 2520)

−L1(105λ3 + 294λ2 − 420λ− 840)
]

+
R2

0 (hX)2

15120 (2 + λ)

[
(96λ2 + 378λ− 378− L1 (35λ2 + 175λ+ 210)

]
+
L1 µ̂2 h

3
.

B− =
Z2

0 R0 hXX
2

+B+

A++ =
R0 hXX
10080

[
96λ3 + 182λ2 − (1680Z2

0 + 448)λ+ (840− 1260λ)− 2520Z2
0 − 840

−L1(35λ3 + 98λ2 − 140λ− 280)
]

+
R2

0 (hX)2

30240

[
(96λ2 + 378λ+ 378− L1 (35λ2 + 175λ+ 210)

]
+
µ̂2 h

6
(2λ+ 3)− B+

2
(2 + λ).

Proceeding to the next order O(ε4), we have178

D2c4 = hτ+hX (DΦ2)X−(Φ0)XX Dc2+(DΦ0)X (c2)X+(Φ2)XX δ(Z−Z0)−(c2)XX (22)

with boundary conditions Dc4(0) = Dc4(1) = 0. Integrating equation (22) with respect179

to Z from Z = 0 to Z = 1, yields the sought evolution equation180

hτ = −AhXXXX − µ̂2B hXX + C (hX)2XX + E h2X hXX (23)
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Where

A = −R0 (Z0 − Z2
0)

10080 (2 + λ)

{
[35(Z4

0 + Z3
0 + Z2

0 + Z0)L1 − 96(Z5
0 + Z4

0 + Z3
0 + Z2

0 + Z0)]λ
4+

[(70Z4
0 + 168Z3

0 + 168Z2
0 + 168Z0 + 70)L1 − (192Z5

0 + 374Z4
0 + 374Z3

0 + 374Z2
0 + 374Z0 + 192)]λ3

+[(196Z3
0 + 56Z2

0 + 56Z0 + 196)L1 − (784Z4
0 − 1484Z2

0 − 84Z0 + 364)]λ2

−[280(Z2
0 + 2Z0 + 1)L1 − 56(36Z3

0 + 21Z2
0 + Z0 + 16)]λ− 560(Z0 + 1)L1 − 1680(2Z2

0 − Z0 + 1)
}

181

B =
1

3
(Z0 − Z2

0) (λZ0 + L1)

C =
R2

0 (Z0 − Z2
0)

30240 (2 + λ)

{
[(72Z5

0 + 72Z4
0 + 72Z3

0 + 72Z2
0 − 96Z0)− 35(Z4

0 + Z3
0 + Z2

0 + Z0)L1]λ
3+

[(144Z5
0 + 438Z4

0 + 438Z3
0 + 438Z2

0 − 318Z0 − 192)− (70Z4
0 + 280Z3

0 + 280Z2
0 − 140Z0 − 70)L1]λ

2+

[(588Z4
0 + 840Z3

0 + 840Z2
0 − 756)− (420Z3

0 + 630Z2
0 + 70Z0 − 350)L1]λ

+504Z3
0 + 504Z2

0 + 504Z0 − 756− 420(Z2
0 + Z0 − 1)L1

}
182

E =
R2

0

30240

[
96λ2 + 504λ+ 756− (84λ2 + 476λ+ 870)L1 + (21λ2 + 140λ+ 280)L2

1

]
The evolution equation 23 is of parabolic type which is wellposed whenever the coeffi-183

cient of the fourth derivative, −A, is negative. Figure 4 shows that −A is negative for184

all valueas of λ and Z0.

-1 -0.5 0 0.5 1

λ

-2

-1.5

-1

-0.5

0

A

Figure 4: The plot of A as a function of λ, where |λ| < 1 and 0 ≤ Z0 ≤ 1.

185

5 Uniformly Valid Periodic Solution186

Upon using the general procedure of Biot number [27], the term −γ̂ h will be added to187

equation (23) to obtain188

hτ = −AhXXXX − µ̂2B hXX − γ̂ h+ C (hX)2XX + E h2X hXX (24)
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Upon Introducing the following scaleas and transformations h = a f, ξ = bX, τ =189

e τ̂ , γ = aγ̂ and e = 1/a we have190

fτ = −fξξξξ − 2µ2 fξξ − γ f + Γ (fξ)
2
ξξ + (fξ)

2 fξξ (25)

where

a =

√
A
E
, b =

(
1

A

√
E
A

)1/4

, Γ =
C√
AE

and µ2 =
µ̂2 a b2

2

. To invetigate the stability of the static solution of equation (25) we consider the191

linear part192

fτ = −fξξξξ − 2µ2 fξξ − γ f (26)

Introducing the normal modes f(ξ, τ) = eστ+iθ ξ, the following dispersion relation is193

obtained194

σ = −(θ2 − µ2) + µ4 − γ (27)

Therefore, the trivial static solution, f = 0, is unstable when γ < µ4. Upon introducing

the small parameter ε � 1, the weakly nonlinear stability of the evolution equation

can be investigated. To conduct the perturbation analysis around the linear solution,

we expand

γ = µ4 − ε γ1 − ε2 γ2, τ = ε2 η

and

f = ε f1 + ε2 f2 + ε3 f3 + · · ·

The O(ε) problem of equation (25) is described by195

(f1)ξξξξ + 2µ2 (f1)ξξ + γ f1 = 0 (28)

Whose period solution on the interval

(
−π
µ
,
π

µ

)
is f1 = cos(µ ξ). Because of the196

secular terms that are expected due to the linear part and the nonlinear terms, we will197

apply the Poincaré-Lindstedt method [28] to obtain a uniformly valid periodic solution.198

Substituting ν = ω ξ and expanding ω = 1+ε ω1+ε2 ω2+ · · · in equation (25) to obtain199

ω4 fνννν + 2µ2 ω2 fνν + γ f = ω4[Γ (fν)
2
νν + (fν)

2 fνν ] (29)

Define the operator L (f) = fνννν + 2µ2 fνν + µ4 f . The leading order problem is200

described by201

L (f1) = (f1)νννν + 2µ2 (f1)νν + µ4 f1 = 0 (30)

Whose solution is f1 = cos(µ ν). The O(ε2) problem is described by202

L (f2) = γ1 cos(µν) + µ4 cos(2µν) (31)

12



To remove the mixed-secular terms we set γ1 = 0, that is there is no subcritical203

instability. Thus, the solution of L (f2) = µ4 cos(2µν) is f2 = 1
9

cos(2µν). Proceeding204

to the next order, the O(ε3) problem is described by205

L (f3) =

[
γ2 − 4ω2

1 µ
4 − Γµ4

4
− 5µ4

9

]
cos(µν)−20ω1 µ

4

9
cos(2µν)+

[
Γµ4

4
+

5µ4

9

]
cos(3µν)

(32)

To remove the secular term, we set γ2 − 4ω2
1 µ

4 − Γµ4

4
− 5µ4

9
= 0 and then we solve

for ω1 to get

ω1 = ±

√
γ2

4µ4
− Γ

16
− 5

36

Therefore, the solution of equation (32) is given by206

f3 = −5ω1

36
cos(2µν) +

9Γ + 20

2916
cos(3µν) (33)

Thus, a uniformly valid steady state of equation (25) is given by207

f = ε cos((1+εω1)ξµ)+ε2
1

9
cos(2(1+εω1)ξµ)+ε3

[
−5ω1

36
cos(2(1 + εω1)ξµ) +

9Γ + 20

2916
cos(3(1 + εω1)ξµ)

]
(34)

Figure (5) shows the the plot of the uniformly valid periodic solution of equation208

(25) as a function of ξ for γ2 = 10 and µ = 0.7.209

210
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Figure 5: A plot of the periodic solution of equation (25) as a function of ξ with γ2 = 10

and µ = 0.7.
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6 Conclusion211

In this paper, we studied the mathematical model that was proposed by Hill and Morad212

[22]. That is we considered an incompressible fluid-saturated porous layer bounded by213

two infinite parallel plates. Boussinesq approximation and Darcy’s law are applied. The214

permeability is assumed to be a linear function of the depth z, namely, F(z) = 1 +λ z.215

The base state of the model is consisting of a light free-carbon layer, [0, Z0) at the216

bottom and a havier carbon-saturated layer, (Z0, 1] at the top, figures (1) and (2) illus-217

trate the problem. Steady-state linear stability analysis is conducted and the critical218

Rayleigh -Darcy number is obtained, namely, R0 =
6

L1(2Z0 + λZ2
0)− (3z2) + 2λZ3

0)
.219

If we let λ → 0, then the critical Rayleigh-Darcy numbedr becomes R0 =
2

Z0 − Z2
0

,220

which is consistent with the value obtained in [17]. The relation between the critical221

Rayleigh-Darcy number and the permeability coefficient λ is depicted in figure (3).222

223

The long wavelength expansion method is applied to derive the evolution equation224

(23). Figure (6) shows the velocity, Φ0 as a function of the depth Z for different values225

of the permeability coefficient λ.226

227
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Figure 6: The plot of the velocity Φ0 as a function of the depth Z with λ = −0.5

(dotted line), λ = 0 (solid line) and λ = 0.5 (dashed line).

Moreover, the dispersion equation is obtained and the relation between the growth228

rate, biot number and the weve number is depicted in figure (7) and a uniformly valid229

periodic solution is obtained by the application of the Poincaré-Lindstedt method and230

the plot of the solution is shown in figure (5).231
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the biot number γ (left figure) and the 3D plot (right figure) with µ = 0.7.
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