REFERENCES
Abida, H., Dolch, L.J., Meï, C., Villanova, V., Conte, M., Block, M.A.,
… Rébeillé, F. (2015). Membrane glycerolipid remodeling triggered
by nitrogen and phosphorus starvation in Phaeodactylum tricornutum.Plant Physiology, 167(1), 118-36.
Ajmera, I., Hodgman, C., & Lu, C. (2019). An integrative systems
perspective on plant phosphate research. Genes, 10, 139.
Amtmann, A., Hammond, J.P., Armengaud, P., & White, P. J. (2005).
Nutrient sensing and signalling in plants: potassium and phosphorus.Advances in Botanical Research, 43, 209-257.
Bari, R., Datt, Pant, B., Stitt, M., & Scheible, W.R. (2006). PHO2,
microRNA399, and PHR1 define a phosphate-signaling pathway in plants.Plant Physiology, 141, 988-999.
Bates, T. R., & Lynch, J.P. (1996). Stimulation of root hair elongation
in Arabidopsis thaliana by low phosphorus availability. Plant Cell
and Environment 19, 529-538.
Benning, C. (1998). Biosynthesis and function of the sulfolipid
sulfoquinovosyl diacylglycerol. Annual Review of Plant Physiology
and Plant Molecular Biology, 49, 53-75.
Bertrand, I., Holloway, R., Armstrong, R., & McLaughlin, M. (2003).
Chemical characteristics of phosphorus in alkaline soils from southern
Australia. Soil Research, 41, 61-76.
Bhardwaj, A.K., Zenone, T., Jasrotia, P., Robertson, G.P., Chen, J., &
Hamilton, S. K. (2011). Water and energy footprints of bioenergy crop
production on marginal lands. GCB Bioenergy, 3, 208-222.
Broeckling, C.D., Huhman, D.V., Farag, M.A., Smith, J.T., May, G.D.,
Mendes, P., … Sumner, L.W. (2005). Metabolic profiling of
Medicago truncatula cell cultures reveals the effects of biotic and
abiotic elicitors on metabolism. Journal of Experimental Botany,56, 323-336.
Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer,
P., Yamamoto, Y.Y., Sieburth, L., & Voinnet, O. (2008). Widespread
translational inhibition by plant miRNAs and siRNAs. Science,320(5880),1185-1190.
Carstensen, A., Herdean, A., Schmidt, S.B., Sharma, A., Spetea, C.,
Pribil, M., & Husted, S. (2018). The impacts of phosphorus deficiency
on the photosynthetic electron transport chain. Plant Physiology,177(1), 271-84.
Casler, M.D., Tobias, C.M., Kaeppler, S.M., Buell, C.R., Wang, Z, Cao,
P., … Ronald, P. (2011). The switchgrass genome: tools and
strategies. The Plant Genome, 4, 273-282.
Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient
method for isolating RNA from pine trees. Plant Molecular Biology
Reporter, 11, 113-116.
Dai, X., Zhuang, Z., & Zhao, P. X. (2018). psRNATarget: a plant small
RNA target analysis server (2017 release). Nucleic Acids
Research, 46(W1), W49-W54.
Devaiah, B. N., Karthikeyan, A. S., & Raghothama, K.G. (2007). WRKY75
transcription factor is a modulator of phosphate acquisition and root
development in Arabidopsis. Plant Physiology, 143, 1789-1801.
Devers, E. A., Branscheid, A., May, P., & Krajinski, F. (2011). Stars
and symbiosis: microRNA-and microRNA-mediated transcript cleavage
involved in arbuscular mycorrhizal symbiosis. Plant Physiology,156(4), 1990-2010.
Ding, N., Guo, H., Kupper, J. V., & McNear, D. H. (2016). Shoot
specific fungal endophytes alter soil phosphorus (P) fractions and
potential acid phosphatase activity but do not increase P uptake in tall
fescue. Plant and Soil, 401, 291-305.
Ding, N., Kupper, J. V., & McNear, D. H. (2015). Phosphate source
interacts with endophyte strain to influence biomass and root system
architecture in tall fescue. Agronomy Journal, 107, 662-670.
Du, Q., Wang, K., Zou, C., Xu, C., & Li, W. X. (2018). The
PILNCR1-miR399 regulatory module is important for low phosphate
tolerance in maize. Plant Physiology, 177(4), 1743-1753.
Franco-Zorrilla, J. M., Valli, A., Todesco, M., Mateos, I., Puga, M. I.,
Rubio-Somoza, I., … Paz-Ares, J. (2007). Target mimicry provides
a new mechanism for regulation of microRNA activity. Nature
Genetics, 39, 1033-1037.
Gaude, N., Nakamura, Y., Scheible, W. R., Ohta, H., & Dörmann, P.
(2008). Phospholipase C5 (NPC5) is involved in galactolipid accumulation
during phosphate limitation in leaves of Arabidopsis. The PlantJournal, 56, 28-39.
Goldstein, A. H., Baertlein, D. A., & McDaniel, R. G. (1988). Phosphate
starvation inducible metabolism in Lycopersicon esculentum. I. Excretion
of acid phosphatase by tomato plants and suspension-cultured cells.Plant Physiology, 87, 711-715.
Gelfand, I., Sahajpal, R., Zhang, X. S., Izaurralde, R. C., Gross, K.
L., & Robertson, G. P. (2013). Sustainable bioenergy production from
marginal lands in the US Midwest. Nature, 493, 514-517.
Gopalakrishnan, G., Cristina Negri, M., & Snyder, S. W. (2011). A novel
framework to classify marginal land for sustainable biomass feedstock
production. Journal of Environmental Quality, 40, 1593-1600.
Gregory, A. L., Hurley, B.A., Tran, H.T., Valentine, A. J., & She, Y.
(2009). In vivo regulatory phosphorylation of the phosphoenolpyruvate
carboxylase AtPPC1 in phosphate-starved Arabidopsis thaliana.Biochemical Journal, 420, 57-65.
Guretzky, J. A., Biermacher, J. T., Cook, B. J., Kering, M. K., &
Mosali, J. (2011). Switchgrass for forage and bioenergy: harvest and
nitrogen rate effects on biomass yields and nutrient composition.Plant and Soil, 339, 69-81.
Hackenberg, M., Shi, B. J., Gustafson, P., & Langridge, P. (2013).
Characterization of phosphorus-regulated miR399 and miR827 and their
isomirs in barley under phosphorus-sufficient and phosphorus-deficient
conditions. BMC Plant Biology, 13(1), 214.
Hammond, J. P., Broadley, M. R., Bowen, H. C., Spracklen, W. P., Hayden,
R. M., & White, P. J. (2011). Gene expression changes in phosphorus
deficient potato (Solanum tuberosum L.) leaves and the potential
for diagnostic gene expression markers. PloS one, 6(9), e24606.
Hernandez, G., Ramirez, M., Valdes-Lopez, O., Tesfaye, M., Graham, M.
A., Czechowski, T., … Vance, C. P. (2007). Phosphorus stress in
common bean: root transcript and metabolic responses. Plant
Physiology, 144, 752-767.
Hernandez, G., Valdés-López, O., Ramírez, M., Goffard, N., Weiller, G,
Aparicio-Fabre, R., …Vance, C.P. (2009). Global changes in the
transcript and metabolic profiles during symbiotic nitrogen fixation in
phosphorus-stressed common bean plants. Plant Physiology, 151(3),
1221-1238.
Hinsinger, P. (2001). Bioavailability of soil inorganic P in the
rhizosphere as affected by root-induced chemical changes: a review.Plant and Soil, 237, 173-195.
Hsieh, L. C., Lin, S. I., Shih, A. C., Chen, J. W., Lin, W.Y., Tseng,
C.Y., Li, W. H., & Chiou, T. J. (2009). Uncovering small RNA-mediated
responses to phosphate deficiency in Arabidopsis by deep sequencing.Plant Physiology, 151, 2120-2132.
Huen, A., Bally, J., & Smith, P. (2018). Identification and
characterization of microRNAs and their target genes in
phosphate-starved Nicotiana benthamiana by small RNA deep sequencing and
5’RACE analysis. BMC Genomics, 19(1), 940.
Jin, J., Tian, F., Yang, D. C., Meng, Y. Q., Kong, L., Luo, J., & Gao,
G. (2016). PlantTFDB 4.0: toward a central hub for transcription factors
and regulatory interactions in plants. Nucleic Acids Research, 45
(D1), D1040-D1045.
Kanno, S., Cuyas, L., Javot, H., Bligny, R., Gout, E., Dartevelle, T.,
… Nussaume, L. (2016). Performance and limitations of phosphate
quantification: guidelines for plant biologists. Plant and Cell
Physiology, 57, 690-706.
Kc, S., Liu, M., Zhang, Q., Fan, K., Shi, Y., & Ruan, J. (2018).
Metabolic changes of amino acids and flavonoids in tea plants in
response to inorganic phosphate limitation. International Journal
of Molecular Sciences, 19(11), 3683.
Kering, M. K., Biermacher, J.T., Butler, T. J., Mosali, J., & Guretzky,
J. A. (2012). Biomass yield and nutrient responses of switchgrass to
phosphorus application. Bioenergy Research, 5 (1), 71-78.
Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced
aligner with low memory requirements. Nature Methods, 12(4),
357-360.
King, J. S., Ceulemans, R., Albaugh, J.M., Dillen, S.Y., Domec, J. C,
Fichot, R., …Trnka, M. 2013. The challenge of lignocellulosic
bioenergy in a water-limited world. BioScience, 63, 102-117.
Lambers, H., Clode, P., Hawkins, H., Laliberté, E., Oliveira, R.,
Reddell, P., …Weston, P. (2015b). Metabolic adaptations of the
non-mycotrophic proteaceae to soil with a low phosphorus availability.Annual Plant Reviews, 48, 289-336.
Lambers, H., Finnegan, P. M., Jost, R., Plaxton, W.C., Shane, M. W., &
Stitt, M. (2015a). Phosphorus nutrition in proteaceae and beyond.Nature Plants, 1, 15109.
Lambers, H., Finnegan, P.M., Laliberté, E., Pearse, S. J., Ryan, M. H.,
Shane, M. W., & Veneklaas, E. J. (2011). Phosphorus nutrition of
Proteaceae in severely phosphorus-impoverished soils: are there lessons
to be learned for future crops? Plant Physiology, 156, 1058-1066.
Lee, H. Y., Chen, Z., Zhang, C., & Yoon, G. M. (2019). Editing of the
OsACS locus alters phosphate deficiency-induced adaptive responses in
rice seedlings. Journal of Experimental Botany, 70(6), 1927-1940.
Liu, T. Y., Aung, K., Tseng, C. Y., Chang, T. Y., Chen, Y. S., & Chiou,
T. J. (2011). Vacuolar Ca2+/H+transport activity is required for systemic phosphate homeostasis
involving shoot-to-root signaling in Arabidopsis. Plant
Physiology, 156(3), 1176-1189.
Lin, W. Y., Lin, Y. Y., Chiang, S. F., Syu, C., Hsieh, L. C., & Chiou,
T. J. (2018). Evolution of micro RNA 827 targeting in the plant kingdom.New Phytologist, 217(4),1712-1725.
Lorenz, R., Bernhart, S. H., Höner Zu Siederdissen, C., Tafer, H.,
Flamm, C., Stadler, P. F., & Hofacker, I. L. (2011). ViennaRNA Package
2.0. Algorithms for Molecular Biology, 6, 26.
Luo, Q., Wang, S., Sun, L., & Wang, H. (2017). Metabolic profiling of
root exudates from two ecotypes of Sedum alfredii treated with Pb based
on GC-MS. Scientific Reports, 7, 39878.
Lynch, J. P. (1995). Root architecture and plant productivity.Plant Physiology, 109, 7-13.
Lynch, J. P. (2011). Root phenes for enhanced soil exploration and
phosphorus acquisition: tools for future crops. Plant Physiology,156, 1041-1049.
McCune, B., & Mefford, M. J. 1999. PC-ORD. Multivariate Analysis of
Ecological Data, Version 4. MjM Software Design, Gleneden Beach, Oregon,
USA.
Meï, C. E., Cussac, M., Haslam, R. P., Beaudoin, F., Wong, Y. S.,
Maréchal, E., & Rébeillé, F. (2017). C1 metabolism inhibition and
nitrogen deprivation trigger triacylglycerol accumulation in Arabidopsis
thaliana cell cultures and highlight a role of NPC in
phosphatidylcholine-to-triacylglycerol pathway. Frontiers in Plant
Science, 7, 2014.
Meyer, E., Aspinwall, M. J., Lowry, D. B., Palacio-Mejía, J. D., Logan,
T. L., Fay, P. A., & Juenger, T. E. (2014). Integrating
transcriptional, metabolomic, and physiological responses to drought
stress and recovery in switchgrass (Panicum virgatum L.).BMC Genomics, 15, 527.
Misson, J., Raghothama, K. G., Jain, A., Jouhet, J, Block, M. A.,
Bligny, R., … Rolland, N. (2005). A genome-wide transcriptional
analysis using Arabidopsis thaliana Affymetrix gene chips determined
plant responses to phosphate deprivation. Proceedings of the
National Academy of Sciences of the United States of America, 102,
11934-11939.
Mo, X., Zhang, M., Liang, C., Cai, L., & Tian, J. (2019). Integration
of metabolome and transcriptome analyses highlights soybean roots
responding to phosphorus deficiency by modulating phosphorylated
metabolite processes. Plant Physiology and Biochemistry, 139,
697-706.
Morcuende, R., Bari, R., Gibon, Y., Zheng, W., Pant, B. D., BLÄSING, O.,
… Scheible, W. R. (2007). Genome-wide reprogramming of metabolism
and regulatory networks of Arabidopsis in response to phosphorus.Plant, Cell and Environment, 30, 85-112.
Muir, J. P., Sanderson, M. A., Ocumpaugh, W. R., Jones, R. M., & Reed,
R. L. (2001). Biomass production of Alamo switchgrass in response to
nitrogen, phosphorus, and row spacing. Agronomy Journal, 93,
869-901.
Muller, J., Gödde, V., Niehaus, K., & Zorb, C. (2015). Metabolic
adaptations of white lupin roots and shoots under phosphorus deficiency.Frontiers in Plant Science, 6, 1014.
Muller, R., Morant, M., Jarmer, H., Nilsson, L., & Nielsen, T. H.
(2007). Genome-wide analysis of the Arabidopsis leaf transcriptome
reveals interaction of phosphate and sugar metabolism. Plant
Physiology, 143, 156-171.
Nguyen, V. L., Palmer, L., Roessner, U., & Stangoulis, J. (2019).
Genotypic variation in the root and shoot metabolite profiles of wheat
(Triticum aestivum L.) indicate sustained, preferential carbon
allocation as a potential mechanism in phosphorus efficiency.Frontiers in Plant Science, 10, 995.
O’Rourke, J. A., Yang, S. S., Miller, S. S., Bucciarelli, B., Liu, J.,
Rydeen, A., … Allan, D. (2013). An RNA-Seq transcriptome analysis
of orthophosphate-deficient white lupin reveals novel insights into
phosphorus acclimation in plants. Plant Physiology, 161, 705-724.
Oono, Y., Kawahara, Y., Kanamori, H., Mizuno, H., Yamagata, H.,
Yamamoto, M., … Matsumoto, T. (2011). mRNA-seq reveals a
comprehensive transcriptome profile of rice under phosphate stress.Rice, 4, 50-65.
Oono, Y., Kobayashi, F., Kawahara, Y., Yazawa, T., Handa, H., Itoh, T.,
& Matsumoto, T. (2013). Characterisation of the wheat (Triticum
aestivum L.) transcriptome by de novo assembly for the discovery of
phosphate starvation-responsive genes: gene expression in Pi-stressed
wheat. BMC Genomics, 14(1), 77.
Ouyang, X., Hong, X., Zhao, X., Zhang, W., He, X., Ma, W., …
Tong, Y. (2016). Knock out of the PHOSPHATE 2 gene TaPHO2-A1 improves
phosphorus uptake and grain yield under low phosphorus conditions in
common wheat. Scientific Reports, 6, 29850.
Pang, J., Ryan, M. H., Lambers, H., & Siddique, K. H. M. (2018).
Phosphorus acquisition and utilization in crop legumes under global
change. Current Opinion in Plant Biology, 45, 1-7.
Pant, B., Pant, P., Erban, A., Huhman, D., Kopka, J., & Scheible, W.
(2015a). Identification of primary and secondary metabolites with
phosphorus status-dependent abundance in Arabidopsis, and of the
transcription factor PHR 1 as a major regulator of metabolic changes
during phosphorus limitation. Plant, Cell and Environment, 38(1),
172-187.
Pant, B., Burgos, A., Pant, P., Cuadros-Inostroza, A., Willmitzer, L.,
& Scheible, W. (2015b). The transcription factor PHR1 regulates lipid
remodeling and triacylglycerol accumulation in Arabidopsis thaliana
during phosphorus starvation. Journal of Experimental Botany, 66
(7), 1907-1918.
Pant, B. D., Musialak-Lange, M., Nuc, P., May, P., Buhtz, A., Kehr, J.,
… Scheible, W. R. (2009). Identification of nutrient-responsive
Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase
chain reaction profiling and small RNA sequencing. Plant
Physiology, 150, 1541-1555.
Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell,
J.T., & Salzberg, S. L. (2015). StringTie enables improved
reconstruction of a transcriptome from RNA-seq reads. Nature
Biotechnology, 33, 290-295.
Plaxton, W.C., & Carswell, M. C. (1999). Metabolic aspects of the
phosphate starvation response in plants. In Plant Responses to
Environmental Stresses: From Phytohormones to Genome Organization (eds
H.R. Lerner), pp. 349-372. Springer, USA.
Plaxton, W. C., & Tran, H. T. (2011). Metabolic adaptations of
phosphate-starved plants. Plant Physiology, 156, 1006-1015.
Ramamoorthy, R., & Kumar, P. P. (2012). A simplified protocol for
genetic transformation of switchgrass (Panicum virgatum L.).Plant Cell Reports, 31(10), 1923-1931.
Ramette, A. (2007). Multivariate analyses in microbial Ecology.FEMS Microbiology Ecology, 62, 142-160.
Rao, I. M., & Terry, N. (1995). Leaf phosphate status, photosynthesis,
and carbon partitioning in sugar beet (IV. Changes with time following
increased supply of phosphate to low-phosphate plants). Plant
Physiology, 107(4), 1313-1321.
Rouached, H., Secco, D., Arpat, B., & Poirier, Y. (2011). The
transcription factor PHR1 plays a key role in the regulation of sulfate
shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC
Plant Biology, 11(1),19.
Russo, M. A., Quartacci, M. F., Izzo, R., Belligno, A., & Navari-Izzo,
F. (2007). Long- and short-term phosphate deprivation in bean roots:
plasma membrane lipid alterations and transient stimulation of
phospholipases. Phytochemistry, 68, 1564-1571.
Sanchez, D. H., Siahpoosh, M. R., Roessner, U., Udvardi, M., & Kopka,
J. (2008). Plant metabolomics reveals conserved and divergent metabolic
responses to salinity. Physiologia Plantarum, 132, 209-219.
Sanderson, M.A., Read, J. C., & Reed, R. L. (1999). Harvest management
of switchgrass for biomass feedstock and forage production.Agronomy Journal, 91, 5-10.
Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, &
Stitt M. 1997. Nitrate acts as signal to induce organic acid metabolism
and repress starch metabolism in tobacco. The Plant Cell,9(5), 783-798.
Scheible, W.R., & Rojas-Triana, M. (2015). Sensing, signalling, and
control of phosphate starvation in plants: molecular players and
applications. Annual Plant Reviews online, 48, 23-63.
Secco, D., Jabnoune, M., Walker, H., Shou, H. X., Wu, P., Poirier, Y.,
& Whelan, J. (2013). Spatio-temporal transcript profiling of rice roots
and shoots in response to phosphate starvation and recovery. ThePlant Cell, 25, 4285-4304.
Secco, D., Shou, H., Whelan, J., & Berkowitz, O. (2014). RNA-seq
analysis identifies an intricate regulatory network controlling cluster
root development in white lupin. BMC Genomics, 15(1), 230.
Serba, D.D., Uppalapati, S.R., Mukherjee, S., Krom, N., Tang, Y.,
Mysore, K.S., & Saha, M. C. (2015). Transcriptome profiling of rust
resistance in switchgrass using RNA-Seq analysis. Plant Genome,8, 1-12.
Shane, M.W., Cramer, M.D., Funayama-Noguchi, S., Cawthray, G. R.,
Millar, A. H., Day, D. A., & Lambers, H. (2004). Developmental
physiology of cluster-root carboxylate synthesis and exudation in harsh
hakea. Expression of phosphoenolpyruvate carboxylase and the alternative
oxidase. Plant Physiology, 135(1), 549-560.
Sharma, M. K., Sharma, R., Cao, P., Jenkins, J., Bartley, L. E., Qualls
M., … Ronald, P. C. (2012). A genome-wide survey of switchgrass
genome structure and organization. PloS one, 7, e33892.
Tomasi, N., Kretzschmar, T., Espen, L., Weisskopf, L., Fuglsang, A. T.,
Palmgren, G., … Cesco, S. (2009). Plasma membrane
H+-ATPase-dependent citrate exudation from cluster
roots of phosphate-deficient white lupin. Plant Cell and
Environment, 32, 465-475.
Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L.,
& Pachter, L. (2013). Differential analysis of gene regulation at
transcript resolution with RNA-seq. Nature Biotechnology, 31,
46-53.
Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K.,
… Masanori, A. (2015). MS-DIAL: data-independent MS/MS
deconvolution for comprehensive metabolome analysis. Nature
Methods, 12: 523-526.
Veneklaas, E. J., Lambers, H., Bragg, J., Finnegan, P. M., Lovelock, C.
E., Plaxton, W. C., … Raven, J. A. (2012). Opportunities for
improving phosphorus-use efficiency in crop plants. New
Phytologist, 195, 306-320.
Vu, H.S., Shiva, S., Roth, M.R., Tamura, P., Zheng, L., Li, M., …
Welti, R. (2014). Lipid changes after leaf wounding in Arabidopsis
thaliana : expanded lipidomic data form the basis for lipid
co-occurrence analysis. The Plant Journal, 80, 728-743.
Wang, J., Qin, Q., Pan, J., Sun, L., Sun, Y., Xue, Y., & Song, K.
(2019). Transcriptome analysis in roots and leaves of wheat seedlings in
response to low-phosphorus stress. Scientific Reports, 9(1), 1-2.
Wissuwa, M., Gamat, G., & Ismail, A. M. (2005). Is root growth under
phosphorus deficiency affected by source or sink limitations?Journal of Experimental Botany, 56, 1943-1950.
Xu, F., Liu, Q., Chen, L., Kuang, J., Walk, T., Wang, J., & Liao, H.
(2013). Genome-wide identification of soybean microRNAs and their
targets reveals their organ-specificity and responses to phosphate
starvation. BMC Genomics, 14(1), 66.
Yacoubi, B., Lyons, B., Cruz, Y., Reddy, R., Nordin, B., Agnelli, F.,
… de Crecy-Lagard, V. (2009). The universal YrdC/Sua5 family is
required for the formation of threonylcarbamoyladenosine in tRNA.Nucleic Acids Research, 37, 2894-2909.
Yang, J., Worley, E., Ma, Q., Li, J., Torres-Jerez, I., Li, G., …
Udvardi, M. (2016). Nitrogen remobilization and conservation, and
underlying senescence-associated gene expression in the perennial
switchgrass Panicum virgatum . New Phytologist, 211, 75-89.
Yuan, H., Blackwell, M., Mcgrath, S., George, T., Granger, S., Hawkins,
J., … Shen, J. (2016). Morphological responses of wheat
(Triticum aestivum L.) roots to phosphorus supply in two
contrasting soils. The Journal of Agricultural Science, 154,
98-108.
Zeng, H., Zhang, X., Zhang, X., Pi, E., Xiao, L., & Zhu, Y. (2018).
Early transcriptomic response to phosphate deprivation in soybean leaves
as revealed by RNA-sequencing. International Journal of MolecularSciences, 19(7), 2145.
Zhang, J., Lee, Y., Torres-Jerez, I., Wang, M., Yin, Y., Chou, W.,
… Udvardi, M. K. (2013). Development of an intergrated transcript
sequence database and a gene expression atlas for gene discovery and
analysis in switchgrass (Panicum virgatum L.). The Plant
Journal, 74, 160-173.
Zhang, K., Liu, H., Song, J., Wu, W., Li, K., & Zhang, J. (2016).
Physiological and comparative proteome analyses reveal low-phosphate
tolerance and enhanced photosynthesis in a maize mutant owing to
reinforced inorganic phosphate recycling. BMC Plant Biology, 16,
129.