References
Angilletta, Jr., M. J. (2009). Looking for answers to questions about
heat stress: Researchers are getting warmer. Functional Ecology ,23 (2), 231–232.https://doi.org/10.1111/j.1365-2435.2009.01548.x
Angilletta, Jr., M. J., Niewiarowski, P. H., & Navas, C. A. (2002). The
evolution of thermal physiology in ectotherms. Journal of Thermal
Biology , 27 (4), 249–268.https://doi.org/10.1016/S0306-4565(01)00094-8
Birrell, J. H., Shah, A. A., Hotaling, S., Giersch, J. J., Williamson,
C. E., Jacobsen, D., & Woods, H. A. (2020). Insects in high‐elevation
streams: Life in extreme environments imperiled by climate change.Global Change Biology , 26 (12), 6667–6684.https://doi.org/10.1111/gcb.15356
Braune, E., Richter, O., Söndgerath, D., & Suhling, F. (2008).
Voltinism flexibility of a riverine dragonfly along thermal
gradients. Global Change Biology , 14 (3), 470–482.https://doi.org/10.1111/j.1365-2486.2007.01525.x
Carlisle, D. M., Nelson, S. M., & May, J. (2016). Associations of
stream health with altered flow and water temperature in the Sierra
Nevada, California. Ecohydrology , 9 (6), 930–941.https://doi.org/10.1002/eco.1703
Danks, H. V. (2007). How aquatic insects live in cold
climates. Canadian Entomologist , 139 (4), 443–471.https://doi.org/10.4039/n06-100
Demi, L. M., Benstead, J. P., Rosemond, A. D., & Maerz, J. C. (2019).
Experimental N and P additions alter stream macroinvertebrate community
composition via taxon‐level responses to shifts in detrital resource
stoichiometry. Functional Ecology , 33 (5), 855–867.https://doi.org/10.1111/1365-2435.13289
Denny, M. W., Dowd, W. W., Bilir, L., & Mach, K. J. (2011). Spreading
the risk: Small-scale body temperature variation among intertidal
organisms and its implications for species persistence. Journal of
Experimental Marine Biology and Ecology , 400 (1–2), 175–190.https://doi.org/10.1016/j.jembe.2011.02.006
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S.,
Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of
climate warming on terrestrial ectotherms across latitude.Proceedings of the National Academy of Sciences of the United
States of America , 105 (18), 6668–6672.https://doi.org/10.1073/pnas.0709472105
Dillon, M. E., Wang, G., & Huey, R. B. (2010). Global metabolic impacts
of recent climate warming. Nature , 467 (7316), 704–706.https://doi.org/10.1038/nature09407
Doi, H., Gordo, O., & Katano, I. (2008). Heterogeneous intra-annual
climatic changes drive different phenological responses at two trophic
levels. Climate Research , 36 (3), 181–190.https://doi.org/10.3354/cr00741
Domingos, C., Ferreira, V., Canhoto, C., & Swan, C. M. (2015). Warming,
and the presence of a dominant shredder, drive variation in decomposer
communities in a mountain stream. Aquatic Sciences , 77 (1),
129–140.https://doi.org/10.1007/s00027-014-0378-z
Encalada, A. C., Flecker, A. S., Poff, N. L., Suárez, E., Herrera-R, G.
A., Ríos-Touma, B., Jumani, S., Larson, E. I., & Anderson, E. P.
(2019). A global perspective on tropical montane rivers. Science ,365 (6458), 1124–1129.https://doi.org/10.1126/science.aax1682
Ferreira, V., & Canhoto, C. (2014). Effect of experimental and seasonal
warming on litter decomposition in a temperate stream. Aquatic
Sciences , 76 (2), 155–163.https://doi.org/10.1007/s00027-013-0322-7
Gilchrist, G. W. (1995). Specialists and generalists in changing
environments. I. Fitness landscapes of thermal sensitivity.American Naturalist , 146 (2), 252–270.https://doi.org/10.1086/285797
Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W., & Holt,
R. D. (2010). A framework for community interactions under climate
change. Trends in Ecology and Evolution , 25 (6), 325–331.https://doi.org/10.1016/j.tree.2010.03.002
Grigaltchik, V. S., Ward, A. J., & Seebacher, F. (2012). Thermal
acclimation of interactions: Differential responses to temperature
change alter predator–prey relationship. Proceedings. Biological
Sciences , 279 (1744), 4058–4064.https://doi.org/10.1098/rspb.2012.1277
Huey, R. B., & Kingsolver, J. G. (1989). Evolution of thermal
sensitivity of ectotherm performance. Trends in Ecology and
Evolution , 4 (5), 131–135.https://doi.org/10.1016/0169-5347(89)90211-5
Huey, R. B., & Kingsolver, J. G. (1993). Evolution of resistance to
high temperature in ectotherms. American Naturalist , 142 ,
S21–S46.https://doi.org/10.1086/285521
Huey, R. B., & Kingsolver, J. G. (2019). Climate warming, resource
availability, and the metabolic meltdown of ectotherms. American
Naturalist , 194 (6), E140–E150.https://doi.org/10.1086/705679
Huryn, A. D. (1990). Growth and voltinism of lotic midge larvae:
Patterns across an Appalachian Mountain basin. Limnology and
Oceanography , 35 (2), 339–351.https://doi.org/10.4319/lo.1990.35.2.0339
Isaak, D. J., & Rieman, B. E. (2013). Stream isotherm shifts from
climate change and implications for distributions of ectothermic
organisms. Global Change Biology , 19 (3), 742–751.https://doi.org/10.1111/gcb.12073
Isaak, D. J., Wollrab, S., Horan, D., & Chandler, G. (2012). Climate
change effects on stream and river temperatures across the northwest US
from 1980–2009 and implications for salmonid fishes. Climatic
Change , 113 (2), 499–524.https://doi.org/10.1007/s10584-011-0326-z
Jackson, M. C., Loewen, C. J., Vinebrooke, R. D., & Chimimba, C. T.
(2016). Net effects of multiple stressors in freshwater ecosystems: A
meta‐analysis. Global Change Biology , 22 (1), 180–189.https://doi.org/10.1111/gcb.13028
Kominoski, J. S., Marczak, L. B., & Richardson, J. S. (2011). Riparian
forest composition affects stream litter decomposition despite similar
microbial and invertebrate communities. Ecology , 92 (1),
151–159.https://doi.org/10.1890/10-0028.1
Kominoski, J. S., & Rosemond, A. D. (2012). Conservation from the
bottom up: Forecasting effects of global change on dynamics of organic
matter and management needs for river networks. Freshwater
Science , 31 (1), 51–68.https://doi.org/10.1899/10-160.1
Kominoski, J. S., Shah, J. J. F., Canhoto, C., Fischer, D. G., Giling,
D. P., González, E., Griffiths, N. A., Larrañaga, A., LeRoy, C. J.,
Mineau, M. M., McElarney, Y. R., Shirley, S. M., Swan, C. M., & Tiegs,
S. D. (2013). Forecasting functional implications of global changes in
riparian plant communities. Frontiers in Ecology and the
Environment , 11 (8), 423–432.https://doi.org/10.1890/120056
Kong, D., Wang, J., Wu, H., Valverde-Barrantes, O. J., Wang, R., Zeng,
H., Kardol, P., Zhang, H., & Feng, Y. (2019). Nonlinearity of root
trait relationships and the root economics spectrum. Nature
Communications , 10 (1), 2203.https://doi.org/10.1038/s41467-019-10245-6
Kordas, R. L., Harley, C. D. G., & O’Connor, M. I. (2011). Community
ecology in a warming world: The influence of temperature on
interspecific interactions in marine systems. Journal of
Experimental Marine Biology and Ecology , 400 (1–2), 218–226.https://doi.org/10.1016/j.jembe.2011.02.029
Menezes, S., Baird, D. J., & Soares, A. M. V. M. (2010). Beyond
taxonomy: A review of macroinvertebrate trait-based community
descriptors as tools for freshwater biomonitoring. Journal of
Applied Ecology , 47 (4), 711–719.https://doi.org/10.1111/j.1365-2664.2010.01819.x
Merritt, R. W., Cummins, K. W., & Berg, M. B. (2017). Trophic
relationships of macroinvertebrates. In F. R. Hauer & G. A. Lamberti
(Eds.), Methods in stream ecology (Vol. 1, 3rd ed., pp.
413–433). Academic Press.
Mohseni, O., & Stefan, H. G. (1999). Stream temperature/air temperature
relationship: A physical interpretation. Journal of Hydrology ,218 (3–4), 128–141.https://doi.org/10.1016/S0022-1694(99)00034-7
Nelson, D., Benstead, J. P., Huryn, A. D., Cross, W. F., Hood, J. M.,
Johnson, P. W., Junker, J. R., Gíslason, G. M., & Ólafsson, J. S.
(2017a). Shifts in community size structure drive temperature invariance
of secondary production in a stream-warming experiment. Ecology ,98 (7), 1797–1806.https://doi.org/10.1002/ecy.1857
Nelson, D., Benstead, J. P., Huryn, A. D., Cross, W. F., Hood, J. M.,
Johnson, P. W., Junker, J. R., Gíslason, G. M., & Ólafsson, J. S.
(2017b). Experimental whole-stream warming alters community size
structure. Global Change Biology , 23 (7), 2618–2628.https://doi.org/10.1111/gcb.13574
Nelson, D., Benstead, J. P., Huryn, A. D., Cross, W. F., Hood, J. M.,
Johnson, P. W., Junker, J. R., Gíslason, G. M., & Ólafsson, J. S.
(2020a). Thermal niche diversity and trophic redundancy drive neutral
effects of warming on energy flux through a stream food web.Ecology , 101 (4), e02952.https://doi.org/10.1002/ecy.2952
Nelson, D., Benstead, J. P., Huryn, A. D., Cross, W. F., Hood, J. M.,
Johnson, P. W., Junker, J. R., Gíslason, G. M., & Ólafsson, J. S.
(2020b). Contrasting responses of black fly species (Diptera:
Simuliidae) to experimental whole-stream warming. Freshwater
Biology , 65 (10), 1793–1805.https://doi.org/10.1111/fwb.13583
Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E. M., Butchart, S.
H. M., Kovacs, K. M., Scheffers, B. R., Hole, D. G., Martin, T. G.,
Akçakaya, H. R., Corlett, R. T., Huntley, B., Bickford, D., Carr, J. A.,
Hoffmann, A. A., Midgley, G. F., Pearce-Kelly, P., Pearson, R. G.,
Williams, S. E., Willis, S. G., . . . and Rondinini, C. (2015).
Assessing species vulnerability to climate change. Nature Climate
Change , 5 (3), 215–224.https://doi.org/10.1038/nclimate2448
Payne, N. L., & Smith, J. A. (2017). An alternative explanation for
global trends in thermal tolerance. Ecology Letters ,20 (1), 70–77.https://doi.org/10.1111/ele.12707
Pilgrim, J. M., Fang, X., & Stefan, H. G. (1998). Stream temperature
correlations with air temperatures in Minnesota: Implications for
climate warming. Journal of the American Water Resources
Association , 34 (5), 1109–1121.https://doi.org/10.1111/j.1752-1688.1998.tb04158.x
Pincebourde, S., & Casas, J. (2019). Narrow safety margin in the
phyllosphere during thermal extremes. Proceedings of the National
Academy of Sciences of the United States of America , 116 (12),
5588–5596.https://doi.org/10.1073/pnas.1815828116
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L., & Sunday,
J. M. (2019). Greater vulnerability to warming of marine versus
terrestrial ectotherms. Nature , 569 (7754), 108–111.https://doi.org/10.1038/s41586-019-1132-4
Pörtner, H. O., Bock, C., & Mark, F. C. (2017). Oxygen- and
capacity-limited thermal tolerance: Bridging ecology and physiology.Journal of Experimental Biology , 220 (15), 2685–2696.https://doi.org/10.1242/jeb.134585
Pyne, M. I., & Poff, N. L. (2017). Vulnerability of stream community
composition and function to projected thermal warming and hydrologic
change across ecoregions in the western United States. Global
Change Biology , 23 (1), 77–93.https://doi.org/10.1111/gcb.13437
Radchuk, V., Reed, T., Teplitsky, C., Van De Pol, M., Charmantier, A.,
Hassall, C., Adamík, P., Adriaensen, F., Ahola, M. P., Arcese, P.,
Miguel Avilés, J., Balbontin, J., Berg, K. S., Borras, A., Burthe, S.,
Clobert, J., Dehnhard, N., de Lope, F., Dhondt, A. A., Dingemanse, N.
J., . . . Kramer-Schadt, S. (2019). Adaptive responses of animals to
climate change are most likely insufficient. Nature
Communications , 10 (1), 3109.https://doi.org/10.1038/s41467-019-10924-4
Rosemond, A. D., Benstead, J. P., Bumpers, P. M., Gulis, V., Kominoski,
J. S., Manning, D. W., Suberkropp, K., & Wallace, J. B. (2015).
Experimental nutrient additions accelerate terrestrial carbon loss from
stream ecosystems. Science , 347 (6226), 1142–1145.https://doi.org/10.1126/science.aaa1958
Schofield, P. J., & Kline, J. L. (2018). Lower lethal temperatures for
nonnative freshwater fishes in Everglades National Park, Florida.North American Journal of Fisheries Management , 38 (3),
706–717.https://doi.org/10.1002/nafm.10068
Sgrò, C. M., Terblanche, J. S., & Hoffmann, A. A. (2016). What can
plasticity contribute to insect responses to climate
change? Annual Review of Entomology , 61 , 433–451.https://doi.org/10.1146/annurev-ento-010715-023859
Shah, A. A., Dillon, M. E., Hotaling, S., & Woods, H. A. (2020). High
elevation insect communities face shifting ecological and evolutionary
landscapes. Current Opinion in Insect Science , 41 , 1–6.https://doi.org/10.1016/j.cois.2020.04.002
Shah, A. A., Gill, B. A., Encalada, A. C., Flecker, A. S., Funk, W. C.,
Guayasamin, J. M., Kondratieff, B. C., Poff, N. L., Thomas, S. A.,
Zamudio, K. R., & Ghalambor, C. K. (2017). Climate variability predicts
thermal limits of aquatic insects across elevation and
latitude. Functional Ecology , 31 (11), 2118–2127.https://doi.org/10.1111/1365-2435.12906
Shah, A. A., Woods, H. A., Havird, J. C., Encalada, A. C., Flecker, A.
S., Funk, W. C., Guayasamin, J. M., Kondratieff, B. C., Poff, N. L.,
Thomas, S. A., Zamudio, K. R., & Ghalambor, C. K. (2021). Temperature
dependence of metabolic rate in tropical and temperate aquatic insects:
Support for the climate variability hypothesis in mayflies but not
stoneflies. Global Change Biology , 27 (2), 297–311.https://doi.org/10.1111/gcb.15400
Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L.,
Willett, C. S., Slotsbo, S., Dong, Y., Harley, C. D., Marshall, D. J.,
Helmuth, B. S., & Huey, R. B. (2016). Can we predict ectotherm
responses to climate change using thermal performance curves and body
temperatures? Ecology Letters , 19 (11), 1372–1385.https://doi.org/10.1111/ele.12686
Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2011). Global analysis of
thermal tolerance and latitude in ectotherms. Proceedings of the
Royal Society B: Biological Sciences , 278 (1713), 1823–1830.https://doi.org/10.1098/rspb.2010.1295
Sunday, J. M., Fabricius, K. E., Kroeker, K. J., Anderson, K. M., Brown,
N. E., Barry, J. P., Connell, S. D., Dupont, S., Gaylord, B.,
Hall-Spencer, J. M., Klinger, T., Milazzo, M., Munday, P. L., Russell,
B. D., Sanford, E., Thiyagarajan, V., Vaughan, M. L. H., Widdicombe, S.,
& Harley, C. D. G. (2017). Ocean acidification can mediate biodiversity
shifts by changing biogenic habitat. Nature Climate Change ,7 (1), 81–85.https://doi.org/10.1038/nclimate3161
Terblanche, J. S., & Chown, S. L. (2007). The effects of temperature,
body mass and feeding on metabolic rate in the tsetse fly Glossina
morsitans centralis. Physiological Entomology , 32 (2),
175–180.https://doi.org/10.1111/j.1365-3032.2006.00549.x
Vannote, R. L., & Sweeney, B. W. (1980). Geographic analysis of thermal
equilibria: A conceptual model for evaluating the effect of natural and
modified thermal regimes on aquatic insect communities. American
Naturalist , 115 (5), 667–695.https://doi.org/10.1086/283591
Vieira, N. K., Poff, N. L., Carlisle, D. M., Moulton, S. R., Koski, M.
L., & Kondratieff, B. C. (2006). A database of lotic invertebrate
traits for North America. US Geological Survey Data
Series , 187 , 1–15.
Vucic-Pestic, O., Ehnes, R. B., Rall, B. C., & Brose, U. (2011).
Warming up the system: Higher predator feeding rates but lower energetic
efficiencies. Global Change Biology , 17 (3), 1301–1310.
https://doi.org/10.1111/j.1365-2486.2010.02329.x
Ylla, I., Canhoto, C., & Romaní, A. M. (2014). Effects of warming on
stream biofilm organic matter use capabilities. Microbial
Ecology , 68 (1), 132–145.https://doi.org/10.1007/s00248-014-0406-5
Table 1 The linear model results for latitude and elevation category
effects on a, d) Max, b, e) Min temperature and c, f) thermal breadth.
Bold factors mean P < 0.05.