References
Angilletta, Jr., M. J. (2009). Looking for answers to questions about heat stress: Researchers are getting warmer. Functional Ecology ,23 (2), 231–232.https://doi.org/10.1111/j.1365-2435.2009.01548.x
Angilletta, Jr., M. J., Niewiarowski, P. H., & Navas, C. A. (2002). The evolution of thermal physiology in ectotherms. Journal of Thermal Biology , 27 (4), 249–268.https://doi.org/10.1016/S0306-4565(01)00094-8
Birrell, J. H., Shah, A. A., Hotaling, S., Giersch, J. J., Williamson, C. E., Jacobsen, D., & Woods, H. A. (2020). Insects in high‐elevation streams: Life in extreme environments imperiled by climate change.Global Change Biology , 26 (12), 6667–6684.https://doi.org/10.1111/gcb.15356
Braune, E., Richter, O., Söndgerath, D., & Suhling, F. (2008). Voltinism flexibility of a riverine dragonfly along thermal gradients. Global Change Biology , 14 (3), 470–482.https://doi.org/10.1111/j.1365-2486.2007.01525.x
Carlisle, D. M., Nelson, S. M., & May, J. (2016). Associations of stream health with altered flow and water temperature in the Sierra Nevada, California. Ecohydrology , 9 (6), 930–941.https://doi.org/10.1002/eco.1703
Danks, H. V. (2007). How aquatic insects live in cold climates. Canadian Entomologist , 139 (4), 443–471.https://doi.org/10.4039/n06-100
Demi, L. M., Benstead, J. P., Rosemond, A. D., & Maerz, J. C. (2019). Experimental N and P additions alter stream macroinvertebrate community composition via taxon‐level responses to shifts in detrital resource stoichiometry. Functional Ecology , 33 (5), 855–867.https://doi.org/10.1111/1365-2435.13289
Denny, M. W., Dowd, W. W., Bilir, L., & Mach, K. J. (2011). Spreading the risk: Small-scale body temperature variation among intertidal organisms and its implications for species persistence. Journal of Experimental Marine Biology and Ecology , 400 (1–2), 175–190.https://doi.org/10.1016/j.jembe.2011.02.006
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude.Proceedings of the National Academy of Sciences of the United States of America , 105 (18), 6668–6672.https://doi.org/10.1073/pnas.0709472105
Dillon, M. E., Wang, G., & Huey, R. B. (2010). Global metabolic impacts of recent climate warming. Nature , 467 (7316), 704–706.https://doi.org/10.1038/nature09407
Doi, H., Gordo, O., & Katano, I. (2008). Heterogeneous intra-annual climatic changes drive different phenological responses at two trophic levels. Climate Research , 36 (3), 181–190.https://doi.org/10.3354/cr00741
Domingos, C., Ferreira, V., Canhoto, C., & Swan, C. M. (2015). Warming, and the presence of a dominant shredder, drive variation in decomposer communities in a mountain stream. Aquatic Sciences , 77 (1), 129–140.https://doi.org/10.1007/s00027-014-0378-z
Encalada, A. C., Flecker, A. S., Poff, N. L., Suárez, E., Herrera-R, G. A., Ríos-Touma, B., Jumani, S., Larson, E. I., & Anderson, E. P. (2019). A global perspective on tropical montane rivers. Science ,365 (6458), 1124–1129.https://doi.org/10.1126/science.aax1682
Ferreira, V., & Canhoto, C. (2014). Effect of experimental and seasonal warming on litter decomposition in a temperate stream. Aquatic Sciences , 76 (2), 155–163.https://doi.org/10.1007/s00027-013-0322-7
Gilchrist, G. W. (1995). Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity.American Naturalist , 146 (2), 252–270.https://doi.org/10.1086/285797
Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W., & Holt, R. D. (2010). A framework for community interactions under climate change. Trends in Ecology and Evolution , 25 (6), 325–331.https://doi.org/10.1016/j.tree.2010.03.002
Grigaltchik, V. S., Ward, A. J., & Seebacher, F. (2012). Thermal acclimation of interactions: Differential responses to temperature change alter predator–prey relationship. Proceedings. Biological Sciences , 279 (1744), 4058–4064.https://doi.org/10.1098/rspb.2012.1277
Huey, R. B., & Kingsolver, J. G. (1989). Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology and Evolution , 4 (5), 131–135.https://doi.org/10.1016/0169-5347(89)90211-5
Huey, R. B., & Kingsolver, J. G. (1993). Evolution of resistance to high temperature in ectotherms. American Naturalist , 142 , S21–S46.https://doi.org/10.1086/285521
Huey, R. B., & Kingsolver, J. G. (2019). Climate warming, resource availability, and the metabolic meltdown of ectotherms. American Naturalist , 194 (6), E140–E150.https://doi.org/10.1086/705679
Huryn, A. D. (1990). Growth and voltinism of lotic midge larvae: Patterns across an Appalachian Mountain basin. Limnology and Oceanography , 35 (2), 339–351.https://doi.org/10.4319/lo.1990.35.2.0339
Isaak, D. J., & Rieman, B. E. (2013). Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms. Global Change Biology , 19 (3), 742–751.https://doi.org/10.1111/gcb.12073
Isaak, D. J., Wollrab, S., Horan, D., & Chandler, G. (2012). Climate change effects on stream and river temperatures across the northwest US from 1980–2009 and implications for salmonid fishes. Climatic Change , 113 (2), 499–524.https://doi.org/10.1007/s10584-011-0326-z
Jackson, M. C., Loewen, C. J., Vinebrooke, R. D., & Chimimba, C. T. (2016). Net effects of multiple stressors in freshwater ecosystems: A meta‐analysis. Global Change Biology , 22 (1), 180–189.https://doi.org/10.1111/gcb.13028
Kominoski, J. S., Marczak, L. B., & Richardson, J. S. (2011). Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities. Ecology , 92 (1), 151–159.https://doi.org/10.1890/10-0028.1
Kominoski, J. S., & Rosemond, A. D. (2012). Conservation from the bottom up: Forecasting effects of global change on dynamics of organic matter and management needs for river networks. Freshwater Science , 31 (1), 51–68.https://doi.org/10.1899/10-160.1
Kominoski, J. S., Shah, J. J. F., Canhoto, C., Fischer, D. G., Giling, D. P., González, E., Griffiths, N. A., Larrañaga, A., LeRoy, C. J., Mineau, M. M., McElarney, Y. R., Shirley, S. M., Swan, C. M., & Tiegs, S. D. (2013). Forecasting functional implications of global changes in riparian plant communities. Frontiers in Ecology and the Environment , 11 (8), 423–432.https://doi.org/10.1890/120056
Kong, D., Wang, J., Wu, H., Valverde-Barrantes, O. J., Wang, R., Zeng, H., Kardol, P., Zhang, H., & Feng, Y. (2019). Nonlinearity of root trait relationships and the root economics spectrum. Nature Communications , 10 (1), 2203.https://doi.org/10.1038/s41467-019-10245-6
Kordas, R. L., Harley, C. D. G., & O’Connor, M. I. (2011). Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. Journal of Experimental Marine Biology and Ecology , 400 (1–2), 218–226.https://doi.org/10.1016/j.jembe.2011.02.029
Menezes, S., Baird, D. J., & Soares, A. M. V. M. (2010). Beyond taxonomy: A review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. Journal of Applied Ecology , 47 (4), 711–719.https://doi.org/10.1111/j.1365-2664.2010.01819.x
Merritt, R. W., Cummins, K. W., & Berg, M. B. (2017). Trophic relationships of macroinvertebrates. In F. R. Hauer & G. A. Lamberti (Eds.), Methods in stream ecology (Vol. 1, 3rd ed., pp. 413–433). Academic Press.
Mohseni, O., & Stefan, H. G. (1999). Stream temperature/air temperature relationship: A physical interpretation. Journal of Hydrology ,218 (3–4), 128–141.https://doi.org/10.1016/S0022-1694(99)00034-7
Nelson, D., Benstead, J. P., Huryn, A. D., Cross, W. F., Hood, J. M., Johnson, P. W., Junker, J. R., Gíslason, G. M., & Ólafsson, J. S. (2017a). Shifts in community size structure drive temperature invariance of secondary production in a stream-warming experiment. Ecology ,98 (7), 1797–1806.https://doi.org/10.1002/ecy.1857
Nelson, D., Benstead, J. P., Huryn, A. D., Cross, W. F., Hood, J. M., Johnson, P. W., Junker, J. R., Gíslason, G. M., & Ólafsson, J. S. (2017b). Experimental whole-stream warming alters community size structure. Global Change Biology , 23 (7), 2618–2628.https://doi.org/10.1111/gcb.13574
Nelson, D., Benstead, J. P., Huryn, A. D., Cross, W. F., Hood, J. M., Johnson, P. W., Junker, J. R., Gíslason, G. M., & Ólafsson, J. S. (2020a). Thermal niche diversity and trophic redundancy drive neutral effects of warming on energy flux through a stream food web.Ecology , 101 (4), e02952.https://doi.org/10.1002/ecy.2952
Nelson, D., Benstead, J. P., Huryn, A. D., Cross, W. F., Hood, J. M., Johnson, P. W., Junker, J. R., Gíslason, G. M., & Ólafsson, J. S. (2020b). Contrasting responses of black fly species (Diptera: Simuliidae) to experimental whole-stream warming. Freshwater Biology , 65 (10), 1793–1805.https://doi.org/10.1111/fwb.13583
Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E. M., Butchart, S. H. M., Kovacs, K. M., Scheffers, B. R., Hole, D. G., Martin, T. G., Akçakaya, H. R., Corlett, R. T., Huntley, B., Bickford, D., Carr, J. A., Hoffmann, A. A., Midgley, G. F., Pearce-Kelly, P., Pearson, R. G., Williams, S. E., Willis, S. G., . . . and Rondinini, C. (2015). Assessing species vulnerability to climate change. Nature Climate Change , 5 (3), 215–224.https://doi.org/10.1038/nclimate2448
Payne, N. L., & Smith, J. A. (2017). An alternative explanation for global trends in thermal tolerance. Ecology Letters ,20 (1), 70–77.https://doi.org/10.1111/ele.12707
Pilgrim, J. M., Fang, X., & Stefan, H. G. (1998). Stream temperature correlations with air temperatures in Minnesota: Implications for climate warming. Journal of the American Water Resources Association , 34 (5), 1109–1121.https://doi.org/10.1111/j.1752-1688.1998.tb04158.x
Pincebourde, S., & Casas, J. (2019). Narrow safety margin in the phyllosphere during thermal extremes. Proceedings of the National Academy of Sciences of the United States of America , 116 (12), 5588–5596.https://doi.org/10.1073/pnas.1815828116
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L., & Sunday, J. M. (2019). Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature , 569 (7754), 108–111.https://doi.org/10.1038/s41586-019-1132-4
Pörtner, H. O., Bock, C., & Mark, F. C. (2017). Oxygen- and capacity-limited thermal tolerance: Bridging ecology and physiology.Journal of Experimental Biology , 220 (15), 2685–2696.https://doi.org/10.1242/jeb.134585
Pyne, M. I., & Poff, N. L. (2017). Vulnerability of stream community composition and function to projected thermal warming and hydrologic change across ecoregions in the western United States. Global Change Biology , 23 (1), 77–93.https://doi.org/10.1111/gcb.13437
Radchuk, V., Reed, T., Teplitsky, C., Van De Pol, M., Charmantier, A., Hassall, C., Adamík, P., Adriaensen, F., Ahola, M. P., Arcese, P., Miguel Avilés, J., Balbontin, J., Berg, K. S., Borras, A., Burthe, S., Clobert, J., Dehnhard, N., de Lope, F., Dhondt, A. A., Dingemanse, N. J., . . . Kramer-Schadt, S. (2019). Adaptive responses of animals to climate change are most likely insufficient. Nature Communications , 10 (1), 3109.https://doi.org/10.1038/s41467-019-10924-4
Rosemond, A. D., Benstead, J. P., Bumpers, P. M., Gulis, V., Kominoski, J. S., Manning, D. W., Suberkropp, K., & Wallace, J. B. (2015). Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science , 347 (6226), 1142–1145.https://doi.org/10.1126/science.aaa1958
Schofield, P. J., & Kline, J. L. (2018). Lower lethal temperatures for nonnative freshwater fishes in Everglades National Park, Florida.North American Journal of Fisheries Management , 38 (3), 706–717.https://doi.org/10.1002/nafm.10068
Sgrò, C. M., Terblanche, J. S., & Hoffmann, A. A. (2016). What can plasticity contribute to insect responses to climate change? Annual Review of Entomology , 61 , 433–451.https://doi.org/10.1146/annurev-ento-010715-023859
Shah, A. A., Dillon, M. E., Hotaling, S., & Woods, H. A. (2020). High elevation insect communities face shifting ecological and evolutionary landscapes. Current Opinion in Insect Science , 41 , 1–6.https://doi.org/10.1016/j.cois.2020.04.002
Shah, A. A., Gill, B. A., Encalada, A. C., Flecker, A. S., Funk, W. C., Guayasamin, J. M., Kondratieff, B. C., Poff, N. L., Thomas, S. A., Zamudio, K. R., & Ghalambor, C. K. (2017). Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Functional Ecology , 31 (11), 2118–2127.https://doi.org/10.1111/1365-2435.12906
Shah, A. A., Woods, H. A., Havird, J. C., Encalada, A. C., Flecker, A. S., Funk, W. C., Guayasamin, J. M., Kondratieff, B. C., Poff, N. L., Thomas, S. A., Zamudio, K. R., & Ghalambor, C. K. (2021). Temperature dependence of metabolic rate in tropical and temperate aquatic insects: Support for the climate variability hypothesis in mayflies but not stoneflies. Global Change Biology , 27 (2), 297–311.https://doi.org/10.1111/gcb.15400
Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L., Willett, C. S., Slotsbo, S., Dong, Y., Harley, C. D., Marshall, D. J., Helmuth, B. S., & Huey, R. B. (2016). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology Letters , 19 (11), 1372–1385.https://doi.org/10.1111/ele.12686
Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2011). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences , 278 (1713), 1823–1830.https://doi.org/10.1098/rspb.2010.1295
Sunday, J. M., Fabricius, K. E., Kroeker, K. J., Anderson, K. M., Brown, N. E., Barry, J. P., Connell, S. D., Dupont, S., Gaylord, B., Hall-Spencer, J. M., Klinger, T., Milazzo, M., Munday, P. L., Russell, B. D., Sanford, E., Thiyagarajan, V., Vaughan, M. L. H., Widdicombe, S., & Harley, C. D. G. (2017). Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nature Climate Change ,7 (1), 81–85.https://doi.org/10.1038/nclimate3161
Terblanche, J. S., & Chown, S. L. (2007). The effects of temperature, body mass and feeding on metabolic rate in the tsetse fly Glossina morsitans centralis. Physiological Entomology , 32 (2), 175–180.https://doi.org/10.1111/j.1365-3032.2006.00549.x
Vannote, R. L., & Sweeney, B. W. (1980). Geographic analysis of thermal equilibria: A conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. American Naturalist , 115 (5), 667–695.https://doi.org/10.1086/283591
Vieira, N. K., Poff, N. L., Carlisle, D. M., Moulton, S. R., Koski, M. L., & Kondratieff, B. C. (2006). A database of lotic invertebrate traits for North America. US Geological Survey Data Series187 , 1–15.
Vucic-Pestic, O., Ehnes, R. B., Rall, B. C., & Brose, U. (2011). Warming up the system: Higher predator feeding rates but lower energetic efficiencies. Global Change Biology , 17 (3), 1301–1310. https://doi.org/10.1111/j.1365-2486.2010.02329.x
Ylla, I., Canhoto, C., & Romaní, A. M. (2014). Effects of warming on stream biofilm organic matter use capabilities. Microbial Ecology , 68 (1), 132–145.https://doi.org/10.1007/s00248-014-0406-5
Table 1 The linear model results for latitude and elevation category effects on a, d) Max, b, e) Min temperature and c, f) thermal breadth. Bold factors mean P < 0.05.