Acknowledgements
This work was supported by the National Natural Science Foundation of China (51805294), Tsinghua University Initiative Scientific Research Program (20197050024), Tsinghua University-Peking Union Medical College Hospital Initiative Scientific Research Program (20191080843), the National Key Research and Development Program of China (2018YFA0703004), and the 111 Project (G2017002).
References
Bai, H., Li, C., Wang, X., & Shi, G. (2011). On the gelation of graphene oxide. The Journal of Physical Chemistry C, 115 (13), 5545-5551.
Fang, Y., Zhang, T., Zhang, L., Gong, W., & Sun, W. (2019). Biomimetic design and fabrication of scaffolds integrating oriented micro-pores with branched channel networks for myocardial tissue engineering.Biofabrication, 11 (3), 035004. doi:10.1088/1758-5090/ab0fd3
Guillouzo, A., Corlu, A., Aninat, C., Glaise, D., Morel, F., & Guguen-Guillouzo, C. (2007). The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact, 168 (1), 66-73. doi:10.1016/j.cbi.2006.12.003
Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80 (6), 1339-1339.
Jakus, A. E., Secor, E. B., Rutz, A. L., Jordan, S. W., Hersam, M. C., & Shah, R. N. (2015). Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS nano, 9 (4), 4636-4648. doi:10.1021/acsnano.5b01179
Jiang, Y., Xu, Z., Huang, T., Liu, Y., Guo, F., Xi, J., . . . Gao, C. (2018). Direct 3D printing of ultralight graphene oxide aerogel microlattices. Advanced Functional Materials, 28 (16), 1707024.
Lee, W. C., Lim, C. H., Shi, H., Tang, L. A., Wang, Y., Lim, C. T., & Loh, K. P. (2011). Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS nano, 5 (9), 7334-7341. doi:10.1021/nn202190c
Loeblein, M., Perry, G., Tsang, S. H., Xiao, W., Collard, D., Coquet, P., . . . Teo, E. H. (2016). Three-Dimensional Graphene: A Biocompatible and Biodegradable Scaffold with Enhanced Oxygenation. Adv Healthc Mater, 5 (10), 1177-1191. doi:10.1002/adhm.201501026
Ouyang, L., Yao, R., Zhao, Y., & Sun, W. (2016). Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, 8 (3), 035020. doi:10.1088/1758-5090/8/3/035020
Sahni, D., Jea, A., Mata, J. A., Marcano, D. C., Sivaganesan, A., Berlin, J. M., . . . Tour, J. M. (2013). Biocompatibility of pristine graphene for neuronal interface. J Neurosurg Pediatr, 11 (5), 575-583. doi:10.3171/2013.1.PEDS12374
Song, Q., Jiang, Z., Li, N., Liu, P., Liu, L., Tang, M., & Cheng, G. (2014). Anti-inflammatory effects of three-dimensional graphene foams cultured with microglial cells. Biomaterials, 35 (25), 6930-6940. doi:10.1016/j.biomaterials.2014.05.002
Truby, R. L., & Lewis, J. A. (2016). Printing soft matter in three dimensions. Nature, 540 (7633), 371-378. doi:10.1038/nature21003
Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110 , 442-458.
Xie, W., Song, F., Wang, R., Sun, S., Li, M., Fan, Z., . . . Wang, J. (2018). Mechanically robust 3D graphene–hydroxyapatite hybrid bioscaffolds with enhanced osteoconductive and biocompatible performance. Crystals, 8 (2), 105.
Xu, Y., Sheng, K., Li, C., & Shi, G. (2010). Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS nano, 4 (7), 4324-4330. doi:10.1021/nn101187z
Yao, Y., Fu, K. K., Yan, C., Dai, J., Chen, Y., Wang, Y., . . . Hu, L. (2016). Three-Dimensional Printable High-Temperature and High-Rate Heaters. ACS nano, 10 (5), 5272-5279. doi:10.1021/acsnano.6b01059
Yocham, K. M., Scott, C., Fujimoto, K., Brown, R., Tanasse, E., Oxford, J. T., . . . Estrada, D. (2018). Mechanical Properties of Graphene Foam and Graphene Foam—Tissue Composites. Advanced engineering materials, 20 (9), 1800166
Zhang, Q., Zhang, F., Medarametla, S. P., Li, H., Zhou, C., & Lin, D. (2016). 3D Printing of Graphene Aerogels. Small, 12 (13), 1702-1708. doi:10.1002/smll.201503524
Zhu, C., Han, T. Y., Duoss, E. B., Golobic, A. M., Kuntz, J. D., Spadaccini, C. M., & Worsley, M. A. (2015). Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun, 6 (1), 6962. doi:10.1038/ncomms7962
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 22 (35), 3906-3924. doi:10.1002/adma.201001068