References
Biron, V.L., Kostiuk, M., Isaac, A., Puttagunta, L., O’Connell, D.A., Harris, J., Côté, D.W., & Seikaly, H. (2016). Detection of human papillomavirus type 16 in oropharyngeal squamous cell carcinoma using droplet digital polymerase chain reaction. Cancer, 122, 1544-1551. doi: 10.1002/cncr.29976.
Biryukov, J., & Meyers, C. (2018). Superinfection exclusion between two high-risk human papillomavirus types during coinfection. Journal of Virology, 92, e01993-17. doi: 10.1128/JVI.01993-17.
Bodaghi, S., Wood, L.V., Roby, G., Ryder, C., Steinberg, S.M., & Zheng, Z.M. (2005). Could human papillomaviruses be spread through blood?Journal of Clinical Microbiology, 43, 5428-5434. doi: 10.1128/JCM.43.11.5428.5434.2005.
Campo, M.S. (2006). Papillomavirus Research – from natural history to vaccine and beyond. Campo, M.S., Ed,; Caister Academic Press, Norfolk, England, pp 373-387.
Campo, M.S., Jarrett, W.F.H., Barron, R.J., O’Neil, B.W., & Smith, K.T. (1992). Association of bovine papillomavirus type 2 and bracken fern with bladder cancer in cattle. Cancer Research, 52, 6898–6904.
Chen, A.C., Keleher, A., Kedda, M.A., Spurdle, A.B., McMillan, N.A., & Antonsson, A. (2009). Human papillomavirus DNA detected in peripheral blood samples from healthy Australian male blood donors. Journal of Medical Virology, 81, 1792-1796. doi: 10.1002/jmv.21592.
Chen, Z., Li, Q., Huang, Q., Liu, H., Jiang, H., Chen, Z., An, Z., & Luo, Q. (2019). Characteristics of human papillomaviruses distribution in Guizhou Province, China. Virology Journal, 16, 123. doi: 10.1186/s12985-019-1239-0.
Cheung, T.H., Yim, S.F., Yu, M.Y., Worley Jr, M.J., Fiascone, S.J., Chiu, R.W.K., Lo, K.W.K., Siu, N.S.S., Wong, M.C.S., Yeung, A.C.M., Wong, R.R.Y., Chen, Z.G., Elias, K.M., Chung, T.K.H., Berkowitz, R.S., Wong, Y.F., & Chan, P.K.S. (2019). Liquid biopsy of HPV DNA in cervical cancer. Journal of Clinical Virology, 114, 32-36. doi: 10.1016/j.jcv.2019.03.005.
Cladel, N.M., Jiang, P., Li, J.J., Peng, X., Cooper, T.K., Majerciak, V., Balogh, K.K., Meyer, T.J., Brendle, S.A., Budgeon, L.R., Shearer, D.A., Munden, R., Cam, M., Vallur, R., & Christensen, N.D., Zheng, Z.M., Hu, J. (2019). Papillomavirus can be transmitted through the blood and produce infections in blood recipients: Evidence from two animal models. Emerging Microbes & Infections, 8, 1108-1121. doi: 10.1080/22221751.2019.1637072.
Cota, J.B., Peleteiro, M.C., Petti, L., Tavares, L., & Duarte, A. (2015). Detection and quantification of bovine papillomavirus type 2 in urinary bladders and lymph nodes in cases of Bovine Enzootic Hematuria from the endemic region of Azores. Veterinary Microbiology, 178, 138-143. doi: 10.1016/j.vetmic.2015.03.026.
Crespo, SEI., Lunardi, M., Otonel, R.A.A., Headley, S.A., Alfieri, A.F., & Alfieri, A.A. (2019). Genetic characterization of a putative new type of bovine papillomavirus in the Xipapillomavirus 1 species in a Brazilian dairy herd. Virus Genes , 55, 682-687. doi: 10.1007/s11262-019-01694-8.
Damerla, R.R., Lee, N.Y., You, D., Soni, R., Shah, R., Reyngold, M., Katabi, N., Wu, V., McBride, S.M., Tsai, C.J., Riaz, N., Powell, S.N., Babady, N.E., Viale, A., & Higginson, D.S. (2019). Detection of early human papillomavirus-associated cancers by liquid biopsy. JCO Precision Oncology, 3, doi:10.1200/PO.18.00276.
Daudt, C., da Silva, F.R., Streck, A.F., Weber, M.N., Mayer, F.Q., Cibulski, S.P., & Canal, C.W., (2016). How many papillomavirus species can go undetected in papilloma lesions? Scientific Reports ,6 :36480. doi 10.1038/srep36480.
DiMaio, D., & Petti, E. (2013). The E5 proteins. Virology, 445, 99-144. doi:10.1016/j.virol.2013.05.006.
Diniz, N., Melo, T.C., Mori, E., Brandão, P.E., Richtzenhain, Freitas, A.C., Beçak, W., Carvalho, R.F., & Stocco, R.C. (2009). Simultaneous presence of bovine papillomavirus in blood and in short-term lymphocyte cultures from dairy cattle in Pernambuco, Brazil. Genetics and Molecular Research, 8, 1474-1480. doi: 10.4238/vol8-4gmr668.
Harper, S.J., Ward, L.I., & Clover, G.R. (2010). Development of LAMP and real-time PCR methods for the rapid detection of Xilellafastidiosa for quarantine and field applications. Phytopathology,100, 1282-1288. doi: 10.1094/PHYTO-06-10-0168.
Isaac, A., Kostiuk, M., Zhang, H., Lindsay, C., Makki, F., O’Connell, D.A., Harris, J.R., Cote, W.D.J., Seikaly, H., & Biron, V.L. (2017). Ultrasensitive detection of oncogenic human papillomavirus in oropharyngeal tissue swabs. Journal of Otolaryngology – Head and Neck Surgery, 46, 5. doi: 10.1186/s40463-016-0177-8.
Jeannot, E., Becette, V., Campitelli M., Calméjane, M.A., Lappartient, E., Ruff, E., Saada, S., Holmes, A., Bellet, D., & Sastre-Garau, X. (2016). Circulating human papillomavirus DNA detected using droplet digital PCR in the serum of patients diagnosed with early stage human papillomavirus-associated invasive carcinoma. The Journal of Pathology: Clinical Research, 2, 201-209. doi: 10.1002/cjp2.47.
Kainzbauer, C., Rushton, J., Tober, R., Scase, T., Nell, B., Sykora, S., & Brandt, S. (2012). Bovine papillomavirus type 1 and Equus caballus papillomavirus 2 in equine squamous cell carcinoma of the head and neck in a Connemara mare. Equine Veterinary Journal , 44, 112–115. doi:10.1111/j.2042-3306.2010.00358.x.
Kanagal-Shamanna, R. (2016) Digital PCR: Principles and Applications.Methods in Molecular Biology, 1392, 43-50. doi: 10.1007/978-1-4939-3360-0_5.
Kumar, P., Nagarajan, N., Saikumar, G., Arya, R.S., & Somvanshi, R. (2015). Detection of bovine papilloma viruses in wart-like lesions of upper gastrointestinal tract of cattle and buffaloes.Transboundary and Emerging Diseases, 62, 264-271. doi: 10.1111/tbed.12127.
Lancaster, W.D., Theilen, G.H., & Olson, C. (1979). Hybridization of bovine papilloma virus type 1 and type 2 DNA to DNA from virus-induced hamster tumors and naturally occurring equine tumors.Intervirology, 11, 227–233. doi: 10.1159/000149038.
Lillsunde Larsson, G., & Helenius, G. (2017). Digital droplet PCR (ddPCR) for the detection and quantification of HPV 16, 18, 33 and 45 – a short report. Cell Oncology, 40, 521-527. doi: 10.1007/s13402-017-0331-y.
Ling, Y., Zhang, X., Qi, G., Yang, S., Jingjlao, L., Shen, Q., Wang, X., Cui, L., Hua, X., Deng, X., Delwart, E., Zhang, W. (2019). Viral metagenomics reveals significant viruses in the genital tract of apparently healthy dairy cows. Archives of Virology 164, 1059-1067. doi:10.1007/s00705-019-04158-4.
Mazzuchelli-de-Souza, J., de Carvalho, R.E., Módolo, D.G., Thompson, C.E., Araldi, R.P., & Stocco, R.C. First detection of bovine papillomavirus type 2 in cutaneous wart lesions from ovines.Transboundary and Emerging Diseases, 65, 939-943. doi: 10.1111/tbed.12892.
Munday, J.S., Thomson, N., Dunowska, M., Knight, C.G., Laurie, R.E., & Hills, S. (2015). Genomic characterisation of the feline sarcoid-associated papillomavirus and proposed classification as Bos taurus papillomavirus type 14. Veterinary Microbiology, 177, 289-295. doi: 10.1016/j.vetmic.2015.03.019.
Orbell, G.M., Young, S., & Munday, J.S. (2011). Cutaneous sarcoids in captive African lions associated with feline sarcoid-associated papillomavirus infection. Veterinary Pathology, 48, 1176–1179. doi: 10.1177/0300985810391111.
Pamukcu, A.M. (1974). Tumours of the urinary bladder. Bulletin of the World Health Organization 50, 43-52.
Pangty, K., Singh, S., Goswami, R., Saikumar, G., & Somvanshi, R. (2010). Detection of BPV-1 and -2 and quantification of BPV-1 by real-time PCR in cutaneous warts in cattle and buffaloes.Transboundary and Emerging Diseases, 57 , 185–196. doi: 10.1111/j.1865-1682.2009.01096.x.
Pathania, S., Dhama, K., Saikumar, G., Shahi, S., & Somvanshi, R. (2012). Detection and quantification of bovine papilloma virus type 2 (BPV-2) by real-time PCR in urine and urinary bladder lesions in enzootic bovine haematuria (EBH)-affected cows. Transboundary and Emerging Diseases, 59, 79-84. doi: 10.1111/j.1865-1682.2011.01248.x.
Papillomavirus Episteme (PaVE), 2017 -http://pave.niaid.nih.gov/.
Romanucci, M., Borzacchiello, G., Defourny, S.V.P., Corvini, A., Altamura, G., Petrizzi, L., Della Salda, L. (2020). Fibroblastic sarcoid in a Grant’s Zebra in Europe and its association with bovine papillomavirus type 1. Journal of Exotic Pet Medicine, 32, 54-55. doi: 10.1053/j.jepm.2019.12.002.
Roperto, S., Borzacchiello, G., Brun, R., Leonardi, L., Maiolino, P., Martano, M., Paciello, O., Papparella, S., Restucci, B., Russo, V., Salvatore, G., Urraro, C., & Roperto, F. (2010) A review of bovine urothelial tumours and tumour-like lesions of the urinary bladder.Journal of Comparative Pathology, 142, 95-108. doi: 10.1016/j.jcpa.2009.08.156.
Roperto, S., Brun, R., Paolini, F., Urraro, C., Russo, V., Borzacchiello, G., Pagnini, U., Raso, C., Rizzo, C., Roperto, F., & Venuti, A. (2008). Detection of bovine papillomavirus type 2 in the peripheral blood of cattle with urinary bladder tumours: possible biological role. Journal of General Virology 89, 3027-3033. doi: 10.1099/vir.0.2008/004457-0.
Roperto S, Munday JS, Corrado F, Goria M, Roperto F. (2016b). Detection of bovine papillomavirus type 14 DNA sequences in urinary bladder tumors of cattle. Veterinary Microbiology 190, 1 -4. doi: 10.1016/j.vetmic.2016.04.007.
Roperto, S., Russo, V., Corrado, F., De Falco, F., Munday, J.S., & Roperto, F. (2018). Oral fibropapillomatosis and epidermal hyperplasia of the lip in newborn lambs associated with bovine Deltapapillomavirus. Scientific Reports, 8, 13310. doi: 10.1038/s41598-018-31529-9.
Roperto, S., Russo, V., De Falco, F., Taulescu, M., & Roperto, F. (2019). Congenital papillomavirus infection in cattle: evidence for transplacental transmission. Veterinary Microbiology, 230, 95-100. doi:10.1016/j.vetmic.2019.01.019.
Roperto S, Russo V, Leonardi L, Martano, M., Corrado, F., Riccardi, M.G., & Roperto, F. (2016a). Bovine papillomavirus type 13 expression in the urothelial bladder tumours of cattle. Transboundary and Emerging Diseases, 63, 628-634. doi: 10.1111/tbed.12322.
Roperto, S., Russo, V., Ozkul, A., Sepici-Dincel, A., Maiolino, P., Borzacchiello, G., Marcus, I., Esposito, I., & Riccardi, M.G. (2013). Bovine papillomavirus type 2 infects the urinary bladder of water buffalo (Bubalus bubalis) and plays a crucial role in bubaline urothelial carcinogenesis. Journal of General Virology, 94, 403-408. doi: 10.1099/vir.0.047662-0.
Russo, V., Roperto, F., De Biase, D., Cerino, P., Urraro, C., Munday, J.S., & Roperto, S. (2020). Bovine papillomavirus type 2 infection associated with papillomatosis of the amniotic membrane in water buffaloes (Bubalus bubalis). Pathogens, 9, 262. doi:10.3390/pathogens9040262.
Santos, E.U.D., Silva, M.A.R., Pontes, N.E., Coutinho, L.C.A., Paiva, S.S.L., Castro, R.S., & Freitas, A.C. (2016). Detection of different bovine papillomavirus types and co-infection in bloodstream of cattle.Transboundary and Emerging Diseases, 63, e103-e108. doi: 10.1111/tbed.12237.
Savini, F., Gallina, L., Mazza, F., Mariella, J., Castagnetti, C., & Scagliarini, A. (2019). Molecular detection of bovine papillomavirus DNA in the placenta and blood of healthy mares and respective foals.Veterinary Sciences, 6, 14. doi: 10.3390/vetsci6010014.
Silvestre, O., Borzacchiello, G., Nava, D., Iovane, G., Russo, V., Vecchio, D., D’Ausilio, F., Gault, F., Campo, M.S., & Paciello, O. (2009). Bovine papillomavirus type 1 DNA and E5 oncoprotein expression in water buffalo fibropapillomas. Veterinary Pathol ogy, 46, 636–641. doi: 10.354/vp.09-VP-0222-P-FL.
Somvanshi, R. (2011). Papillomatosis in buffaloes: a less-known disease.Transboundary and Emerging Diseases, 58, 327–332. doi: 10.1111/j.1865.1682.2011.01211.x.
Souho, T., Benlemilih, M., & Bennani, B. (2015). Human papillomavirus infection and fertility alteration: a systemic review. PLoS One,10:e0126936. doi: 10.1371/journal.pone.0126936.
Trottier, H., Mahmud, S., Costa, M.C., Sobrinho, J.P., Duarte-Franco, E., Rohan, T.E., Ferenczy, A., Villa, L.L., & Franco, E.L., (2006). Human papillomavirus infections with multiple types and risk of cervical neoplasia. Cancer, Epidemiology, Biomarkers & Prevention, 15, 1274-1280. doi: 10.1158/1055-9965.EPI-06-0129.
Vergara, N., Balanda, M., Vidal, D., Roldán, F., Martin, H.S., & Ramírez, E. (2019). Detection and quantification of human papillomavirus DNA in peripheral blood mononuclear cells from donors. Journal of Medical Virology, 91, 2009-2015. doi: 10.1002/jmv.25551.
Veyer, D., Wack, M., Mandavit, M., Garrigou, S., Hans, S., Bonfils, P., Tartour, E., Bélec, L., Wang-Renault, S.F., Laurent-Puig, P., Mirghani, H., Rance, B., Taly, V., Badoual, C., & Péré, H. (2019). HPV circulating tumoral DNA quantification by droplet-based digital PCR: a promising predictive and prognostic biomarker for HPV-associated oropharyngeal cancers. International Journal of Cancer,doi: 10.1002/ijc.32804.
Yuan, Z., Gallagher, A., Gault, E.A., Campo, M.S., & Nasir, L. (2007). Bovine papillomavirus infection in equine sarcoids and in bovine bladder cancers. The Veterinary Journal, 174, 599-604. doi: 10.1016/j.tvjl.2006.10.012.
Williams, J.H., van Dyk, E., Nel, P.J., Lane, E., Van Wilpe, E., Bengis, R.G., de Klerk-Lorist, L.M., & van Heerden, J. (2011). Pathology and immunohistochemistry of papillomavirus-associated cutaneous lesions in Cape mountain zebra, giraffe, sable antelope and African buffalo in South Africa. Journal of the South African Veterinary Association, 82, 97–106.
World Health Organization - IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. (2007). Human papillomaviruses,vol. 90. Lyon, France, WHO Press.
Wosiaki, S.R., Barreiro, M.A., Alfieri, A.F., & Alfieri, A.A. (2005). Semi-nested PCR for detection and typing bovine papillomavirus type 2 in urinary bladder and whole blood from cattle with enzootic haematuria.Journal of Virological Methods, 126, 215-219. doi: 10.1016/j.jviromet.2005.01.021.
Legends
Figure 1: Digital droplet polymerase chain reaction (ddPCR) for BPV-1 detection, shown for samples that were positive and negative for the E5 DNA of BPV-1. Blue droplets = positive droplets, gray droplets = negative droplets. QuantaSoft screenshots show the ddPCR results: A07 is a weakly positive sample; B07 through F07 are negative samples, and G07 is the positive control.
Figure 2: Digital droplet polymerase chain reaction (ddPCR) for BPV-2 detection, shown for samples that were positive and negative for the E5 DNA of BPV-2. Green droplets = positive droplets, gray droplets = negative droplets. QuantaSoft screenshots show the ddPCR results: A01, B01, C01 and F01 are positive samples, and the last sample is negative.
Figure 3: Digital droplet polymerase chain reaction (ddPCR) for BPV-13 detection, shown for samples that were positive and negative for the E5 DNA of BPV-13. Blue droplets = positive droplets, gray droplets = negative droplets. QuantaSoft screenshots show the ddPCR results: G01 is a negative sample, and the other samples are all positive.
Figure 4: Digital droplet polymerase chain reaction (ddPCR) for BPV-14 detection, shown for samples that were positive and negative for the E5 DNA of BPV-14. Blue droplets = positive droplets, gray droplets = negative droplets. QuantaSoft screenshots show the ddPCR results: A02 and B02 through E02 are weakly positive samples, and C02 and D02 are negative samples.