References
Baldry, D., Boreham, P., Challier, A., Van Etten, J., Everts, J.,
Gravel, J., et al. (1992). Training manual for tsetse
control personnel Volume 1 . Food and Agriculture Organization of the
United Nations.
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015). Fitting linear
mixed-effects models using lme4. J. Stat. Softw. , 67, 1–48.
Baudisch, A. & Vaupel, J.W. (2012). Getting to the root of aging.Science (80-. ). , 338, 618–619.
Bellan, S.E. (2010). The importance of age dependent mortality and the
extrinsic incubation period in models of mosquito-borne disease
transmission and control. PLoS One , 5.
Boggs, C.L. (2009). Understanding insect life histories and senescence
thorugh a resource allocation lens. Funct. Ecol. , 23, 27–37.
Burnham, K. & Anderson, D. (2002). Model selection and multimodel
inference: a practical information-theoretic approach . 2nd Editio.
Springer-Verlag New York, Inc.
Buxton, P.A. & Lewis, D.J. (1934). Climate and tsetse flies: laboratory
studies upon Glossina submorsitans and tachinoides. Philos. Trans.
R. Soc. B Biol. Sci. , 224, 175–240.
Cayuela, H., Lemaître, J.F., Bonnaire, E., Pichenot, J. & Schmidt, B.R.
(2020). Population position along the fast–slow life-history continuum
predicts intraspecific variation in actuarial senescence. J. Anim.
Ecol. , 0–2.
Chippindale, A.K., Leroi, A.M., Kim, S.B. & Rose, M.R. (1993).
Phenotypic plasticity and selection in Drosophila life‐history
evolution. I. Nutrition and the cost of reproduction. J. Evol.
Biol. , 6, 171–193.
Clark, J., Garbutt, J.S., McNally, L. & Little, T.J. (2017). Disease
spread in age structured populations with maternal age effects.Ecol. Lett. , 20, 445–451.
Cmelik, S.H.W., Bursell, E. & Slack, E. (1969). Composition of the gut
contents of third-instar tsetse larvae (Glossina morsitans westwood).Comp. Biochem. Physiol. , 29, 447–453.
Curtis Creighton, J., Heflin, N.D. & Belk, M.C. (2009). Cost of
reproduction, resource quality, and terminal investment in a burying
beetle. Am. Nat. , 174, 673–684.
Davison, R., Boggs, C.L. & Baudisch, A. (2014). Resource allocation as
a driver of senescence: Life history tradeoffs produce age patterns of
mortality. J. Theor. Biol. , 360, 251–262.
Ejezie, G.C. & Davey, K.G. (1977). Some effects of mating in female
tsetse, Glossina austeni newst. J. Exp. Zool. , 200, 303–310.
English, S., Barreaux, M., Bonsall, M., Hargrove, J., Keeling, M., Rock,
K., et al. (2020). Incorporating vector ecology and life history
into disease transmission models: insights from tsetse (Glossina spp.).
In: Population Biology of Vector-Borne Diseases . Oxford
University Press.
Ernsting, G. & Isaaks, J.A. (1991). Accelerated Ageing: A Cost of
Reproduction in the Carabid Beetle Notiophilus biguttatus F.Funct. Ecol. , 5, 299.
Gaillard, J.M. & Lemaître, J.F. (2019). An integrative view of
senescence in nature. Funct. Ecol. , 34, 4–16.
Hargrove, J. (1999). Nutritional levels of female tsetse Glossina
pallidipes from artificial refuges. Med. Vet. Entomol. , 13,
150–164.
Hargrove, J. (2004). Tsetse population dynamics. In: The
Trypanosomiases (eds. Maudlin, I., Holmes, P. & Miles, M.). CABI
Publishing, pp. 113–135.
Hargrove, J. & Muzari, M. (2015). Nutritional levels of pregnant and
postpartum tsetse Glossina pallidipes Austen captured in artificial
warthog burrows in the Zambezi Valley of Zimbabwe. Physiol.
Entomol. , 40, 138–148.
Hargrove, J., Muzari, M. & English, S. (2018). How maternal investment
varies with environmental factors and the age and physiological state of
wild tsetse Glossina pallidipes and Glossina morsitans morsitans.R. Soc. Open Sci. , 5.
Hargrove, J., Ouifki, R. & Ameh, J. (2011). A general model for
mortality in adult tsetse (Glossina spp.). Med. Vet. Entomol. ,
25, 385–94.
Hess, K. & Gentleman, R. (n.d.). Muhaz: hazard function estimation in
survival analysis.
Hoekstra, L.A., Schwartz, T.S., Sparkman, A.M., Miller, D.A.W. &
Bronikowski, A.M. (2019). The untapped potential of reptile biodiversity
for understanding how and why animals age. Funct. Ecol. , 38–54.
Holand, H., Kvalnes, T., Gamelon, M., Tufto, J., Jensen, H., Pärn, H.,et al. (2016). Spatial variation in senescence rates in a bird
metapopulation. Oecologia , 181, 865–871.
Jiménez-Pérez, A. & Wang, Q. (2009). Effect of Mating Delay on the
Reproductive Performance of Cnephasia jactatana (Lepidoptera:
Tortricidae)_. J. Econ. Entomol. , 96, 592–598.
Jordan, A.M., Nash, T.A.M. & Boyle, J.A. (1969). Pupal weight in
relation to female age in Glossina austeni Newst. Bull. Entomol.
Res. , 58, 549–552.
Kabayo, J.P. & Langley, P.A. (1985). The nutritional importance of
dietary blood components for reproduction in the tsetse fly, Glossina
morsitans. J. Insect Physiol. , 31, 619–624.
Kaitala, A. (1991). Phenotypic Plasticity in Reproductive Behaviour of
Waterstriders: Trade-Offs Between Reproduction and Longevity During Food
Stress. Funct. Ecol. , 5, 12.
Kassambara, A. & Kosinski, M. (2018). Survminer: drawing survival
curves using “ggplot2.”
Kirkwood, T. (1977). Evolution of ageing. Nature , 270, 301–303.
Kubi, C., Van Den Abbeele, J., De Deken, R., Marcotty, T., Dorny, P. &
Van Den Bossche, P. (2006). The effect of starvation on the
susceptibility of teneral and non-teneral tsetse flies to trypanosome
infection. Med. Vet. Entomol. , 20, 388–392.
Langley, P. & Clutton-Brock, T. (1998). Does reproductive investment
change with age in tsetse flies, Glossina morsitans morsitans (Diptera:
Glossinidae)? Funct. Ecol. , 12, 866–870.
Lansing, A. (1947). A transmissible, cumulative and reversible factor in
aging. Gerontology , 2, 228–239.
McIntyre, G.S. & Gooding, R.H. (1998). Effect of Maternal Age on
Offspring Quality in Tsetse (Diptera: Glossinidae). J. Med.
Entomol. , 35, 210–215.
McNamara, J.M., Houston, A.I., Barta, Z., Scheuerlein, A. & Fromhage,
L. (2009). Deterioration, death and the evolution of reproductive
restraint in late life. Proc. R. Soc. B Biol. Sci. , 276,
4061–4066.
Moore, D. (2016). Applied Survival Analysis Using R . Spring
International Publishing.
Nussey, D., Froy, H., Lemaitre, J., Gaillard, J. & Austad, S. (2013).
Senescence in natural populations of animals: widespread evidence and
its implications for bio-gerontology. Ageing Res. Rev. , 23, 1–7.
Partridge, L. (1987). Is Accelerated Senescence a Cost of Reproduction?Funct. Ecol. , 1, 317.
Phelps, R. (1973). The effect of temperature on fat consumption during
the puparial stages of Glossina morsitans morsitans Westw. (Dipt.,
Glossinidae) under laboratory conditions, and its implication in the
field. Bull. Entomol. Res. , 62, 423.
Pinheiro, J., Bates, D., DebRoy, S. & D, S. (2018). nlme: linear and
nonlinear mixed effects models.
R Core Team. (2014). R: A language and environment for statistical
computing.
Rodríguez-Muñoz, R., Boonekamp, J.J., Fisher, D., Hopwood, P. &
Tregenza, T. (2019). Slower senescence in a wild insect population in
years with a more female-biased sex ratio. Proc. R. Soc. B Biol.
Sci. , 286.
Ryan, S.J., Ben-Horin, T. & Johnson, L.R. (2015). Malaria control and
senescence: The importance of accounting for the pace and shape of aging
in wild mosquitoes. Ecosphere , 6, 1–13.
Sharp, S.P. & Clutton-Brock, T.H. (2010). Reproductive senescence in a
cooperatively breeding mammal. J. Anim. Ecol. , 79, 176–183.
De Sousza Santos, P. & Begon, M. (1987). Survival costs of reproduction
in grasshoppers. Funct. Ecol. , 1, 215–221.
Tatar, M. & Carey, J.R. (1995). Nutrition mediates reproductive
trade-offs with age-specific mortality in the beetle Callosobruchus
maculatus. Ecology , 76, 2066–2073.
Therneau, T. & Grambsch, P. (2000). Modeling survival data:
extending the Cox model. Springer, New York.
Unnithan, G.C. & Paye, S.O. (1991). Mating, longevity, fecundity, and
egg fertility of Chilo partellus (Lepidoptera: Pyralidae): Effects of
delayed or successive matings and their relevance to pheromonal control
methods. Environ. Entomol. , 20, 150–155.
Velando, A., Drummond, H. & Torres, R. (2006). Senescent birds redouble
reproductive effort when ill: Confirmation of the terminal investment
hypothesis. Proc. R. Soc. B Biol. Sci. , 273, 1443–1448.
Zajitschek, F., Zajitschek, S. & Bonduriansky, R. (2019). Senescence in
wild insects: Key questions and challenges. Funct. Ecol. , 26–37.
Zuur, A., Leno, E., Walker, N., Saveliev, A. & Smith, G. (2009).Mixed effects models and extensions in ecology with R .
Springer-Verlag New York, Inc.
Figure 1 Overview of experiments. M – mating.
Figure 2 Kaplan-Meier survival curves (a) and smoothed hazard
function (b) for adult females by treatment. For survival curves in
(a), shading indicates 95% confidence intervals.
Figure 3 Predicted probability of larval abortion as a function
of mother age, by treatment. Predicted probabilities from generalised
linear mixed effects model fits to the data and 95% confidence
intervals. Plots of raw data are provided in S5 File.
Figure 4 Offspring wet weight as a function of mother age and
treatment. Showing model fits to the data: thick line – population
level, thinner lines – individual level. Points – average wet weights
for 10-day intervals and 95% confidence intervals. Plots of raw data
are provided in S5 File.
Figure 5 Effect of sex, wet weight and mother age on the number
of days a newly emerged fly can survive starvation. a) Wet weight as a
function of offspring sex by treatment; b) Predicted survival time based
on linear mixed effects model. Days adults survived starvation is
plotted against mother age. Prediction for each wet weight quartile
shown. Plots of raw data are provided in S5 File.