References
1. Song Z, Zu Y, Bao L et al. From SARS to MERS, Thrusting Coronaviruses
into the Spotlight. Viruses. 2019 Jan 14;11(1). pii: E59. doi:
10.3390/v11010059.
2. Chen Y, Li L. SARS-CoV-2: virus dynamics and host response. Lancet
Infect Dis. 2020 May;20(5):515-516. doi: 10.1016/S1473-3099(20)30235-8.
3. Lu R, Zhao X, Li J et al. Genomic characterisation and epidemiology
of 2019 novel coronavirus: implications for virus origins and receptor
binding. Lancet. 2020 Feb 22;395(10224):565-574. doi:
10.1016/S0140-6736(20)30251-8.
4. Zhou F, Yu T, Du R et al. Clinical course and risk factors for
mortality of adult inpatients with COVID-19 in Wuhan, China: a
retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054-1062.
doi: 10.1016/S0140-6736(20)30566-3.
5. Yang JK, Feng Y, Yuan MY et al. Plasma glucose levels and diabetes
are independent predictors for mortality and morbidity in patients with
SARS. Diabet Med. 2006 Jun;23(6):623-8.doi:
10.1111/j.1464-5491.2006.01861.x
6. Kulcsar KA, Coleman CM, Beck SE, Frieman MB. Comorbid diabetes
results in immune dysregulation and enhanced disease severity following
MERS-CoV infection. JCI Insight. 2019 Oct 17;4(20). pii: 131774. doi:
10.1172/jci.insight.131774.
7. Hulme KD, Gallo LA, Short KR. Influenza Virus and Glycemic
Variability in Diabetes: A Killer Combination? Front Microbiol. 2017 May
22;8:861. doi: 10.3389/fmicb.2017.00861.
8. Chen Y, Gong X, Wang L et al. Effects of hypertension, diabetes and
coronary heart disease onCOVID-19 diseases severity: a systematic review
and meta-analysis. medRxiv. 2020 doi: 10.1101/2020.03.25.20043133.
9. Zhu L, She ZG, Cheng X et al. Association of Blood Glucose Control
and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes.
Cell Metab. 2020 May 1. pii: S1550-4131(20)30238-2. doi:
10.1016/j.cmet.2020.04.021.
10. Roncon L, Zuin M, Rigatelli G, Zuliani G. Diabetic patients with
COVID-19 infection are at higher risk of ICU admission and poor
short-term outcome. J Clin Virol. 2020 Apr 9;127:104354. doi:
10.1016/j.jcv.2020.104354.
11. Blanco-Melo D, Nilsson-Payant BE, Liu W-C et al. SARS-CoV-2 launches
a unique transcriptionalsignature from in vitro, ex vivo, and in vivo
systems. bioRxiv. 2020. doi: 10.1101/2020.03.24.004655.
12. Yoshikawa T, Hill TE, Yoshikawa N et al. Dynamic innate immune
responses of human bronchialepithelial cells to severe acute respiratory
syndrome-associated coronavirus infection. PLoS One.2010 Jan
15;5(1):e8729. doi: 10.1371/journal.pone.0008729.
13. Hsu AC, Barr I, Hansbro PM et al. Human influenza is more effective
than avian influenza atantiviral suppression in airway cells. Am J
Respir Cell Mol Biol. 2011 Jun;44(6):906-13.
doi:10.1165/rcmb.2010-0157OC.
14. Ramasamy R, Yan SF, Schmidt AM. Receptor for AGE (RAGE): signaling
mechanisms in the pathogenesis of diabetes and its complications. Ann N
Y Acad Sci. 2011 Dec;1243:88-102. doi: 10.1111/j.1749-6632.2011.06320.x.
15. Coughlan KA, Valentine RJ, Ruderman NB, SahaAK. AMPK activation: a
therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes. 2014
Jun 24; 7:241-53. doi: 10.2147/DMSO.S43731.
16. Xiao H, Gu Z, Wang G, Zhao T. The possible mechanisms underlying the
impairment of HIF-1α pathway signaling in hyperglycemia and the
beneficial effects of certain therapies. Int J Med Sci. 2013 Aug
22;10(10):1412-21. doi: 10.7150/ijms.5630.
17. Bhansali S, Bhansali A, Walia R, Saikia UN, Dhawan V. Alterations in
Mitochondrial Oxidative Stress and Mitophagy in Subjects with
Prediabetes and Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne).
2017 Dec 15;8:347. doi: 10.3389/fendo.2017.00347.
18. Das UN, Rao AA.Gene expression profile in obesity and type 2
diabetes mellitus. Lipids Health Dis. 2007 Dec 14;6:35.doi:
10.1186/1476-511X-6-35.
19. Perez MK, Piedimonte G. Metabolic asthma: is there a link between
obesity, diabetes, and asthma? Immunol Allergy Clin North Am. 2014
Nov;34(4):777-84. doi: 10.1016/j.iac.2014.07.002.
20. Carpaij OA, van den Berge M. The asthma-obesity relationship:
underlying mechanisms andtreatment implications. Curr Opin Pulm Med.
2018 Jan;24(1):42-49. doi: 10.1097/MCP.0000000000000446.
21. Bhatraju NK, Agrawal A.Mitochondrial Dysfunction Linking Obesity and
Asthma. Ann Am Thorac Soc. 2017 Nov;14(Supplement_5):S368-S373. doi:
10.1513/AnnalsATS.201701-042AW.
22. Xiong Y, Liu Y2, Cao L et al. Transcriptomic characteristics of
bronchoalveolar lavage fluid andperipheral blood mononuclear cells in
COVID-19 patients. Emerg Microbes Infect. 2020 Dec;9(1):761- 770. doi:
10.1080/22221751.2020.1747363.
23. Desai N, Neyaz A, Szabolcs A et al. Spectrum of Viral Load and Host
Response Seen in Autopsies of SARS-CoV-2 Infected Lungs. Accession no.
GSE150316, Published on GEO on May 12, 2020.
24. Plataki M, Fan LC, Sanchez E et al. Fatty acid synthase
downregulation contributes to acute lung injury in murine diet-induced
obesity. JCI Insight. 2019 Jul 9;5. pii: 127823. doi:
10.1172/jci.insight.127823.
25. Siegers JY, Novakovic B, Hulme KD et al. A high fat diet increases
influenza A virus-associatedcardiovascular damage. J Infect Dis. 2020
Apr 4. pii: jiaa159. doi: 10.1093/infdis/jiaa159.
26. Kumar NP, Moideen K, Nancy A et al. Systemic RAGE ligands are
upregulated in tuberculosisindividuals with diabetes co-morbidity and
modulated by anti-tuberculosis treatment and metformin therapy. BMC
Infect Dis. 2019 Dec 9;19(1):1039. doi: 10.1186/s12879-019-4648-1.
27. Egan DF, Shackelford DB, Mihaylova MM et al. Phosphorylation of ULK1
(hATG1) by AMPactivated protein kinase connects energy sensing to
mitophagy. Science. 2011 Jan 28;331(6016):456-61. doi:
10.1126/science.1196371.
28. Fang J, Yang J, Wu X et al. Metformin alleviates human cellular
aging by upregulating theendoplasmic reticulum glutathione peroxidase 7.
Aging Cell. 2018 Aug;17(4):e12765. doi:10.1111/acel.12765.
29. Hardie DG. AMP-activated protein kinase: maintaining energy
homeostasis at the cellular andwhole-body levels. Annu Rev Nutr.
2014;34:31-55. doi: 10.1146/annurev-nutr-071812-161148.
30. Tokubuchi I, Tajiri Y, Iwata Set al.Beneficial effects of metformin
on energy metabolism and visceral fat volume through a possible
mechanism of fatty acid oxidation in human subjects and rats. PLoS One.
2017 Feb 3;12(2):e0171293. doi: 10.1371/journal.pone.0171293.
31. Pearce EL, Walsh MC, Cejas PJ et al. Enhancing CD8 T-cell memory by
modulating fatty acidmetabolism. Nature. 2009 Jul 2;460(7251):103-7.
doi: 10.1038/nature08097.
32. Son J, Cho YW, Woo YJ et al. Metabolic Reprogramming by the
Excessive AMPK ActivationExacerbates Antigen-Specific Memory CD8+ T Cell
Differentiation after Acute Lymphocytic Choriomeningitis Virus
Infection. Immune Netw. 2019 Mar 5;19(2):e11. doi:
10.4110/in.2019.19.e11.
33. Soberanes S, Misharin AV, Jairaman A et al. Metformin Targets
Mitochondrial Electron Transport to Reduce Air-Pollution-Induced
Thrombosis. Cell Metab. 2019 Feb 5;29(2):335-347.e5.doi:
10.1016/j.cmet.2018.09.019.
34. Merad M, Martin JC. Pathological Inflammation in Patients With
COVID-19: A Key Role for Monocytes and Macrophages. Nat Rev Immunol.
2020 May 6;1-8. doi: 10.1038/s41577-020-0331-4.
35. Lodigiani C, Iapichino G, Carenzo L et al. Venous and arterial
thromboembolic complications in COVID-19 patients admitted to an
academic hospital in Milan, Italy. Thromb Res. 2020 Apr 23;191:9-14.
doi: 10.1016/j.thromres.2020.04.024.
36.Klok FA, Kruip MJHA, van der Meer NJM et al. Confirmation of the high
cumulative incidence of thrombotic complications in critically ill ICU
patients with COVID-19: An updated analysis. Thromb Res. 2020 Apr 30.
doi: 10.1016/j.thromres.2020.04.041.
37. Xin G, Wei Z, Ji C et al. Metformin Uniquely Prevents Thrombosis by
Inhibiting Platelet Activation and mtDNA Release. Sci Rep. 2016 Nov
2;6:36222. doi: 10.1038/srep36222.
38. Markowicz-Piasecka M, Huttunen KM, Broncel M, Sikora J. Sulfenamide
and Sulfonamide Derivatives of Metformin - A New Option to Improve
Endothelial Function and Plasma Haemostasis. Sci Rep. 2019 Apr
25;9(1):6573. doi: 10.1038/s41598-019-43083-z.