REFERENCES:
1. Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP. Nuclear lamins: building blocks of nuclear architecture. Genes Dev. 2002; 16: 533-47.
2. Bridger JM, Kill IR, O’Farrell M, Hutchison CJ. Internal lamin structures within G1 nuclei of human dermal fibroblasts. J Cell Sci. 1993; 104: 297-306.
3. Hozák P, Sasseville A, Raymond Y, Cook PR. Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells.J Cell Sci . 1995; 108: 635-44.
4. Shumaker DK, Kuczmarski ER, Goldman RD. The nucleoskeleton: lamins and actin are major players in essential nuclear functions. Curr opin cell boil . 2003; 15: 358-66.
5. Lin F, Worman HJ. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J biol chem . 1993; 268: 16321-6.
6. Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev . 2008; 22: 832-53.
7. Hutchison CJ, Worman HJ. A-type lamins: guardians of the soma?Nat Cell Biol . 2004; 6: 1062-7.
8. Fisher DZ, Chaudhary N, Blobel G. cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. PNAS . 1986; 83: 6450-4.
9. McKeon FD, Kirschner MW, Caput D. Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature . 1986; 319: 463-8.
10. Glass JR, Gerace L. Lamins A and C bind and assemble at the surface of mitotic chromosomes. J Cell Biol . 1990; 111: 1047-57.
11. Glass C, Glass J, Taniura H, Hasel K, Blevitt J, Gerace L. The alpha‐helical rod domain of human lamins A and C contains a chromatin binding site. EMBO J . 1993; 12: 4413-24.
12. Capell BC, Collins FS. Human laminopathies: nuclei gone genetically awry. Nat Rev Genet . 2006; 7: 940-52.
13. Broers J, Ramaekers F, Bonne G, Yaou RB, Hutchison C. Nuclear lamins: laminopathies and their role in premature ageing. Physiol Rev . 2006; 86: 967-1008.
14. Parnaik VK, Manju K. Laminopathies: multiple disorders arising from defects in nuclear architecture. J Biosci . 2006; 31: 405-21.
15. Mattout A, Dechat T, Adam SA, Goldman RD, Gruenbaum Y. Nuclear lamins, diseases and aging. Curr Opin Cell Biol . 2006; 18: 335-41.
16. Yu C-E, Oshima J, Fu Y-H, Wijsman EM, Hisama F, Alisch R, et al. Positional cloning of the Werner’s syndrome gene. Science . 1996; 272: 258-62.
17. Cao H, Hegele RA. LMNA is mutated in Hutchinson-Gilford progeria (MIM 176670) but not in Wiedemann-Rautenstrauch progeroid syndrome (MIM 264090). J Hum Genet . 2003; 48: 271-4.
18. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, et al. Lamin a truncation in Hutchinson-Gilford progeria.Science . 2003; 300: 2055.
19. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature . 2003; 423: 293-8.
20. De Lange T. How shelterin solves the telomere end-protection problem. Cold Spring Harbor symposia on quantitative biology: Cold Spring Harb Symp Quant Biol . (2011. p. sqb).
21. Arnoult N, Karlseder J. Complex interactions between the DNA-damage response and mammalian telomeres. Nat Struct Mol Biol . 2015; 22: 859.
22. Sfeir A, De Lange T. Removal of shelterin reveals the telomere end-protection problem. Science . 2012; 336: 593-7.
23. Khan S, Naidoo DP, Chuturgoon AA. Telomeres and atherosclerosis.Cardiovasc J Afr . 2012; 23: 563.
24. Armanios M. Telomeres and age-related disease: how telomere biology informs clinical paradigms. J Clin Invest . 2013; 123: 996-1002.
25. Bekaert S, Derradji H, Baatout S. Telomere biology in mammalian germ cells and during development. Dev Biol . 2004; 274: 15-30.
26. Wood AM, Danielsen JMR, Lucas CA, Rice EL, Scalzo D, Shimi T, et al. TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends. Nat Commun . 2014; 5: 5467.
27. Patel T, Vasan R, Gupta D, Patel J, Trivedi M. Shelterin proteins and cancer. Asian Pac J Cancer Prev . 2015; 16: 3085-90.
28. Simonet T, Zaragosi L-E, Philippe C, Lebrigand K, Schouteden C, Augereau A, et al. The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats.Cell Res . 2011; 21: 1028-38.
29. Yang D, Xiong Y, Kim H, He Q, Li Y, Chen R, et al. Human telomeric proteins occupy selective interstitial sites. Cell Res . 2011; 21: 1013-27.
30. Naramura M, Jang I-K, Kole H, Huang F, Haines D, Gu H. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat Immunol . 2002; 3: 1192-9.
31. Baker AM, Fu Q, Hayward W, Victoria S, Pedroso IM, Lindsay SM, et al. The telomere binding protein TRF2 induces chromatin compaction.PLoS One . 2011; 6.
32. Dittmer TA, Misteli T. The lamin protein family. Genome Biol . 2011; 12: 222.
33. Hanaoka S, Nagadoi A, Nishimura Y. Comparison between TRF2 and TRF1 of their telomeric DNA‐bound structures and DNA‐binding activities.Protein Sci . 2005; 14: 119-30.
34. Lin KW, Yan J. The telomere length dynamic and methods of its assessment. J Cell Mol Med . 2005;9: 977-89.
35. Blasco MA. The epigenetic regulation of mammalian telomeres.Nat Rev Genet . 2007; 8: 299-309.
36. Taimen P, Pfleghaar K, Shimi T, Möller D, Ben-Harush K, Erdos MR, et al. A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. PNAS . 2009; 106: 20788-93.
37. Barateau A, Vadrot N, Vicart P, Ferreiro A, Mayer M, Héron D, et al. A novel lamin a mutant responsible for congenital muscular dystrophy causes distinct abnormalities of the cell nucleus. PLoS One . 2017; 12.
38. Huang S, Risques RA, Martin GM, Rabinovitch PS, Oshima J. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A. Exp Cell Res . 2008; 314: 82-91.
39. Hwang S, Gou Z, Kuznetsov IB. DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins. Bioinformatics . 2007; 23: 634-6.