References:
Allimuthu D, Hubler Z, Najm FJ, Tang H, Bederman I, Seibel W, et
al. (2019). Diverse Chemical Scaffolds Enhance Oligodendrocyte
Formation by Inhibiting CYP51, TM7SF2, or EBP. Cell Chem Biol
26: 593-599 e594.
Ansari GA, Walker RD, Smart VB, & Smith LL (1982). Further
investigations of mutagenic cholesterol preparations. Food Chem Toxicol
20: 35-41.
Aramaki Y, Kobayashi T, Imai Y, Kikuchi S, Matsukawa T, & Kanazawa K
(1967). Biological studies of cholestane-3beta,5alpha,6beta-triol and
its derivatives. 1. Hypocholesterolemic effects in rabbits, chickens and
rats on atherogenic diets. J Atheroscler Res 7: 653-669.
Aringer L, & Eneroth P (1974). Formation and metabolism in vitro of
5,6-epoxides of cholesterol and beta-sitosterol. J Lipid Res
15: 389-398.
Baek AE, Yu YA, He S, Wardell SE, Chang CY, Kwon S, et al.(2017). The cholesterol metabolite 27 hydroxycholesterol facilitates
breast cancer metastasis through its actions on immune cells. Nat Commun
8: 864.
Bauriaud-Mallet M, Vija-Racaru L, Brillouet S, Mallinger A, de Medina P,
Rives A, et al. (2019). The cholesterol-derived metabolite
dendrogenin A functionally reprograms breast adenocarcinoma and
undifferentiated thyroid cancer cells. J Steroid Biochem Mol Biol
192: 105390.
Berrodin TJ, Shen Q, Quinet EM, Yudt MR, Freedman LP, & Nagpal S
(2010). Identification of 5alpha, 6alpha-epoxycholesterol as a novel
modulator of liver X receptor activity. Mol Pharmacol 78:1046-1058.
Bizzarri M, Giuliani A, Cucina A, & Minini M (2020). Redifferentiation
therapeutic strategies in cancer. Drug Discov Today 25:731-738.
Black HS, & Douglas DR (1973). Formation of a carcinogen of natural
origin in the etiology of ultraviolet light-induced carcinogenesis.
Cancer Res 33: 2094-2096.
Black HS, & Lo WB (1971). Formation of a carcinogen in human skin
irradiated with ultraviolet light. Nature 234: 306-308.
Blackmond DG (2019). The Origin of Biological Homochirality. Cold Spring
Harb Perspect Biol 11: a002147.
Board PG, & Menon D (2013). Glutathione transferases, regulators of
cellular metabolism and physiology. Biochim Biophys Acta 1830:3267-3288.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, & Jemal A
(2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence
and mortality worldwide for 36 cancers in 185 countries. CA Cancer J
Clin 68: 394-424.
Carvalho JF, Silva MM, Moreira JN, Simoes S, & Sa e Melo ML (2010).
Sterols as anticancer agents: synthesis of ring-B oxygenated steroids,
cytotoxic profile, and comprehensive SAR analysis. J Med Chem
53: 7632-7638.
Carvalho JF, Silva MM, Moreira JN, Simoes S, & Sa EMML (2011).
Selective cytotoxicity of oxysterols through structural modulation on
rings A and B. Synthesis, in vitro evaluation, and SAR. J Med Chem
54: 6375-6393.
Cavenee WK, Gibbons GF, Chen HW, & Kandutsch AA (1979). Effects of
various oxygenated sterols on cellular sterol biosynthesis in Chinese
hamster lung cells resistant to 25-hydroxycholesterol. Biochim Biophys
Acta 575: 255-265.
Chan JT, & Black HS (1974). Skin carcinogenesis:
cholesterol-5alpha,6alpha-epoxide hydrase activity in mouse skin
irradiated with ultraviolet light. Science 186: 1216-1217.
Chang CC, Jone C, Trosko JE, Peterson AR, & Sevanian A (1988). Effect
of cholesterol epoxides on the inhibition of intercellular communication
and on mutation induction in Chinese hamster V79 cells. Mutat Res
206: 471-478.
Chapman K, Holmes M, & Seckl J (2013). 11beta-hydroxysteroid
dehydrogenases: intracellular gate-keepers of tissue glucocorticoid
action. Physiol Rev 93: 1139-1206.
Cheng YW, Kang JJ, Shih YL, Lo YL, & Wang CF (2005).
Cholesterol-3-beta, 5-alpha, 6-beta-triol induced genotoxicity through
reactive oxygen species formation. Food Chem Toxicol 43:617-622.
Cully M (2016). Anticancer drugs: Exploiting a weakness in colorectal
cancers. Nat Rev Drug Discov 15: 820-821.
Dalenc F, Iuliano L, Filleron T, Zerbinati C, Voisin M, Arellano
C, et al. (2017). Circulating oxysterol metabolites as potential
new surrogate markers in patients with hormone receptor-positive breast
cancer: Results of the OXYTAM study. J Steroid Biochem Mol Biol
169: 210-218.
Dalenc F, Poirot M, & Silvente-Poirot S (2015). Dendrogenin A: A
Mammalian Metabolite of Cholesterol with Tumor Suppressor and
Neurostimulating Properties. Curr Med Chem 22: 3533-3549.
Danhier P, Banski P, Payen VL, Grasso D, Ippolito L, Sonveaux P,
et al. (2017). Cancer metabolism in space and time: Beyond the Warburg
effect. Biochim Biophys Acta Bioenerg 1858: 556-572.
De Bosscher K, Desmet SJ, Clarisse D, Estebanez-Perpina E, & Brunsveld
L (2020). Nuclear receptor crosstalk - defining the mechanisms for
therapeutic innovation. Nat Rev Endocrinol in press.
de Medina P, Paillasse MR, Payre B, Silvente-Poirot S, & Poirot M
(2009). Synthesis of new alkylaminooxysterols with potent cell
differentiating activities: identification of leads for the treatment of
cancer and neurodegenerative diseases. J Med Chem 52:7765-7777.
de Medina P, Paillasse MR, Segala G, Poirot M, & Silvente-Poirot S
(2010). Identification and pharmacological characterization of
cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS
ligands. Proc Natl Acad Sci U S A 107: 13520-13525.
de Medina P, Paillasse MR, Segala G, Voisin M, Mhamdi L, Dalenc F,
et al. (2013). Dendrogenin A arises from cholesterol and histamine
metabolism and shows cell differentiation and anti-tumour properties.
Nat Commun 4: 1840.
de Medina P, Payre B, Boubekeur N, Bertrand-Michel J, Terce F,
Silvente-Poirot S, et al. (2009). Ligands of the
antiestrogen-binding site induce active cell death and autophagy in
human breast cancer cells through the modulation of cholesterol
metabolism. Cell Death Differ 16: 1372-1384.
de Medina P, Silvente-Poirot S, & Poirot M (2009). Tamoxifen and AEBS
ligands induced apoptosis and autophagy in breast cancer cells through
the stimulation of sterol accumulation. Autophagy 5: 1066-1067.
el-Bayoumy K, Ji BY, Upadhyaya P, Chae YH, Kurtzke C, Rivenson A,
et al. (1996). Lack of tumorigenicity of cholesterol epoxides and
estrone-3,4-quinone in the rat mammary gland. Cancer Res 56:1970-1973.
Fessler MB (2016). The Intracellular Cholesterol Landscape: Dynamic
Integrator of the Immune Response. Trends Immunol 37: 819-830.
Fransson A, de Medina P, Paillasse MR, Silvente-Poirot S, Poirot M, &
Ulfendahl M (2015). Dendrogenin A and B two new steroidal alkaloids
increasing neural responsiveness in the deafened guinea pig. Front Aging
Neurosci 7: 145.
Fujii N, & Saito T (2004). Homochirality and life. Chem Rec 4:267-278.
Garcia-Estevez L, & Moreno-Bueno G (2019). Updating the role of obesity
and cholesterol in breast cancer. Breast Cancer Res 21: 35.
Global Burden of Disease Cancer C, Fitzmaurice C, Abate D, Abbasi N,
Abbastabar H, Abd-Allah F, et al. (2019). Global, Regional, and
National Cancer Incidence, Mortality, Years of Life Lost, Years Lived
With Disability, and Disability-Adjusted Life-Years for 29 Cancer
Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of
Disease Study. JAMA Oncol 5: 1749-1768.
Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn
HJ, et al. (2011). Strategies for subtypes–dealing with the
diversity of breast cancer: highlights of the St. Gallen International
Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann
Oncol 22: 1736-1747.
Gorzynski Smith J (1984). Synthetically Useful Reactions of Epoxides.
Synthesis 1984: 629-656.
Grouleff J, Irudayam SJ, Skeby KK, & Schiott B (2015). The influence of
cholesterol on membrane protein structure, function, and dynamics
studied by molecular dynamics simulations. Biochim Biophys Acta
1848: 1783-1795.
Gruenke LD, Wrensch MR, Petrakis NL, Miike R, Ernster VL, & Craig JC
(1987). Breast fluid cholesterol and cholesterol epoxides: relationship
to breast cancer risk factors and other characteristics. Cancer Res
47: 5483-5487.
Herman GE (2003). Disorders of cholesterol biosynthesis: prototypic
metabolic malformation syndromes. Hum Mol Genet 12 Spec No 1:R75-88.
Huang B, Song B-l, & Xu C (2020). Cholesterol metabolism in cancer:
mechanisms and therapeutic opportunities. Nat Metab 2: 132-141.
Hubler Z, Allimuthu D, Bederman I, Elitt MS, Madhavan M, Allan KC,
et al. (2018). Accumulation of 8,9-unsaturated sterols drives
oligodendrocyte formation and remyelination. Nature 560:372-376.
Imai H, Werthessen NT, Subramanyam V, LeQuesne PW, Soloway AH, &
Kanisawa M (1980). Angiotoxicity of oxygenated sterols and possible
precursors. Science 207: 651-653.
Iuliano L (2011). Pathways of cholesterol oxidation via non-enzymatic
mechanisms. Chem Phys Lipids 164: 457-468.
Iuliano L, Crick PJ, Zerbinati C, Tritapepe L, Abdel-Khalik J, Poirot
M, et al. (2015). Cholesterol metabolites exported from human
brain. Steroids 99: 189-193.
Jordan VC, & Brodie AM (2007). Development and evolution of therapies
targeted to the estrogen receptor for the treatment and prevention of
breast cancer. Steroids 72: 7-25.
Kadmiel M, & Cidlowski JA (2013). Glucocorticoid receptor signaling in
health and disease. Trends Pharmacol Sci 34: 518-530.
Kanai A, McNamara KM, Iwabuchi E, Miki Y, Onodera Y, Guestini F,
et al. (2020). Significance of glucocorticoid signaling in
triple-negative breast cancer patients: a newly revealed interaction
with androgen signaling. Breast Cancer Res Treat 180: 97-110.
Kandutsch AA, Chen HW, & Heiniger HJ (1978). Biological activity of
some oxygenated sterols. Science 201: 498-501.
Kedjouar B, de Medina P, Oulad-Abdelghani M, Payre B, Silvente-Poirot S,
Favre G, et al. (2004). Molecular characterization of the
microsomal tamoxifen binding site. J Biol Chem 279:34048-34061.
Khalifa SA, de Medina P, Erlandsson A, El-Seedi HR, Silvente-Poirot S,
& Poirot M (2014). The novel steroidal alkaloids dendrogenin A and B
promote proliferation of adult neural stem cells. Biochem Biophys Res
Commun 446: 681-686.
Kodani SD, & Hammock BD (2015). The 2014 Bernard B. Brodie award
lecture-epoxide hydrolases: drug metabolism to therapeutics for chronic
pain. Drug Metab Dispos 43: 788-802.
Korade Z, Kim HY, Tallman KA, Liu W, Koczok K, Balogh I, et al.(2016). The Effect of Small Molecules on Sterol Homeostasis: Measuring
7-Dehydrocholesterol in Dhcr7-Deficient Neuro2a Cells and Human
Fibroblasts. J Med Chem 59: 1102-1115.
Kuzu OF, Noory MA, & Robertson GP (2016). The Role of Cholesterol in
Cancer. Cancer Res 76: 2063-2070.
Lamberson CR, Muchalski H, McDuffee KB, Tallman KA, Xu L, & Porter NA
(2017). Propagation rate constants for the peroxidation of sterols on
the biosynthetic pathway to cholesterol. Chem Phys Lipids 207:51-58.
Latif SA, Pardo HA, Hardy MP, & Morris DJ (2005). Endogenous selective
inhibitors of 11beta-hydroxysteroid dehydrogenase isoforms 1 and 2 of
adrenal origin. Mol Cell Endocrinol 243: 43-50.
Le Cornet C, Walter B, Sookthai D, Johnson TS, Kuhn T, Herpel E,
et al. (2020). Circulating 27-hydroxycholesterol and breast cancer
tissue expression of CYP27A1, CYP7B1, LXR-beta, and ERbeta: results from
the EPIC-Heidelberg cohort. Breast Cancer Res 22: 23.
Leignadier J, Dalenc F, Poirot M, & Silvente-Poirot S (2017). Improving
the efficacy of hormone therapy in breast cancer: The role of
cholesterol metabolism in SERM-mediated autophagy, cell differentiation
and death. Biochem Pharmacol 144: 18-28.
Lin CY, Huo C, Kuo LK, Hiipakka RA, Jones RB, Lin HP, et al.(2013). Cholestane-3beta, 5alpha, 6beta-triol suppresses proliferation,
migration, and invasion of human prostate cancer cells. PLoS One
8: e65734.
Liu H, Yuan L, Xu S, Wang K, & Zhang T (2005).
Cholestane-3beta,5alpha,6beta-triol inhibits osteoblastic
differentiation and promotes apoptosis of rat bone marrow stromal cells.
J Cell Biochem 96: 198-208.
Lo W, & Black HS (1973). Inhibition of carcinogen formation in skin
irradiated with ultraviolet light. Nature 246: 489-491.
Lo WB, & Black HS (1972). Formation of cholesterol-derived
photoproducts in human skin. J Invest Dermatol 58: 278-283.
Long T, Hassan A, Thompson BM, McDonald JG, Wang J, & Li X (2019).
Structural basis for human sterol isomerase in cholesterol biosynthesis
and multidrug recognition. Nat Commun 10: 2452.
Lu DL, Le Cornet C, Sookthai D, Johnson TS, Kaaks R, & Fortner RT
(2019). Circulating 27-Hydroxycholesterol and Breast Cancer Risk:
Results From the EPIC-Heidelberg Cohort. J Natl Cancer Inst
111: 365-371.
Luo J, Yang H, & Song BL (2020). Mechanisms and regulation of
cholesterol homeostasis. Nat Rev Mol Cell Biol 21: 225-245.
Ma L, & Nelson ER (2019). Oxysterols and nuclear receptors. Mol Cell
Endocrinol 484: 42-51.
Mahfouz MM, Smith TL, Zhou Q, & Kummerow FA (1996). Cholestane-3 beta,
5 alpha, 6 beta-triol stimulates phospholipid synthesis and
CTP-phosphocholine cytidyltransferase in cultured LLC-PK cells. Int J
Biochem Cell Biol 28: 739-750.
Mitic T, Shave S, Semjonous N, McNae I, Cobice DF, Lavery GG, et
al. (2013). 11beta-Hydroxysteroid dehydrogenase type 1 contributes to
the balance between 7-keto- and 7-hydroxy-oxysterols in vivo. Biochem
Pharmacol 86: 146-153.
Moresco MA, Raccosta L, Corna G, Maggioni D, Soncini M, Bicciato
S, et al. (2018). Enzymatic Inactivation of Oxysterols in Breast
Tumor Cells Constraints Metastasis Formation by Reprogramming the
Metastatic Lung Microenvironment. Front Immunol 9: 2251.
Morisseau C (2013). Role of epoxide hydrolases in lipid metabolism.
Biochimie 95: 91-95.
Morisseau C, & Hammock BD (2005). Epoxide hydrolases: mechanisms,
inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol
45: 311-333.
Morris DJ, Latif SA, Hardy MP, & Brem AS (2007). Endogenous inhibitors
(GALFs) of 11beta-hydroxysteroid dehydrogenase isoforms 1 and 2:
derivatives of adrenally produced corticosterone and cortisol. J Steroid
Biochem Mol Biol 104: 161-168.
Nashed NT, Michaud DP, Levin W, & Jerina DM (1985). Properties of liver
microsomal cholesterol 5,6-oxide hydrolase. Arch Biochem Biophys
241: 149-162.
Nelson ER (2018). The significance of cholesterol and its metabolite,
27-hydroxycholesterol in breast cancer. Mol Cell Endocrinol
466: 73-80.
Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK,
et al. (2013). 27-Hydroxycholesterol links hypercholesterolemia and
breast cancer pathophysiology. Science 342: 1094-1098.
Nes WD (2011). Biosynthesis of cholesterol and other sterols. Chem Rev
111: 6423-6451.
Newman JW, Morisseau C, & Hammock BD (2005). Epoxide hydrolases: their
roles and interactions with lipid metabolism. Prog Lipid Res
44: 1-51.
Obradovic MMS, Hamelin B, Manevski N, Couto JP, Sethi A, Coissieux
MM, et al. (2019). Glucocorticoids promote breast cancer
metastasis. Nature 567: 540-544.
Odermatt A, & Klusonova P (2015). 11β-Hydroxysteroid dehydrogenase 1:
Regeneration of active glucocorticoids is only part of the story. J
Steroid Biochem Mol Biol 151: 85-92.
Ohgane K, Karaki F, Noguchi-Yachide T, Dodo K, & Hashimoto Y (2014).
Structure-activity relationships of oxysterol-derived pharmacological
chaperones for Niemann-Pick type C1 protein. Bioorg Med Chem Lett
24: 3480-3485.
Paillasse MR, Saffon N, Gornitzka H, Silvente-Poirot S, Poirot M, & de
Medina P (2012). Surprising unreactivity of cholesterol-5,6-epoxides
towards nucleophiles. J Lipid Res 53: 718-725.
Parker RE, & Isaacs NS (1959). Mechanisms of epoxide reactions. Chem
Rev 59: 737-799.
Pavlova NN, & Thompson CB (2016). The Emerging Hallmarks of Cancer
Metabolism. Cell Metab 23: 27-47.
Payre B, de Medina P, Boubekeur N, Mhamdi L, Bertrand-Michel J, Terce
F, et al. (2008). Microsomal antiestrogen-binding site ligands
induce growth control and differentiation of human breast cancer cells
through the modulation of cholesterol metabolism. Mol Cancer Ther
7: 3707-3718.
Perez Kerkvliet C, Dwyer AR, Diep CH, Oakley RH, Liddle C, Cidlowski
JA, et al. (2020). Glucocorticoid receptors are required
effectors of TGFbeta1-induced p38 MAPK signaling to advanced cancer
phenotypes in triple-negative breast cancer. Breast Cancer Res
22: 39.
Peterson AR, Peterson H, Spears CP, Trosko JE, & Sevanian A (1988).
Mutagenic characterization of cholesterol epoxides in Chinese hamster
V79 cells. Mutat Res 203: 355-366.
Petrakis NL, Gruenke LD, & Craig JC (1981). Cholesterol and cholesterol
epoxides in nipple aspirates of human breast fluid. Cancer Res
41: 2563-2565.
Poirot M, & Silvente-Poirot S (2013). Cholesterol-5,6-epoxides:
chemistry, biochemistry, metabolic fate and cancer. Biochimie
95: 622-631.
Poirot M, & Silvente-Poirot S (2018). The tumor-suppressor cholesterol
metabolite, dendrogenin A, is a new class of LXR modulator activating
lethal autophagy in cancers. Biochem Pharmacol 153: 75-81.
Poirot M, Soules R, Mallinger A, Dalenc F, & Silvente-Poirot S (2018).
Chemistry, biochemistry, metabolic fate and mechanism of action of
6-oxo-cholestan-3beta,5alpha-diol (OCDO), a tumor promoter and
cholesterol metabolite. Biochimie 153: 139-149.
Porter FD, & Herman GE (2011). Malformation syndromes caused by
disorders of cholesterol synthesis. J Lipid Res 52: 6-34.
Porter FD, Scherrer DE, Lanier MH, Langmade SJ, Molugu V, Gale SE,
et al. (2010). Cholesterol Oxidation Products Are Sensitive and
Specific Blood-Based Biomarkers for Niemann-Pick C1 Disease. Sci Transl
Med 2: 56ra81.
Porter NA, Xu L, & Pratt DA (2020). Reactive Sterol Electrophiles:
Mechanisms of Formation and Reactions with Proteins and Amino Acid
Nucleophiles. Chemistry 2: 390-417.
Raccosta L, Fontana R, Maggioni D, Lanterna C, Villablanca EJ, Paniccia
A, et al. (2013). The oxysterol-CXCR2 axis plays a key role in
the recruitment of tumor-promoting neutrophils. J Exp Med 210:1711-1728.
Raccosta L, Fontana R, Traversari C, & Russo V (2013). Oxysterols
recruit tumor-supporting neutrophils within the tumor microenvironment:
The many facets of tumor-derived oxysterols. Oncoimmunology 2:e26469.
Scallen TJ, Dhar AK, & Loughran ED (1971). Isolation and
characterization of C-4 methyl intermediates in cholesterol biosynthesis
after treatment of rat liver in vitro with cholestan-3 beta, 5 alpha,6
beta-triol. J Biol Chem 246: 3168-3174.
Schroepfer GJ, Jr. (2000). Oxysterols: modulators of cholesterol
metabolism and other processes. Physiol Rev 80: 361-554.
Segala G, David M, de Medina P, Poirot MC, Serhan N, Vergez F, et
al. (2017). Dendrogenin A drives LXR to trigger lethal autophagy in
cancers. Nat Commun 8: 1903.
Segala G, de Medina P, Iuliano L, Zerbinati C, Paillasse MR, Noguer
E, et al. (2013). 5,6-Epoxy-cholesterols contribute to the
anticancer pharmacology of tamoxifen in breast cancer cells. Biochem
Pharmacol 86: 175-189.
Sevanian A, & McLeod LL (1986). Catalytic properties and inhibition of
hepatic cholesterol-epoxide hydrolase. J Biol Chem 261: 54-59.
Sevanian A, & Peterson AR (1984). Cholesterol epoxide is a
direct-acting mutagen. Proc Natl Acad Sci U S A 81: 4198-4202.
Sevanian A, & Peterson AR (1986). The cytotoxic and mutagenic
properties of cholesterol oxidation products. Food Chem Toxicol
24: 1103-1110.
Silvente-Poirot S, Dalenc F, & Poirot M (2018). The Effects of
Cholesterol-Derived Oncometabolites on Nuclear Receptor Function in
Cancer. Cancer Res 78: 4803-4808.
Silvente-Poirot S, de Medina P, Record M, & Poirot M (2016). From
tamoxifen to dendrogenin A: The discovery of a mammalian tumor
suppressor and cholesterol metabolite. Biochimie 130: 109-114.
Silvente-Poirot S, & Poirot M (2012). Cholesterol epoxide hydrolase and
cancer. Curr Opin Pharmacol 12: 696-703.
Silvente-Poirot S, & Poirot M (2014). Cancer. Cholesterol and cancer,
in the balance. Science 343: 1445-1446.
Silvente-Poirot S, Segala G, Poirot MC, & Poirot M (2018).
Ligand-dependent transcriptional induction of lethal autophagy: a new
perspective for cancer treatment. Autophagy 14: 555-557.
Simpson E, & Santen RJ (2015). Celebrating 75 years of oestradiol. J
Mol Endocrinol 55: T1-20.
Smith LL (1981) Cholesterol Autoxidation . Plenum press: New York.
Smith LL, & Johnson BH (1989). Biological activities of oxysterols.
Free Radic Biol Med 7: 285-332.
Smith LL, Smart VB, & Ansari GA (1979). Mutagenic cholesterol
preparations. Mutat Res 68: 23-30.
Sola B, Poirot M, de Medina P, Bustany S, Marsaud V, Silvente-Poirot
S, et al. (2013). Antiestrogen-binding site ligands induce
autophagy in myeloma cells that proceeds through alteration of
cholesterol metabolism. Oncotarget 4: 911-922.
Song C, Hiipakka RA, & Liao S (2001). Auto-oxidized cholesterol
sulfates are antagonistic ligands of liver X receptors: implications for
the development and treatment of atherosclerosis. Steroids 66:473-479.
Soules R, Audouard-Combe F, Huc-Claustre E, de Medina P, Rives A,
Chatelut E, et al. (2019). A fast UPLC-HILIC method for an
accurate quanti fi cation of dendrogenin A in human tissues. J Steroid
Biochem Mol Biol 194: 105447.
Soules R, Noguer E, Iuliano L, Zerbinati C, Leignadier J, Rives A,
et al. (2017). Improvement of 5,6alpha-epoxycholesterol,
5,6beta-epoxycholesterol, cholestane-3beta,5alpha,6beta-triol and
6-oxo-cholestan-3beta,5alpha-diol recovery for quantification by GC/MS.
Chem Phys Lipids 207: 92-98.
Tang L, Wang Y, Leng T, Sun H, Zhou Y, Zhu W, et al. (2015).
Cholesterol metabolite cholestane-3beta,5alpha,6beta-triol suppresses
epileptic seizures by negative modulation of voltage-gated sodium
channels. Steroids 98: 166-172.
Tang L, Yan M, Leng T, Yin W, Cai S, Duan S, et al. (2018).
Cholestane-3beta, 5alpha, 6beta-triol suppresses neuronal
hyperexcitability via binding to voltage-gated sodium channels. Biochem
Biophys Res Commun 496: 95-100.
Theodoropoulos PC, Wang W, Budhipramono A, Thompson BM, Madhusudhan N,
Mitsche MA, et al. (2020). A Medicinal Chemistry-Driven Approach
Identified the Sterol Isomerase EBP as the Molecular Target of TASIN
Colorectal Cancer Toxins. J Am Chem Soc 142: 6128-6138.
Tonsing-Carter E, Hernandez KM, Kim CR, Harkless RV, Oh A, Bowie
KR, et al. (2019). Glucocorticoid receptor modulation decreases
ER-positive breast cancer cell proliferation and suppresses wild-type
and mutant ER chromatin association. Breast Cancer Res 21: 82.
Touvier M, Fassier P, His M, Norat T, Chan DS, Blacher J, et al.(2015). Cholesterol and breast cancer risk: a systematic review and
meta-analysis of prospective studies. Br J Nutr 114: 347-357.
Vander Heiden MG, & DeBerardinis RJ (2017). Understanding the
Intersections between Metabolism and Cancer Biology. Cell 168:657-669.
Vandewalle J, Luypaert A, De Bosscher K, & Libert C (2018). Therapeutic
Mechanisms of Glucocorticoids. Trends Endocrinol Metab 29:42-54.
Vitku J, Starka L, Bicikova M, Hill M, Heracek J, Sosvorova L, et
al. (2016). Endocrine disruptors and other inhibitors of
11beta-hydroxysteroid dehydrogenase 1 and 2: Tissue-specific
consequences of enzyme inhibition. J Steroid Biochem Mol Biol
155: 207-216.
Voisin M, de Medina P, Mallinger A, Dalenc F, Huc-Claustre E, Leignadier
J, et al. (2017). Identification of a tumor-promoter cholesterol
metabolite in human breast cancers acting through the glucocorticoid
receptor. Proc Natl Acad Sci U S A 114: E9346-E9355.
Wang W, Zhang L, Morlock L, Williams NS, Shay JW, & De Brabander JK
(2019). Design and Synthesis of TASIN Analogues Specifically Targeting
Colorectal Cancer Cell Lines with Mutant Adenomatous Polyposis Coli
(APC). J Med Chem 62: 5217-5241.
Watabe T, & Sawahata T (1979). Biotransformation of cholesterol to
cholestane-3beta,5alpha,6beta-triol via cholesterol alpha-epoxide
(5alpha,6alpha-epoxycholestan-3beta-ol) in bovine adrenal cortex. J Biol
Chem 254: 3854-3860.
Witiak DT, Parker RA, Dempsey ME, & Ritter MC (1971). Inhibitors and
stimulators of cholesterolgenesis enzymes. A structure-activity study in
vitro of amino and selected N-containing analogs of 5α-cholestane-3β ,5α
,6β-triol. J Med Chem 14: 684-693.
Wrensch MR, Petrakis NL, Gruenke LD, Miike R, Ernster VL, King EB,
et al. (1989). Breast fluid cholesterol and cholesterol beta-epoxide
concentrations in women with benign breast disease. Cancer Res
49: 2168-2174.
Yin H, Xu L, & Porter NA (2011). Free radical lipid peroxidation:
mechanisms and analysis. Chem Rev 111: 5944-5972.
Zhang L, Kim SB, Luitel K, & Shay JW (2018). Cholesterol Depletion by
TASIN-1 Induces Apoptotic Cell Death through the ER Stress/ROS/JNK
Signaling in Colon Cancer Cells. Mol Cancer Ther 17: 943-951.
Zhang L, Theodoropoulos PC, Eskiocak U, Wang W, Moon YA, Posner B,
et al. (2016). Selective targeting of mutant adenomatous polyposis coli
(APC) in colorectal cancer. Sci Transl Med 8: 361ra140.
Zhou C, Ye F, Wu H, Ye H, & Chen Q (2017). Recent advances in the study
of 11beta-Hydroxysteroid dehydrogenase type 2 (11beta-HSD2)Inhibitors.
Environ Toxicol Pharmacol 52: 47-53.