References
1. Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature. 2008;454(7203):445-454.
2. Samitas K, Carter A, Kariyawasam HH, Xanthou G. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: The one airway concept revisited. Allergy.2018;73(5):993-1002.
3. Barbarot S, Auziere S, Gadkari A, et al. Epidemiology of atopic dermatitis in adults: Results from an international survey.Allergy. 2018;73(6):1284-1293.
4. Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(Suppl S29):1-464.
5. De Meulder B, Lefaudeux D, Bansal AT, et al. A computational framework for complex disease stratification from multiple large-scale datasets. BMC systems biology. 2018;12(1):60.
6. Agache I, Sugita K, Morita H, Akdis M, Akdis CA. The Complex Type 2 Endotype in Allergy and Asthma: From Laboratory to Bedside. Curr Allergy Asthma Rep. 2015;15(6):29.
7. Agache I, Rogozea L. Asthma Biomarkers: Do They Bring Precision Medicine Closer to the Clinic? Allergy Asthma Immunol Res.2017;9(6):466-476.
8. Diamant Z, Vijverberg S, Alving K, et al. Toward clinically applicable biomarkers for asthma: An EAACI position paper.Allergy. 2019;74(10):1835-1851.
9. Agache I, Strasser DS, Klenk A, et al. Serum IL-5 and IL-13 consistently serve as the best predictors for the blood eosinophilia phenotype in adult asthmatics. Allergy. 2016;71(8):1192-1202.
10. Yii ACA, Tay TR, Choo XN, Koh MSY, Tee AKH, Wang DY. Precision medicine in united airways disease: A ”treatable traits” approach.Allergy. 2018;73(10):1964-1978.
11. Bachert C, Zhang N. Medical algorithm: Diagnosis and treatment of chronic rhinosinusitis. Allergy. 2020;75(1):240-242.
12. Cardona V, Demoly P, Dreborg S, et al. Current practice of allergy diagnosis and the potential impact of regulation in Europe.Allergy. 2018;73(2):323-327.
13. Diamant Z, Vijverberg SJ, Agache I, et al. Much ado about Biologicals: Highlights of the Master Class on Biologicals, Prague, 2018. Allergy. 2019;74(4):837-840.
14. Eguiluz-Gracia I, Tay TR, Hew M, et al. Recent developments and highlights in biomarkers in allergic diseases and asthma.Allergy. 2018;73(12):2290-2305.
15. Guerra ENS, Acevedo AC, de Toledo IP, Combes A, Chardin H. Do mucosal biomarkers reveal the immunological state associated with food allergy? Allergy. 2018;73(12):2392-2394.
16. Chen LC, Tseng HM, Kuo ML, et al. A composite of exhaled LTB(4) , LXA(4) , FeNO, and FEV(1) as an ”asthma classification ratio” characterizes childhood asthma. Allergy. 2018;73(3):627-634.
17. Rodrigo-Muñoz JM, Cañas JA, Sastre B, et al. Asthma diagnosis using integrated analysis of eosinophil microRNAs. Allergy.2019;74(3):507-517.
18. Siroux V, Boudier A, Nadif R, Lupinek C, Valenta R, Bousquet J. Association between asthma, rhinitis, and conjunctivitis multimorbidities with molecular IgE sensitization in adults.Allergy. 2019;74(4):824-827.
19. Lunjani N, Satitsuksanoa P, Lukasik Z, Sokolowska M, Eiwegger T, O’Mahony L. Recent developments and highlights in mechanisms of allergic diseases: Microbiome. Allergy. 2018;73(12):2314-2327.
20. Su MW, Lin WC, Tsai CH, et al. Childhood asthma clusters reveal neutrophil-predominant phenotype with distinct gene expression.Allergy. 2018;73(10):2024-2032.
21. Dona I, Jurado-Escobar R, Perkins JR, et al. Eicosanoid mediator profiles in different phenotypes of nonsteroidal anti-inflammatory drug-induced urticaria. Allergy. 2019;74donm(6):1135-1144.
22. Liao B, Liu JX, Li ZY, et al. Multidimensional endotypes of chronic rhinosinusitis and their association with treatment outcomes.Allergy. 2018;73(7):1459-1469.
23. Asthma GIf. https://ginasthma.org/. accessed June 30, 2020.
24. Seys SF, Quirce S, Agache I, et al. Severe asthma: Entering an era of new concepts and emerging therapies: Highlights of the 4th international severe asthma forum, Madrid, 2018. Allergy.2019;74(11):2244-2248.
25. Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. The Journal of allergy and clinical immunology. 2019;144(1):1-12.
26. Fahy JV. Type 2 inflammation in asthma–present in most, absent in many. Nat Rev Immunol. 2015;15(1):57-65.
27. Fokkens WJ, Lund V, Bachert C, et al. EUFOREA consensus on biologics for CRSwNP with or without asthma. Allergy.2019;74(12):2312-2319.
28. Kowalski ML, Agache I, Bavbek S, et al. Diagnosis and management of NSAID-Exacerbated Respiratory Disease (N-ERD)-a EAACI position paper.Allergy. 2019;74(1):28-39.
29. Roth-Walter F, Adcock IM, Benito-Villalvilla C, et al. Comparing biologicals and small molecule drug therapies for chronic respiratory diseases: An EAACI Taskforce on Immunopharmacology position paper.Allergy. 2019;74(3):432-448.
30. Woodruff PG, Boushey HA, Dolganov GM, et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proceedings of the National Academy of Sciences of the United States of America.2007;104(40):15858-15863.
31. Alving K, Diamant Z, Lucas S, et al. Point-of-care biomarkers in asthma management: Time to move forward. Allergy.2020;75(4):995-997.
32. Holguin F, Cardet JC, Chung KF, et al. Management of severe asthma: a European Respiratory Society/American Thoracic Society guideline.Eur Respir J. 2020;55(1).
33. Agache I, Akdis C, Akdis M, et al. EAACI Biologicals Guidelines - Recommendations for severe asthma. Allergy. 2020.
34. Diamant Z, Boot JD, Mantzouranis E, Flohr R, Sterk PJ, Gerth van Wijk R. Biomarkers in asthma and allergic rhinitis. Pulm Pharmacol Ther. 2010;23(6):468-481.
35. McDowell PJ, Heaney LG. Different endotypes and phenotypes drive the heterogeneity in severe asthma. Allergy. 2020;75(2):302-310.
36. Sze E, Bhalla A, Nair P. Mechanisms and therapeutic strategies for non-T2 asthma. Allergy. 2020;75(2):311-325.
37. Taylor SL, Leong LEX, Choo JM, et al. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. The Journal of allergy and clinical immunology.2018;141(1):94-103.e115.
38. Green BJ, Wiriyachaiporn S, Grainge C, et al. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma. PloS one. 2014;9(6):e100645.
39. Tliba O, Panettieri RA, Jr. Paucigranulocytic asthma: Uncoupling of airway obstruction from inflammation. The Journal of allergy and clinical immunology. 2019;143(4):1287-1294.
40. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716-725.
41. Agusti A, Bafadhel M, Beasley R, et al. Precision medicine in airway diseases: moving to clinical practice. Eur Respir J. 2017;50(4).
42. Chung KF, Adcock IM. Precision medicine for the discovery of treatable mechanisms in severe asthma. Allergy.2019;74(9):1649-1659.
43. Simpson AJ, Hekking PP, Shaw DE, et al. Treatable traits in the European U-BIOPRED adult asthma cohorts. Allergy.2019;74(2):406-411.
44. Lefaudeux D, De Meulder B, Loza MJ, et al. U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. The Journal of allergy and clinical immunology. 2017;139(6):1797-1807.
45. Schofield JPR, Burg D, Nicholas B, et al. Stratification of asthma phenotypes by airway proteomic signatures. The Journal of allergy and clinical immunology. 2019;144(1):70-82.
46. Ivanova O, Richards LB, Vijverberg SJ, et al. What did we learn from multiple omics studies in asthma? Allergy. 2019;74(11):2129-2145.
47. Dunican EM, Elicker BM, Gierada DS, et al. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. The Journal of clinical investigation. 2018;128(3):997-1009.
48. Erjefalt JS. Unravelling the complexity of tissue inflammation in uncontrolled and severe asthma. Curr Opin Pulm Med.2019;25(1):79-86.
49. Walter J, O’Mahony L. The importance of social networks-An ecological and evolutionary framework to explain the role of microbes in the aetiology of allergy and asthma. Allergy.2019;74(11):2248-2251.
50. Savage JH, Lee-Sarwar KA, Sordillo J, et al. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy. 2018;73(1):145-152.
51. Kozik A, Huang YJ. Ecological interactions in asthma: from environment to microbiota and immune responses. Curr Opin Pulm Med. 2020;26(1):27-32.
52. Sokolowska M, Frei R, Lunjani N, Akdis CA, O’Mahony L. Microbiome and asthma. Asthma Res Pract. 2018;4:1.
53. Sbihi H, Boutin RC, Cutler C, Suen M, Finlay BB, Turvey SE. Thinking bigger: How early-life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease.Allergy. 2019;74(11):2103-2115.
54. Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152.
55. Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187-1191.
56. Bannier M, van Best N, Bervoets L, et al. Gut microbiota in wheezing preschool children and the association with childhood asthma.Allergy. 2019.
57. Thorsen J, Rasmussen MA, Waage J, et al. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma.Nat Commun. 2019;10(1):5001.
58. Zhou Y, Jackson D, Bacharier LB, et al. The upper-airway microbiota and loss of asthma control among asthmatic children. Nat Commun.2019;10(1):5714.
59. Huang YJ, Nariya S, Harris JM, et al. The airway microbiome in patients with severe asthma: Associations with disease features and severity. The Journal of allergy and clinical immunology.2015;136(4):874-884.
60. Michalovich D, Rodriguez-Perez N, Smolinska S, et al. Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. Nat Commun. 2019;10(1):5711.
61. Roduit C, Frei R, Ferstl R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy.Allergy. 2019;74(4):799-809.
62. Lewis G, Wang B, Shafiei Jahani P, et al. Dietary Fiber-Induced Microbial Short Chain Fatty Acids Suppress ILC2-Dependent Airway Inflammation. Front Immunol. 2019;10:2051.
63. Barcik W, Pugin B, Westermann P, et al. Histamine-secreting microbes are increased in the gut of adult asthma patients. The Journal of allergy and clinical immunology. 2016;138(5):1491-1494 e1497.
64. Barcik W, Pugin B, Bresco MS, et al. Bacterial secretion of histamine within the gut influences immune responses within the lung.Allergy. 2019;74(5):899-909.
65. Lee JJ, Kim SH, Lee MJ, et al. Different upper airway microbiome and their functional genes associated with asthma in young adults and elderly individuals. Allergy. 2019;74(4):709-719.
66. Jobin C. Precision medicine using microbiota. Science.2018;359(6371):32-34.
67. Maurer M, Hawro T, Krause K, et al. Diagnosis and treatment of chronic inducible urticaria. Allergy. 2019;74(12):2550-2553.
68. Bieber T, Traidl-Hoffmann C, Schäppi G, Lauener R, Akdis C, Schmid-Grendlmeier P. Unraveling the complexity of atopic dermatitis: The CK-CARE approach toward precision medicine. Allergy. 2020.
69. Venter C, Meyer RW, Nwaru BI, et al. EAACI position paper: Influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis.Allergy. 2019;74(8):1429-1444.
70. Altunbulakli C, Reiger M, Neumann AU, et al. Relations between epidermal barrier dysregulation and Staphylococcus species-dominated microbiome dysbiosis in patients with atopic dermatitis. The Journal of allergy and clinical immunology. 2018;142(5):1643-1647 e1612.
71. Moriwaki M, Iwamoto K, Niitsu Y, et al. Staphylococcus aureus from atopic dermatitis skin accumulates in the lysosomes of keratinocytes with induction of IL-1α secretion via TLR9. Allergy.2019;74(3):560-571.
72. Reiger M, Traidl-Hoffmann C, Neumann AU. The skin microbiome as a clinical biomarker in atopic eczema: Promises, navigation, and pitfalls.The Journal of allergy and clinical immunology.2020;145(1):93-96.
73. Gokkaya M, Damialis A, Nussbaumer T, et al. Defining biomarkers to predict symptoms in subjects with and without allergy under natural pollen exposure. The Journal of allergy and clinical immunology.2020.
74. Gonzalez T, Stevens ML, Baatrebek Kyzy A, et al. Biofilm propensity of Staphylococcus aureus skin isolates is associated with increased atopic dermatitis severity and barrier dysfunction in the MPAACH pediatric cohort. Allergy. 2020.
75. Hülpüsch C, Tremmel K, Hammel G, et al. Skin pH-dependent Staphylococcus aureus abundance as predictor for increasing atopic dermatitis severity. Allergy. 2020.
76. Vitte J, Amadei L, Gouitaa M, et al. Paired acute-baseline serum tryptase levels in perioperative anaphylaxis: An observational study.Allergy. 2019;74(6):1157-1165.
77. Izuhara K, Nunomura S, Nanri Y, Ono J, Takai M, Kawaguchi A. Periostin: An emerging biomarker for allergic diseases. Allergy.2019;74(11):2116-2128.
78. Ando N, Nakamura Y, Ishimaru K, et al. Allergen-specific basophil reactivity exhibits daily variations in seasonal allergic rhinitis.Allergy. 2015;70(3):319-322.
79. Zhong H, Fan XL, Yu QN, et al. Increased innate type 2 immune response in house dust mite-allergic patients with allergic rhinitis.Clin Immunol. 2017;183:293-299.
80. Dhariwal J, Cameron A, Trujillo-Torralbo MB, et al. yuMucosal Type 2 Innate Lymphoid Cells Are a Key Component of the Allergic Response to Aeroallergens. Am J Respir Crit Care Med. 2017;195(12):1586-1596.
81. Yu QN, Guo YB, Li X, et al. ILC2 frequency and activity are inhibited by glucocorticoid treatment via STAT pathway in patients with asthma. Allergy. 2018;73(9):1860-1870.
82. Tojima I, Matsumoto K, Kikuoka H, et al. Evidence for the induction of Th2 inflammation by group 2 innate lymphoid cells in response to prostaglandin D2 and cysteinyl leukotrienes in allergic rhinitis.Allergy. 2019;74(12):2417-2426.
83. Iinuma T, Okamoto Y, Morimoto Y, et al. Pathogenicity of memory Th2 cells is linked to stage of allergic rhinitis. Allergy.2018;73(2):479-489.
84. North ML, Jones MJ, MacIsaac JL, et al. Blood and nasal epigenetics correlate with allergic rhinitis symptom development in the environmental exposure unit. Allergy. 2018;73(1):196-205.
85. Cardenas A, Sordillo JE, Rifas-Shiman SL, et al. The nasal methylome as a biomarker of asthma and airway inflammation in children. Nat Commun. 2019;10(1):3095.
86. Panganiban RP, Wang Y, Howrylak J, et al. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. The Journal of allergy and clinical immunology. 2016;137(5):1423-1432.
87. Panganiban RP, Lambert KA, Hsu MH, Laryea Z, Ishmael FT. Isolation and profiling of plasma microRNAs: Biomarkers for asthma and allergic rhinitis. Methods. 2019;152:48-54.
88. Ma GC, Wang TS, Wang J, Ma ZJ, Pu SB. Serum metabolomics study of patients with allergic rhinitis. Biomed Chromatogr.2020;34(3):e4739.
89. Choi GS, Shin SY, Kim JH, et al. Serum lactoferrin level as a serologic biomarker for allergic rhinitis. Clin Exp Allergy.2010;40(3):403-410.
90. Bousquet J, Pfaar O, Togias A, et al. 2019 ARIA Care pathways for allergen immunotherapy. Allergy. 2019;74(11):2087-2102.
91. Reitsma S, Subramaniam S, Fokkens WWJ, Wang Y. Recent developments and highlights in rhinitis and allergen immunotherapy. Allergy.2018;73(12):2306-2313.
92. Kortekaas Krohn I, Callebaut I, Alpizar YA, et al. MP29-02 reduces nasal hyperreactivity and nasal mediators in patients with house dust mite-allergic rhinitis. Allergy. 2018;73(5):1084-1093.
93. Rittchen S, Heinemann A. Therapeutic Potential of Hematopoietic Prostaglandin D2 Synthase in Allergic Inflammation. Cells.2019;8(6).
94. Okubo K, Hashiguchi K, Takeda T, et al. A randomized controlled phase II clinical trial comparing ONO-4053, a novel DP1 antagonist, with a leukotriene receptor antagonist pranlukast in patients with seasonal allergic rhinitis. Allergy. 2017;72(10):1565-1575.
95. Meng Y, Wang C, Zhang L. Recent developments and highlights in allergic rhinitis. Allergy. 2019;74(12):2320-2328.
96. Eyerich S, Metz M, Bossios A, Eyerich K. New biological treatments for asthma and skin allergies. Allergy. 2020;75(3):546-560.
97. Mukherjee M, Bakakos P, Loukides S. New paradigm in asthma management: Switching between biologics! Allergy.2020;75(4):743-745.
98. Tsabouri S, Tseretopoulou X, Priftis K, Ntzani EE. Omalizumab for the treatment of inadequately controlled allergic rhinitis: a systematic review and meta-analysis of randomized clinical trials. J Allergy Clin Immunol Pract. 2014;2(3):332-340 e331.
99. Kopp MV, Hamelmann E, Bendiks M, et al. Transient impact of omalizumab in pollen allergic patients undergoing specific immunotherapy. Pediatr Allergy Immunol. 2013;24(5):427-433.
100. Weinstein SF, Katial R, Jayawardena S, et al. Efficacy and safety of dupilumab in perennial allergic rhinitis and comorbid asthma.The Journal of allergy and clinical immunology.2018;142(1):171-177 e171.
101. Breiteneder H, Diamant Z, Eiwegger T, et al. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy. 2019;74(12):2293-2311.
102. Murray CS, Poletti G, Kebadze T, et al. Study of modifiable risk factors for asthma exacerbations: virus infection and allergen exposure increase the risk of asthma hospital admissions in children.Thorax. 2006;61(5):376-382.
103. Akbarshahi H, Menzel M, Ramu S, Mahmutovic Persson I, Bjermer L, Uller L. House dust mite impairs antiviral response in asthma exacerbation models through its effects on TLR3. Allergy.2018;73(5):1053-1063.
104. Oliver BG, Robinson P, Peters M, Black J. Viral infections and asthma: an inflammatory interface? Eur Respir J.2014;44(6):1666-1681.
105. Johnston NW, Johnston SL, Duncan JM, et al. The September epidemic of asthma exacerbations in children: a search for etiology. The Journal of allergy and clinical immunology. 2005;115(1):132-138.
106. Hasegawa K, Hoptay CE, Harmon B, et al. Association of type 2 cytokines in severe rhinovirus bronchiolitis during infancy with risk of developing asthma: A multicenter prospective study. Allergy.2019;74(7):1374-1377.
107. Globinska A, Pawelczyk M, Piechota-Polanczyk A, et al. Impaired virus replication and decreased innate immune responses to viral infections in nasal epithelial cells from patients with allergic rhinitis. Clin Exp Immunol. 2017;187(1):100-112.
108. Jeon YJ, Lim JH, An S, et al. Type III interferons are critical host factors that determine susceptibility to Influenza A viral infection in allergic nasal mucosa. Clin Exp Allergy.2018;48(3):253-265.
109. Gilles S, Blume C, Wimmer M, et al. Pollen exposure weakens innate defense against respiratory viruses. Allergy. 2020;75(3):576-587.
110. Flayer CH, Haczku A. The Th2 gene cluster unraveled: role of RHS6.Allergy. 2017;72(5):679-681.
111. Hong HY, Chen FH, Sun YQ, et al. Local IL-25 contributes to Th2-biased inflammatory profiles in nasal polyps. Allergy.2018;73(2):459-469.
112. Tan KS, Andiappan AK, Lee B, et al. RNA Sequencing of H3N2 Influenza Virus-Infected Human Nasal Epithelial Cells from Multiple Subjects Reveals Molecular Pathways Associated with Tissue Injury and Complications. Cells. 2019;8(9).
113. Roan F, Obata-Ninomiya K, Ziegler SF. Epithelial cell-derived cytokines: more than just signaling the alarm. The Journal of clinical investigation. 2019;129(4):1441-1451.
114. Tan KS, Ong HH, Yan Y, et al. In Vitro Model of Fully Differentiated Human Nasal Epithelial Cells Infected With Rhinovirus Reveals Epithelium-Initiated Immune Responses. J Infect Dis.2018;217(6):906-915.
115. Becker Y. Respiratory syncytial virus (RSV) evades the human adaptive immune system by skewing the Th1/Th2 cytokine balance toward increased levels of Th2 cytokines and IgE, markers of allergy–a review. Virus Genes. 2006;33(2):235-252.
116. Malinczak CA, Rasky AJ, Fonseca W, et al. Upregulation of H3K27 Demethylase KDM6 During Respiratory Syncytial Virus Infection Enhances Proinflammatory Responses and Immunopathology. J Immunol.2020;204(1):159-168.
117. Scanlon ST, McKenzie AN. Type 2 innate lymphoid cells: new players in asthma and allergy. Curr Opin Immunol. 2012;24(6):707-712.
118. Han JJ, Goldsmith AM, Hong JY, Sajjan U, Hershenson MB. Rhinovirus induces the expression of thymic stromal lymphopoietin in human airway epithelial cells. Am J Respir Crit Care Med. 2012;185:A6875.
119. Beale J, Jayaraman A, Jackson DJ, et al. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci Transl Med. 2014;6(256):256ra134.
120. Shaw JL, Fakhri S, Citardi MJ, et al. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps. Am J Respir Crit Care Med.2013;188(4):432-439.
121. Yan Y, Tan KS, Li C, et al. Human nasal epithelial cells derived from multiple subjects exhibit differential responses to H3N2 influenza virus infection in vitro. The Journal of allergy and clinical immunology. 2016;138(1):276-281 e215.
122. Jurak LM, Xi Y, Landgraf M, Carroll ML, Murray L, Upham JW. Interleukin 33 Selectively Augments Rhinovirus-Induced Type 2 Immune Responses in Asthmatic but not Healthy People. Front Immunol.2018;9:1895.
123. Tian T, Zi X, Peng Y, et al. H3N2 influenza virus infection enhances oncostatin M expression in human nasal epithelium. Exp Cell Res. 2018;371(2):322-329.
124. Li L, Chong HC, Ng SY, et al. Angiopoietin-like 4 Increases Pulmonary Tissue Leakiness and Damage during Influenza Pneumonia.Cell Rep. 2015;10(5):654-663.
125. Taka S, Tzani-Tzanopoulou P, Wanstall H, Papadopoulos NG. MicroRNAs in Asthma and Respiratory Infections: Identifying Common Pathways.Allergy Asthma Immunol Res. 2020;12(1):4-23.
126. Tiwari BS, Belenghi B, Levine A. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol. 2002;128(4):1271-1281.
127. Aizawa H, Koarai A, Shishikura Y, et al. Oxidative stress enhances the expression of IL-33 in human airway epithelial cells. Respir Res. 2018;19(1):52.
128. Manji J, Thamboo A, Tacey M, Garnis C, Chadha NK. The presence of Interleukin-13 in nasal lavage may be a predictor of nasal polyposis in pediatric patients with cystic fibrosis. Rhinology.2018;56(3):261-267.
129. Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet. 2019;394(10209):1638-1650.
130. Bachert C, Sousa AR, Lund VJ, et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: Randomized trial. The Journal of allergy and clinical immunology. 2017;140(4):1024-1031 e1014.
131. Bachert C, Zinreich SJ, Hellings PW, et al. Dupilumab reduces opacification across all sinuses and related symptoms in patients with CRSwNP. Rhinology. 2020;58(1):10-17.
132. Tomassen P, Vandeplas G, Van Zele T, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers.The Journal of allergy and clinical immunology.2016;137(5):1449-1456 e1444.
133. Fokkens WJ, Reitsma S. Medical algorithms: Management of chronic rhinosinusitis. Allergy. 2019;74(7):1415-1416.
134. Xu X, Ong YK, Wang Y. Novel findings in immunopathophysiology of chronic rhinosinusitis and their role in a model of precision medicine.Allergy. 2020;75(4):769-780.
135. Arebro J, Drakskog C, Winqvist O, Bachert C, Kumlien Georen S, Cardell LO. Subsetting reveals CD16(high) CD62L(dim) neutrophils in chronic rhinosinusitis with nasal polyps. Allergy.2019;74(12):2499-2501.
136. Succar EF, Li P, Ely KA, Chowdhury NI, Chandra RK, Turner JH. Neutrophils are underrecognized contributors to inflammatory burden and quality of life in chronic rhinosinusitis. Allergy.2020;75(3):713-716.
137. Jonstam K, Westman M, Holtappels G, Holweg CTJ, Bachert C. Serum periostin, IgE, and SE-IgE can be used as biomarkers to identify moderate to severe chronic rhinosinusitis with nasal polyps. The Journal of allergy and clinical immunology. 2017;140(6):1705-1708 e1703.
138. Zhang Y, Derycke L, Holtappels G, et al. Th2 cytokines orchestrate the secretion of MUC5AC and MUC5B in IL-5-positive chronic rhinosinusitis with nasal polyps. Allergy. 2019;74(1):131-140.
139. Ogasawara N, Klingler AI, Tan BK, et al. Epithelial activators of type 2 inflammation: Elevation of thymic stromal lymphopoietin, but not IL-25 or IL-33, in chronic rhinosinusitis with nasal polyps in Chicago, Illinois. Allergy. 2018;73(11):2251-2254.
140. Rouyar A, Classe M, Gorski R, et al. Type 2/Th2-driven inflammation impairs olfactory sensory neurogenesis in mouse chronic rhinosinusitis model. Allergy. 2019;74(3):549-559.
141. Rimmer J, Hellings P, Lund VJ, et al. European position paper on diagnostic tools in rhinology. Rhinology. 2019;57(Suppl S28):1-41.
142. Oakley GM, Christensen JM, Sacks R, Earls P, Harvey RJ. Characteristics of macrolide responders in persistent post-surgical rhinosinusitis. Rhinology. 2018;56(2):111-117.
143. Bidder T, Sahota J, Rennie C, Lund VJ, Robinson DS, Kariyawasam HH. Omalizumab treats chronic rhinosinusitis with nasal polyps and asthma together-a real life study. Rhinology. 2018;56(1):42-45.
144. Jonstam K, Swanson BN, Mannent LP, et al. Dupilumab reduces local type 2 pro-inflammatory biomarkers in chronic rhinosinusitis with nasal polyposis. Allergy. 2019;74(4):743-752.
145. Tsetsos N, Goudakos JK, Daskalakis D, Konstantinidis I, Markou K. Monoclonal antibodies for the treatment of chronic rhinosinusitis with nasal polyposis: a systematic review. Rhinology.2018;56(1):11-21.
146. Castan L, Bogh KL, Maryniak NZ, et al. Overview of in vivo and ex vivo endpoints in murine food allergy models: Suitable for evaluation of the sensitizing capacity of novel proteins? Allergy.2020;75(2):289-301.
147. Eiwegger T, Hung L, San Diego KE, O’Mahony L, Upton J. Recent developments and highlights in food allergy. Allergy.2019;74(12):2355-2367.
148. Ponce M, Diesner SC, Szepfalusi Z, Eiwegger T. Markers of tolerance development to food allergens. Allergy. 2016;71(10):1393-1404.
149. Ashley SE, Tan HT, Vuillermin P, et al. The skin barrier function gene SPINK5 is associated with challenge-proven IgE-mediated food allergy in infants. Allergy. 2017;72(9):1356-1364.
150. Tan HT, Hagner S, Ruchti F, et al. Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice.Allergy. 2019;74(2):294-307.
151. Leung DYM, Calatroni A, Zaramela LS, et al. The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Sci Transl Med. 2019;11(480).
152. Goleva E, Berdyshev E, Leung DY. Epithelial barrier repair and prevention of allergy. The Journal of clinical investigation.2019;129(4):1463-1474.
153. van Ginkel CD, Flokstra-de Blok BM, Kollen BJ, Kukler J, Koppelman GH, Dubois AE. Loss-of-function variants of the filaggrin gene are associated with clinical reactivity to foods. Allergy.2015;70(4):461-464.
154. Suaini NHA, Wang Y, Soriano VX, et al. Genetic determinants of paediatric food allergy: A systematic review. Allergy.2019;74(9):1631-1648.
155. Kivisto JE, Clarke A, Dery A, et al. Genetic and environmental susceptibility to food allergy in a registry of twins. J Allergy Clin Immunol Pract. 2019;7(8):2916-2918.
156. Marenholz I, Grosche S, Kalb B, et al. Genome-wide association study identifies the SERPINB gene cluster as a susceptibility locus for food allergy. Nat Commun. 2017;8(1):1056.
157. Do AN, Watson CT, Cohain AT, et al. Dual transcriptomic and epigenomic study of reaction severity in peanut-allergic children.The Journal of allergy and clinical immunology.2020;145(4):1219-1230.
158. Mondoulet L, Dioszeghy V, Busato F, et al. Gata3 hypermethylation and Foxp3 hypomethylation are associated with sustained protection and bystander effect following epicutaneous immunotherapy in peanut-sensitized mice. Allergy. 2019;74(1):152-164.
159. D’Argenio V, Del Monaco V, Paparo L, et al. Altered miR-193a-5p expression in children with cow’s milk allergy. Allergy.2018;73(2):379-386.
160. Ruffner MA, Song L, Maurer K, et al. Toll-like receptor 2 stimulation augments esophageal barrier integrity. Allergy.2019;74(12):2449-2460.
161. Rahrig S, Dettmann JM, Brauns B, et al. Transient epidermal barrier deficiency and lowered allergic threshold in filaggrin-hornerin (FlgHrnr(-/-) ) double-deficient mice. Allergy.2019;74(7):1327-1339.
162. Mitamura Y, Nunomura S, Nanri Y, et al. The IL-13/periostin/IL-24 pathway causes epidermal barrier dysfunction in allergic skin inflammation. Allergy. 2018;73(9):1881-1891.
163. Rinaldi AO, Morita H, Wawrzyniak P, et al. Direct assessment of skin epithelial barrier by electrical impedance spectroscopy.Allergy. 2019;74(10):1934-1944.
164. Chauveau A, Dalphin ML, Mauny F, et al. Skin prick tests and specific IgE in 10-year-old children: Agreement and association with allergic diseases. Allergy. 2017;72(9):1365-1373.
165. Flinterman AE, Knol EF, Lencer DA, et al. Peanut epitopes for IgE and IgG4 in peanut-sensitized children in relation to severity of peanut allergy. The Journal of allergy and clinical immunology.2008;121(3):737-743 e710.
166. Caubet JC, Lin J, Ahrens B, et al. Natural tolerance development in cow’s milk allergic children: IgE and IgG4 epitope binding.Allergy. 2017;72(11):1677-1685.
167. Cerecedo I, Zamora J, Shreffler WG, et al. Mapping of the IgE and IgG4 sequential epitopes of milk allergens with a peptide microarray-based immunoassay. The Journal of allergy and clinical immunology. 2008;122(3):589-594.
168. Sackesen C, Suarez-Farinas M, Silva R, et al. A new Luminex-based peptide assay to identify reactivity to baked, fermented, and whole milk. Allergy. 2019;74(2):327-336.
169. Suprun M, Getts R, Raghunathan R, et al. Novel Bead-Based Epitope Assay is a sensitive and reliable tool for profiling epitope-specific antibody repertoire in food allergy. Sci Rep. 2019;9(1):18425.
170. Suarez-Farinas M, Suprun M, Chang HL, et al. Predicting development of sustained unresponsiveness to milk oral immunotherapy using epitope-specific antibody binding profiles. The Journal of allergy and clinical immunology. 2019;143(3):1038-1046.
171. Monino-Romero S, Lexmond WS, Singer J, et al. Soluble FcvarepsilonRI: A biomarker for IgE-mediated diseases. Allergy.2019;74(7):1381-1384.
172. Saidova A, Hershkop AM, Ponce M, Eiwegger T. Allergen-Specific T Cells in IgE-Mediated Food Allergy. Arch Immunol Ther Exp (Warsz). 2018;66(3):161-170.
173. Chiang D, Chen X, Jones SM, et al. Single-cell profiling of peanut-responsive T cells in patients with peanut allergy reveals heterogeneous effector TH2 subsets. The Journal of allergy and clinical immunology. 2018;141(6):2107-2120.
174. Wambre E, Bajzik V, DeLong JH, et al. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci Transl Med. 2017;9(401).
175. Heeringa JJ, Rijvers L, Arends NJ, et al. IgE-expressing memory B cells and plasmablasts are increased in blood of children with asthma, food allergy, and atopic dermatitis. Allergy.2018;73(6):1331-1336.
176. Jimenez-Saiz R, Ellenbogen Y, Bruton K, et al. Human BCR analysis of single-sorted, putative IgE(+) memory B cells in food allergy.The Journal of allergy and clinical immunology.2019;144(1):336-339 e336.
177. Nielsen SCA, Boyd SD. New technologies and applications in infant B cell immunology. Curr Opin Immunol. 2019;57:53-57.
178. Croote D, Darmanis S, Nadeau KC, Quake SR. High-affinity allergen-specific human antibodies cloned from single IgE B cell transcriptomes. Science. 2018;362(6420):1306-1309.
179. Nielsen SCA, Roskin KM, Jackson KJL, et al. Shaping of infant B cell receptor repertoires by environmental factors and infectious disease. Sci Transl Med. 2019;11(481).
180. Hoof I, Schulten V, Layhadi JA, et al. Allergen-specific IgG(+) memory B cells are temporally linked to IgE memory responses. The Journal of allergy and clinical immunology. 2019.
181. Heeringa JJ, McKenzie CI, Varese N, et al. Induction of IgG2 and IgG4 B-cell memory following sublingual immunotherapy for ryegrass pollen allergy. Allergy. 2019.
182. Jimenez-Saiz R, Ellenbogen Y, Koenig JFE, et al. IgG1(+) B-cell immunity predates IgE responses in epicutaneous sensitization to foods.Allergy. 2019;74(1):165-175.
183. Hoffmann HJ, Santos AF, Mayorga C, et al. The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allergy. 2015;70(11):1393-1405.
184. Hemmings O, Kwok M, McKendry R, Santos AF. Basophil Activation Test: Old and New Applications in Allergy. Curr Allergy Asthma Rep. 2018;18(12):77.
185. Hung L, Obernolte H, Sewald K, Eiwegger T. Human ex vivo and in vitro disease models to study food allergy. Asia Pac Allergy.2019;9(1):e4.
186. Santos AF, Couto-Francisco N, Becares N, Kwok M, Bahnson HT, Lack G. A novel human mast cell activation test for peanut allergy. The Journal of allergy and clinical immunology. 2018;142(2):689-691 e689.
187. Bahri R, Custovic A, Korosec P, et al. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. The Journal of allergy and clinical immunology. 2018;142(2):485-496 e416.
188. Pouessel G, Beaudouin E, Tanno LK, et al. Food-related anaphylaxis fatalities: Analysis of the Allergy Vigilance Network((R)) database.Allergy. 2019;74(6):1193-1196.
189. Pouessel G, Turner PJ, Worm M, et al. Food-induced fatal anaphylaxis: From epidemiological data to general prevention strategies.Clin Exp Allergy. 2018;48(12):1584-1593.
190. De Schryver S, Halbrich M, Clarke A, et al. Tryptase levels in children presenting with anaphylaxis: Temporal trends and associated factors. The Journal of allergy and clinical immunology.2016;137(4):1138-1142.
191. Mayorga C, Fernandez TD, Montanez MI, Moreno E, Torres MJ. Recent developments and highlights in drug hypersensitivity. Allergy.2019;74(12):2368-2381.
192. Romano A, Atanaskovic-Markovic M, Barbaud A, et al. Towards a more precise diagnosis of hypersensitivity to beta-lactams - an EAACI position paper. Allergy. 2019.
193. Brockow K, Garvey LH, Aberer W, et al. Skin test concentrations for systemically administered drugs – an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy. 2013;68(6):702-712.
194. Torres MJ, Celik GE, Whitaker P, et al. A EAACI drug allergy interest group survey on how European allergy specialists deal with β-lactam allergy. Allergy. 2019;74(6):1052-1062.
195. Dona I, Romano A, Torres MJ. Algorithm for betalactam allergy diagnosis. Allergy. 2019;74(9):1817-1819.
196. Barbero N, Fernandez-Santamaria R, Mayorga C, et al. Identification of an antigenic determinant of clavulanic acid responsible for IgE-mediated reactions. Allergy. 2019;74(8):1490-1501.
197. Torres MJ, Celik GE, Whitaker P, et al. A EAACI drug allergy interest group survey on how European allergy specialists deal with beta-lactam allergy. Allergy. 2019;74(6):1052-1062.
198. Yang MS, Kang DY, Seo B, et al. Incidence of cephalosporin-induced anaphylaxis and clinical efficacy of screening intradermal tests with cephalosporins: A large multicenter retrospective cohort study.Allergy. 2018;73(9):1833-1841.
199. Dona I, Perez-Sanchez N, Salas M, et al. Clinical Characterization and Diagnostic Approaches for Patients Reporting Hypersensitivity Reactions to Quinolones. The journal of allergy and clinical immunology In practice. 2020.
200. Porebski G, Pecaric-Petkovic T, Groux-Keller M, Bosak M, Kawabata TT, Pichler WJ. In vitro drug causality assessment in Stevens-Johnson syndrome - alternatives for lymphocyte transformation test. Clin Exp Allergy. 2013;43(9):1027-1037.
201. Mayorga C, Celik G, Rouzaire P, et al. In vitro tests for drug hypersensitivity reactions: an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy. 2016;71(8):1103-1134.
202. Fontaine C, Mayorga C, Bousquet PJ, et al. Relevance of the determination of serum-specific IgE antibodies in the diagnosis of immediate beta-lactam allergy. Allergy. 2007;62(1):47-52.
203. Johansson SG, Adedoyin J, van Hage M, Gronneberg R, Nopp A. False-positive penicillin immunoassay: an unnoticed common problem.The Journal of allergy and clinical immunology.2013;132(1):235-237.
204. Torres MJ, Padial A, Mayorga C, et al. The diagnostic interpretation of basophil activation test in immediate allergic reactions to betalactams. Clin Exp Allergy.2004;34(11):1768-1775.
205. Torres MJ, Ariza A, Mayorga C, et al. Clavulanic acid can be the component in amoxicillin-clavulanic acid responsible for immediate hypersensitivity reactions. The Journal of allergy and clinical immunology. 2010;125(2):502-505 e502.
206. Fernandez TD, Ariza A, Palomares F, et al. Hypersensitivity to fluoroquinolones: The expression of basophil activation markers depends on the clinical entity and the culprit fluoroquinolone. Medicine (Baltimore). 2016;95(23):e3679.
207. Fernandez TD, Torres MJ, Blanca-Lopez N, et al. Negativization rates of IgE radioimmunoassay and basophil activation test in immediate reactions to penicillins. Allergy. 2009;64(2):242-248.
208. Van Gasse AL, Sabato V, Uyttebroek AP, et al. Immediate moxifloxacin hypersensitivity: Is there more than currently meets the eye? Allergy. 2017;72(12):2039-2043.
209. Fernandez-Santamaria R, Palomares F, Salas M, et al. Expression of the Tim3-galectin-9 axis is altered in drug-induced maculopapular exanthema. Allergy. 2019;74(9):1769-1779.
210. Dona I, Perez-Sanchez N, Eguiluz-Gracia I, et al. Progress in understanding hypersensitivity reactions to nonsteroidal anti-inflammatory drugs. Allergy. 2020;75(3):561-575.
211. Dona I, Perez-Sanchez N, Bogas G, Moreno E, Salas M, Torres MJ. Medical algorithm: Diagnosis and treatment of NSAIDs hypersensitivity.Allergy. 2019.
212. Dona I, Barrionuevo E, Salas M, et al. NSAIDs-hypersensitivity often induces a blended reaction pattern involving multiple organs.Sci Rep. 2018;8(1):16710.
213. Blanca M, Oussalah A, Cornejo-Garcia JA, et al. GNAI2 variants predict nonsteroidal anti-inflammatory drug hypersensitivity in a genome-wide study. Allergy. 2020;75(5):1250-1253.
214. Lee HY, Ye YM, Kim SH, et al. Identification of phenotypic clusters of nonsteroidal anti-inflammatory drugs exacerbated respiratory disease.Allergy. 2017;72(4):616-626.
215. Dona I, Jurado-Escobar R, Perkins JR, et al. Eicosanoid mediator profiles in different phenotypes of nonsteroidal anti-inflammatory drug-induced urticaria. Allergy. 2019;74(6):1135-1144.
216. Hagan JB, Laidlaw TM, Divekar R, et al. Urinary Leukotriene E4 to Determine Aspirin Intolerance in Asthma: A Systematic Review and Meta-Analysis. J Allergy Clin Immunol Pract. 2017;5(4):990-997 e991.
217. Ban GY, Cho K, Kim SH, et al. Metabolomic analysis identifies potential diagnostic biomarkers for aspirin-exacerbated respiratory disease. Clin Exp Allergy. 2017;47(1):37-47.
218. Lei DK, Saltoun C. Allergen immunotherapy: definition, indications, and reactions. Allergy Asthma Proc. 2019;40(6):369-371.
219. Miller JM, Davis CM, Anvari S. The clinical and immune outcomes after food allergen immunotherapy emphasizing the development of tolerance. Curr Opin Pediatr. 2019;31(6):821-827.
220. Sindher SB, Long A, Acharya S, Sampath V, Nadeau KC. The Use of Biomarkers to Predict Aero-Allergen and Food Immunotherapy Responses.Clin Rev Allergy Immunol. 2018;55(2):190-204.
221. Couroux P, Ipsen H, Stage BS, et al. A birch sublingual allergy immunotherapy tablet reduces rhinoconjunctivitis symptoms when exposed to birch and oak and induces IgG4 to allergens from all trees in the birch homologous group. Allergy. 2019;74(2):361-369.
222. Huang Y, Wang C, Wang X, Zhang L, Lou H. Efficacy and safety of subcutaneous immunotherapy with house dust mite for allergic rhinitis: A Meta-analysis of Randomized Controlled Trials. Allergy.2019;74(1):189-192.
223. Schmitt J, Wustenberg E, Kuster D, Mucke V, Serup-Hansen N, Tesch F. The moderating role of allergy immunotherapy in asthma progression: Results of a population-based cohort study. Allergy.2020;75(3):596-602.
224. Varona R, Ramos T, Escribese MM, et al. Persistent regulatory T-cell response 2 years after 3 years of grass tablet SLIT: Links to reduced eosinophil counts, sIgE levels, and clinical benefit.Allergy. 2019;74(2):349-360.
225. Wahn U, Bachert C, Heinrich J, Richter H, Zielen S. Real-world benefits of allergen immunotherapy for birch pollen-associated allergic rhinitis and asthma. Allergy. 2019;74(3):594-604.
226. Investigators PGoC, Vickery BP, Vereda A, et al. AR101 Oral Immunotherapy for Peanut Allergy. The New England journal of medicine. 2018;379(21):1991-2001.
227. Virkud YV, Kelly RS, Wood C, Lasky-Su JA. The nuts and bolts of omics for the clinical allergist. Ann Allergy Asthma Immunol.2019;123(6):558-563.
228. van Zelm MC, McKenzie CI, Varese N, Rolland JM, O’Hehir RE. Recent developments and highlights in immune monitoring of allergen immunotherapy. Allergy. 2019;74(12):2342-2354.
229. Kim EH, Yang L, Ye P, et al. Long-term sublingual immunotherapy for peanut allergy in children: Clinical and immunologic evidence of desensitization. The Journal of allergy and clinical immunology.2019;144(5):1320-1326 e1321.
230. Shamji MH, Kappen JH, Akdis M, et al. Biomarkers for monitoring clinical efficacy of allergen immunotherapy for allergic rhinoconjunctivitis and allergic asthma: an EAACI Position Paper.Allergy. 2017;72(8):1156-1173.
231. Viswanathan RK, Busse WW. Allergen immunotherapy in allergic respiratory diseases: from mechanisms to meta-analyses. Chest.2012;141(5):1303-1314.
232. Datema MR, Eller E, Zwinderman AH, et al. Ratios of specific IgG4 over IgE antibodies do not improve prediction of peanut allergy nor of its severity compared to specific IgE alone. Clin Exp Allergy.2019;49(2):216-226.
233. Kulis M, Yue X, Guo R, et al. High- and low-dose oral immunotherapy similarly suppress pro-allergic cytokines and basophil activation in young children. Clin Exp Allergy. 2019;49(2):180-189.
234. Chinthrajah RS, Purington N, Andorf S, et al. Sustained outcomes in oral immunotherapy for peanut allergy (POISED study): a large, randomised, double-blind, placebo-controlled, phase 2 study.Lancet. 2019;394(10207):1437-1449.
235. Feng M, Su Q, Lai X, et al. Functional and Immunoreactive Levels of IgG4 Correlate with Clinical Responses during the Maintenance Phase of House Dust Mite Immunotherapy. J Immunol. 2018;200(12):3897-3904.
236. Fukano C, Ohashi-Doi K, Lund K, Nakao A, Masuyama K, Matsuoka T. Establishment of enzyme-linked immunosorbent facilitated antigen binding as a biomarker assay for Japanese cedar pollen allergy immunotherapy.J Pharmacol Sci. 2019;140(3):223-227.
237. Chinthrajah RS, Purington N, Sampath V, et al. High dimensional immune biomarkers demonstrate differences in phenotypes and endotypes in food allergy and asthma. Ann Allergy Asthma Immunol.2018;121(1):117-119 e111.
238. Boonpiyathad T, Meyer N, Moniuszko M, et al. High-dose bee venom exposure induces similar tolerogenic B-cell responses in allergic patients and healthy beekeepers. Allergy. 2017;72(3):407-415.
239. Cianferoni A, Saltzman R, Saretta F, et al. Invariant natural killer cells change after an oral allergy desensitization protocol for cow’s milk. Clin Exp Allergy. 2017;47(11):1390-1397.
240. Schulten V, Tripple V, Seumois G, et al. Allergen-specific immunotherapy modulates the balance of circulating Tfh and Tfr cells.The Journal of allergy and clinical immunology.2018;141(2):775-777.e776.
241. Yao Y, Wang ZC, Wang N, et al. Allergen immunotherapy improves defective follicular regulatory T cells in patients with allergic rhinitis. The Journal of allergy and clinical immunology.2019;144(1):118-128.
242. Boonpiyathad T, Sokolowska M, Morita H, et al. Der p 1-specific regulatory T-cell response during house dust mite allergen immunotherapy. Allergy. 2019;74(5):976-985.
243. Boonpiyathad T, van de Veen W, Wirz O, et al. Role of Der p 1-specific B cells in immune tolerance during 2 years of house dust mite-specific immunotherapy. The Journal of allergy and clinical immunology. 2019;143(3):1077-1086 e1010.
244. Sharif H, Singh I, Kouser L, et al. Immunologic mechanisms of a short-course of Lolium perenne peptide immunotherapy: A randomized, double-blind, placebo-controlled trial. The Journal of allergy and clinical immunology. 2019;144(3):738-749.
245. Sage PT, Alvarez D, Godec J, von Andrian UH, Sharpe AH. Circulating T follicular regulatory and helper cells have memory-like properties.The Journal of clinical investigation. 2014;124(12):5191-5204.
246. Sun L, Jin H, Li H. GARP: a surface molecule of regulatory T cells that is involved in the regulatory function and TGF-β releasing.Oncotarget. 2016;7(27):42826-42836.
247. Caruso M, Cibella F, Emma R, et al. Basophil biomarkers as useful predictors for sublingual immunotherapy in allergic rhinitis. Int Immunopharmacol. 2018;60:50-58.
248. Van Overtvelt L, Baron-Bodo V, Horiot S, et al. Changes in basophil activation during grass-pollen sublingual immunotherapy do not correlate with clinical efficacy. Allergy. 2011;66(12):1530-1537.
249. Ihara F, Sakurai D, Yonekura S, et al. Identification of specifically reduced Th2 cell subsets in allergic rhinitis patients after sublingual immunotherapy. Allergy. 2018;73(9):1823-1832.
250. Gueguen C, Luce S, Lombardi V, Baron-Bodo V, Moingeon P, Mascarell L. IL-10 mRNA levels in whole blood cells correlate with house dust mite allergen immunotherapy efficacy. Allergy. 2019;74(11):2223-2226.
251. Potaczek DP, Harb H, Michel S, Alhamwe BA, Renz H, Tost J. Epigenetics and allergy: from basic mechanisms to clinical applications.Epigenomics. 2017;9(4):539-571.
252. Zhang H, Kaushal A, Merid SK, et al. DNA methylation and allergic sensitizations: A genome-scale longitudinal study during adolescence.Allergy. 2019;74(6):1166-1175.
253. Syed A, Garcia MA, Lyu SC, et al. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). The Journal of allergy and clinical immunology. 2014;133(2):500-510.
254. Tsai M, Mukai K, Chinthrajah RS, Nadeau KC, Galli SJ. Sustained successful peanut oral immunotherapy associated with low basophil activation and peanut-specific IgE. The Journal of allergy and clinical immunology. 2020;145(3):885-896 e886.
255. Burton OT, Logsdon SL, Zhou JS, et al. Oral immunotherapy induces IgG antibodies that act through FcgammaRIIb to suppress IgE-mediated hypersensitivity. The Journal of allergy and clinical immunology.2014;134(6):1310-1317 e1316.
256. Frischmeyer-Guerrerio PA, Masilamani M, Gu W, et al. Mechanistic correlates of clinical responses to omalizumab in the setting of oral immunotherapy for milk allergy. The Journal of allergy and clinical immunology. 2017;140(4):1043-1053 e1048.
257. Vickery BP, Berglund JP, Burk CM, et al. Early oral immunotherapy in peanut-allergic preschool children is safe and highly effective.The Journal of allergy and clinical immunology.2017;139(1):173-181 e178.
258. Ryan JF, Hovde R, Glanville J, et al. Successful immunotherapy induces previously unidentified allergen-specific CD4+ T-cell subsets.Proceedings of the National Academy of Sciences of the United States of America. 2016;113(9):E1286-1295.
259. Bedoret D, Singh AK, Shaw V, et al. Changes in antigen-specific T-cell number and function during oral desensitization in cow’s milk allergy enabled with omalizumab. Mucosal Immunol.2012;5(3):267-276.
260. Abdel-Gadir A, Schneider L, Casini A, et al. Oral immunotherapy with omalizumab reverses the Th2 cell-like programme of regulatory T cells and restores their function. Clin Exp Allergy.2018;48(7):825-836.
261. Blumchen K, Trendelenburg V, Ahrens F, et al. Efficacy, Safety, and Quality of Life in a Multicenter, Randomized, Placebo-Controlled Trial of Low-Dose Peanut Oral Immunotherapy in Children with Peanut Allergy.J Allergy Clin Immunol Pract. 2019;7(2):479-491 e410.
262. Syed IA, Sulaiman SA, Hassali MA, Syed SH, Shan LH, Lee CK. Factors associated with poor CD4 and viral load outcomes in patients with HIV/AIDS. J Med Virol. 2016;88(5):790-797.
263. Berin MC, Grishin A, Masilamani M, et al. Egg-specific IgE and basophil activation but not egg-specific T-cell counts correlate with phenotypes of clinical egg allergy. The Journal of allergy and clinical immunology. 2018;142(1):149-158 e148.
264. Gorelik M, Narisety SD, Guerrerio AL, et al. Suppression of the immunologic response to peanut during immunotherapy is often transient.The Journal of allergy and clinical immunology.2015;135(5):1283-1292.
265. Flores Kim J, McCleary N, Nwaru BI, Stoddart A, Sheikh A. Diagnostic accuracy, risk assessment, and cost-effectiveness of component-resolved diagnostics for food allergy: A systematic review.Allergy. 2018;73(8):1609-1621.
266. Eller E, Bindslev-Jensen C. Clinical value of component-resolved diagnostics in peanut-allergic patients. Allergy.2013;68(2):190-194.
267. Klemans RJ, Otte D, Knol M, et al. The diagnostic value of specific IgE to Ara h 2 to predict peanut allergy in children is comparable to a validated and updated diagnostic prediction model. The Journal of allergy and clinical immunology. 2013;131(1):157-163.
268. Kukkonen AK, Pelkonen AS, Makinen-Kiljunen S, Voutilainen H, Makela MJ. Ara h 2 and Ara 6 are the best predictors of severe peanut allergy: a double-blind placebo-controlled study. Allergy.2015;70(10):1239-1245.
269. Martinet J, Couderc L, Renosi F, Bobée V, Marguet C, Boyer O. Diagnostic Value of Antigen-Specific Immunoglobulin E Immunoassays against Ara h 2 and Ara h 8 Peanut Components in Child Food Allergy.International archives of allergy and immunology.2016;169(4):216-222.
270. Holzhauser T, Wackermann O, Ballmer-Weber BK, et al. Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. The Journal of allergy and clinical immunology.2009;123(2):452-458.
271. Ebisawa M, Brostedt P, Sjolander S, Sato S, Borres MP, Ito K. Gly m 2S albumin is a major allergen with a high diagnostic value in soybean-allergic children. The Journal of allergy and clinical immunology. 2013;132(4):976-978 e971-975.
272. Klemans RJ, Knol EF, Michelsen-Huisman A, et al. Components in soy allergy diagnostics: Gly m 2S albumin has the best diagnostic value in adults. Allergy. 2013;68(11):1396-1402.
273. Masthoff LJ, Mattsson L, Zuidmeer-Jongejan L, et al. Sensitization to Cor a 9 and Cor a 14 is highly specific for a hazelnut allergy with objective symptoms in Dutch children and adults. The Journal of allergy and clinical immunology. 2013;132(2):393-399.
274. Faber MA, De Graag M, Van Der Heijden C, et al. Cor a 14: missing link in the molecular diagnosis of hazelnut allergy? International archives of allergy and immunology. 2014;164(3):200-206.
275. Datema MR, van Ree R, Asero R, et al. Component-resolved diagnosis and beyond: Multivariable regression models to predict severity of hazelnut allergy. Allergy. 2018;73(3):549-559.
276. Beyer K, Grabenhenrich L, Hartl M, et al. Predictive values of component-specific IgE for the outcome of peanut and hazelnut food challenges in children. Allergy. 2015;70(1):90-98.
277. Ciprandi G, Pistorio A, Silvestri M, Rossi GA, Tosca MA. Walnut anaphylaxis: the usefulness of molecular-based allergy diagnostics.Immunol Lett. 2014;161(1):138-139.
278. Ballmer-Weber BK, Lidholm J, Lange L, et al. Allergen Recognition Patterns in Walnut Allergy Are Age Dependent and Correlate with the Severity of Allergic Reactions. J Allergy Clin Immunol Pract.2019;7(5):1560-1567 e1566.
279. Lee J, Jeong K, Jeon SA, Lee S. Component resolved diagnosis of walnut allergy in young children: Jug r 1 as a major walnut allergen.Asian Pac J Allergy Immunol. 2019.
280. Giovannini M, Comberiati P, Piazza M, et al. Retrospective definition of reaction risk in Italian children with peanut, hazelnut and walnut allergy through component-resolved diagnosis. Allergol Immunopathol (Madr). 2019;47(1):73-78.
281. Savvatianos S, Konstantinopoulos AP, Borga A, et al. Sensitization to cashew nut 2S albumin, Ana o 3, is highly predictive of cashew and pistachio allergy in Greek children. The Journal of allergy and clinical immunology. 2015;136(1):192-194.
282. van der Valk JP, Gerth van Wijk R, Vergouwe Y, et al. sIgE Ana o 1, 2 and 3 accurately distinguish tolerant from allergic children sensitized to cashew nuts. Clin Exp Allergy. 2017;47(1):113-120.
283. Lange L, Lasota L, Finger A, et al. Ana o 3-specific IgE is a good predictor for clinically relevant cashew allergy in children.Allergy. 2017;72(4):598-603.
284. Dang TD, Peters RL, Koplin JJ, et al. Egg allergen specific IgE diversity predicts resolution of egg allergy in the population cohort HealthNuts. Allergy. 2019;74(2):318-326.
285. Pascal M, Grishina G, Yang AC, et al. Molecular Diagnosis of Shrimp Allergy: Efficiency of Several Allergens to Predict Clinical Reactivity.J Allergy Clin Immunol Pract. 2015;3(4):521-529 e510.
286. Gao Z, Fu WY, Sun Y, et al. Artemisia pollen allergy in China: Component-resolved diagnosis reveals allergic asthma patients have significant multiple allergen sensitization. Allergy.2019;74(2):284-293.
287. Uriarte SA, Sastre J. Clinical relevance of molecular diagnosis in pet allergy. Allergy. 2016;71(7):1066-1068.
288. Posa D, Perna S, Resch Y, et al. Evolution and predictive value of IgE responses toward a comprehensive panel of house dust mite allergens during the first 2 decades of life. The Journal of allergy and clinical immunology. 2017;139(2):541-549 e548.
289. Simon D, Page B, Vogel M, et al. Evidence of an abnormal epithelial barrier in active, untreated and corticosteroid-treated eosinophilic esophagitis. Allergy. 2018;73(1):239-247.
290. Akdis CA, Arkwright PD, Bruggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020.
291. Kubo T, Wawrzyniak P, Morita H, et al. CpG-DNA enhances the tight junction integrity of the bronchial epithelial cell barrier. J Allergy Clin Immunol. 2015;136(5):1413-1416 e1411-1418.
292. Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol. 2012;130(5):1087-1096 e1010.
293. Wawrzyniak P, Wawrzyniak M, Wanke K, et al. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J Allergy Clin Immunol.2017;139(1):93-103.
294. Kortekaas Krohn I, Seys SF, Lund G, et al. Nasal epithelial barrier dysfunction increases sensitization and mast cell degranulation in the absence of allergic inflammation. Allergy. 2020;75(5):1155-1164.
295. Werfel T, Allam JP, Biedermann T, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol. 2016;138(2):336-349.
296. McAleer MA, Irvine AD. The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol.2013;131(2):280-291.
297. Jin Y, Lu L, Tu W, Luo T, Fu Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ. 2019;649:308-317.
298. Hole AM, Draper A, Jolliffe G, Cullinan P, Jones M, Taylor AJ. Occupational asthma caused by bacillary amylase used in the detergent industry. Occup Environ Med. 2000;57(12):840-842.
299. Sugita K, Altunbulakli C, Morita H, et al. Human type 2 innate lymphoid cells disrupt skin keratinocyte tight junction barrier by IL-13. Allergy. 2019;74(12):2534-2537.
300. Zhou X, Wei T, Cox CW, Jiang Y, Roche WR, Walls AF. Mast cell chymase impairs bronchial epithelium integrity by degrading cell junction molecules of epithelial cells. Allergy.2019;74(7):1266-1276.
301. Steelant B, Wawrzyniak P, Martens K, et al. Blocking histone deacetylase activity as a novel target for epithelial barrier defects in patients with allergic rhinitis. J Allergy Clin Immunol.2019;144(5):1242-1253 e1247.
302. Kelleher MM, Dunn-Galvin A, Gray C, et al. Skin barrier impairment at birth predicts food allergy at 2 years of age. J Allergy Clin Immunol. 2016;137(4):1111-1116 e1111-1118.
303. Sindher S, Alkotob SS, Shojinaga MN, et al. Pilot study measuring transepidermal water loss (TEWL) in children suggests trilipid cream is more effective than a paraffin-based emollient. Allergy. 2020.
304. Antonov D, Schliemann S, Elsner P. Methods for the Assessment of Barrier Function. Curr Probl Dermatol. 2016;49:61-70.
305. Birgersson U, Birgersson E, Aberg P, Nicander I, Ollmar S. Non-invasive bioimpedance of intact skin: mathematical modeling and experiments. Physiol Meas. 2011;32(1):1-18.
306. Fasano A, Shea-Donohue T. Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol.2005;2(9):416-422.
307. Mu Q, Kirby J, Reilly CM, Luo XM. Leaky Gut As a Danger Signal for Autoimmune Diseases. Front Immunol. 2017;8:598.
308. Jiminez JA, Uwiera TC, Douglas Inglis G, Uwiera RR. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog. 2015;7:29.
309. Camara-Lemarroy CR, Silva C, Greenfield J, Liu WQ, Metz LM, Yong VW. Biomarkers of intestinal barrier function in multiple sclerosis are associated with disease activity. Mult Scler.2019:1352458519863133.
310. Bosi E, Molteni L, Radaelli MG, et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes.Diabetologia. 2006;49(12):2824-2827.
311. Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci. 2012;1258:25-33.
312. Kiecolt-Glaser JK, Wilson SJ, Bailey ML, et al. Marital distress, depression, and a leaky gut: Translocation of bacterial endotoxin as a pathway to inflammation. Psychoneuroendocrinology. 2018;98:52-60.
313. Alinaghi M, Nguyen DN, Sangild PT, Bertram HC. Direct Implementation of Intestinal Permeability Test in NMR Metabolomics for Simultaneous Biomarker Discovery-A Feasibility Study in a Preterm Piglet Model. Metabolites. 2020;10(1).
314. Muraro A, Roberts G, Halken S, et al. EAACI guidelines on allergen immunotherapy: Executive statement. Allergy. 2018;73(4):739-743.
315. European Medicines Agency. Commitee for medicinal products for human use (CHMP): Guideline on the Clinical Development of Products for Specific Immunotherapy for The Treatment of Allergic Diseases (CHMP/EWP/18504/2006). Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003605.pdf; 2008. 2008.
316. Bonertz A, Roberts G, Slater JE, et al. Allergen manufacturing and quality aspects for allergen immunotherapy in Europe and the United States: An analysis from the EAACI AIT Guidelines Project.Allergy. 2018;73(4):816-826.
317. Kaul S, Englert L, May S, Vieths S. Regulatory aspects of specific immunotherapy in Europe. Curr Opin Allergy Clin Immunol.2010;10(6):594-602.
318. Englert L, May S, Kaul S, Vieths S. [The therapy allergens ordinance (”Therapieallergene-Verordnung”). Background and effects].Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz.2012;55(3):351-357.
319. Mahler V, Esch RE, Kleine-Tebbe J, et al. Understanding differences in allergen immunotherapy products and practices in North America and Europe. The Journal of allergy and clinical immunology.2019;143(3):813-828.
320. Pfaar O, Agache I, de Blay F, et al. Perspectives in allergen immunotherapy: 2019 and beyond. Allergy. 2019;74 Suppl 108:3-25.
321. Dhami S, Nurmatov U, Arasi S, et al. Allergen immunotherapy for allergic rhinoconjunctivitis: A systematic review and meta-analysis.Allergy. 2017;72(11):1597-1631.
322. German Society for Allergology and Clinical Immunology (DGAKI). http://www.dgaki.de/leitlinien/s2k-leitlinie-sit/ (accessed on 07 Dec 2018).
323. Roberts G, Pfaar O, Akdis CA, et al. EAACI Guidelines on Allergen Immunotherapy: Allergic rhinoconjunctivitis. Allergy.2018;73(4):765-798.
324. Pfaar O, Alvaro M, Cardona V, Hamelmann E, Mosges R, Kleine-Tebbe J. Clinical trials in allergen immunotherapy: current concepts and future needs. Allergy. 2018;73(9):1775-1783.
325. https://www.clinicaltrialsregister.eu/ctr-search/search?query=2016-000051-27.
326. Auge J, Vent J, Agache I, et al. EAACI Position paper on the standardization of nasal allergen challenges. Allergy.2018;73(8):1597-1608.
327. Fauquert JL, Jedrzejczak-Czechowicz M, Rondon C, et al. Conjunctival allergen provocation test : guidelines for daily practice.Allergy. 2017;72(1):43-54.
328. Pfaar O, Demoly P, Gerth van Wijk R, et al. Recommendations for the standardization of clinical outcomes used in allergen immunotherapy trials for allergic rhinoconjunctivitis: an EAACI Position Paper.Allergy. 2014;69(7):854-867.
329. Mosges R, Bachert C, Panzner P, et al. Short course of grass allergen peptides immunotherapy over 3 weeks reduces seasonal symptoms in allergic rhinoconjunctivitis with/without asthma: A randomized, multicenter, double-blind, placebo-controlled trial. Allergy.2018;73(9):1842-1850.
330. Vély F, Barlogis V, Vallentin B, et al. Evidence of innate lymphoid cell redundancy in humans. Nat Immunol. 2016;17(11):1291.
331. Pfaar O, Bachert C, Kuna P, et al. Sublingual allergen immunotherapy with a liquid birch pollen product in patients with seasonal allergic rhinoconjunctivitis with or without asthma. The Journal of allergy and clinical immunology. 2019;143(3):970-977.
332. Pfaar O, Gerth van Wijk R, Klimek L, Bousquet J, Creticos P. Clinical trials in allergen immunotherapy in the age group of children and adolescents: current concepts and future needs. Clinical and Translational Allergy. 2020;10:1-8.
333. Pfaar O, Bastl K, Berger U, et al. Defining pollen exposure times for clinical trials of allergen immunotherapy for pollen-induced rhinoconjunctivitis - an EAACI position paper. Allergy.2017;72(5):713-722.
334. Karatzas K, Riga M, Berger U, Werchan M, Pfaar O, Bergmann KC. Computational validation of the recently proposed pollen season definition criteria. Allergy. 2018;73(1):5-7.
335. Pfaar O, Karatzas K, Bastl K, et al. Pollen season is reflected on symptom load for grass and birch pollen-induced allergic rhinitis in different geographic areas-An EAACI Task Force Report. Allergy.2019.
336. Pfaar O, Agache I, Bergmann K, et al. Placebo effects in allergen immunotherapy–an EAACI Task Force Position Paper. Allergy. 2020.
337. Pfaar O, Bonini S, Cardona V, et al. Perspectives in allergen immunotherapy: 2017 and beyond. Allergy. 2018;73 Suppl 104:5-23.
338. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations.Bmj. 2008;336(7650):924-926.
339. Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables.Journal of clinical epidemiology. 2011;64(4):383-394.
340. Santesso N, Glenton C, Dahm P, et al. GRADE guidelines 26: Informative statements to communicate the findings of systematic reviews of interventions. Journal of clinical epidemiology.2020;119:126-135.
341. Agache I, Beltran J, Akdis C, et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. A systematic review for the EAACI Guidelines‐recommendations on the use of biologicals in severe asthma. Allergy. 2020;75(5):1023-1042.
342. Agache I, Rocha C, Beltran J, et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab and omalizumab) for severe allergic asthma: A systematic review for the EAACI Guidelines - recommendations on the use of biologicals in severe asthma.Allergy. 2020;75(5):1043-1057.
343. Agache I, Song Y, Rocha C, et al. Efficacy and safety of treatment with dupilumab for severe asthma: A systematic review of the EAACI guidelines-Recommendations on the use of biologicals in severe asthma.Allergy. 2020;75(5):1058-1068.
344. Agache I, Lau S, Akdis CA, et al. EAACI Guidelines on Allergen Immunotherapy: House dust mite-driven allergic asthma. Allergy.2019;74(5):855-873.