References
1. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: a descriptive study. 2020;395:507-13.
2. Zhang Y. Initial genome release of novel coronavirus. 2020.
3. Wang L-s, Wang Y-r, Ye D-w, Liu Q-qJIJoAA. A review of the 2019 Novel
Coronavirus (COVID-19) based on current evidence. 2020:105948.
4. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure,
replication, and pathogenesis. 2020;92:418-23.
5. Wang L-s, Wang Y-r, Ye D-w, Liu Q-q. A review of the 2019 Novel
Coronavirus (COVID-19) based on current evidence. International Journal
of Antimicrobial Agents 2020:105948.
6. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology
of 2019 novel coronavirus: implications for virus origins and receptor
binding. The Lancet 2020;395:565-74.
7. Lau SK, Woo PC, Li KS, et al. Severe acute respiratory syndrome
coronavirus-like virus in Chinese horseshoe bats. 2005;102:14040-5.
8. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv JJJotm. The reproductive
number of COVID-19 is higher compared to SARS coronavirus. 2020.
9. Zhang J-S, Chen J-T, Liu Y-X, et al. A serological survey on
neutralizing antibody titer of SARS convalescent sera. 2005;77:147-50.
10. Shanmugaraj B, Siriwattananon K, Wangkanont K, Phoolcharoen WJAPJAI.
Perspectives on monoclonal antibody therapy as potential therapeutic
intervention for Coronavirus disease-19 (COVID-19). 2020:10-8.
11. Roberts A, Thomas WD, Guarner J, et al. Therapy with a severe acute
respiratory syndrome–associated coronavirus–neutralizing human
monoclonal antibody reduces disease severity and viral burden in golden
Syrian Hamsters. 2006;193:685-92.
12. Zhao J, Yang Y, Huang H-P, et al. Relationship between the ABO Blood
Group and the COVID-19 Susceptibility. 2020.
13. Guillon P, Clément M, Sébille V, et al. Inhibition of the
interaction between the SARS-CoV spike protein and its cellular receptor
by anti-histo-blood group antibodies. 2008;18:1085-93.
14. Sohrabi C, Alsafi Z, O’Neill N, et al. World Health Organization
declares global emergency: A review of the 2019 novel coronavirus
(COVID-19). International Journal of Surgery 2020;76:71-6.
15. Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta
bio-medica : Atenei Parmensis 2020;91:157-60.
16. Winau F, Winau R. Emil von Behring and serum therapy. Microbes and
Infection 2002;4:185-8.
17. Ahmed SF, Quadeer AA, McKay MR. Preliminary Identification of
Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2)
Based on SARS-CoV Immunological Studies. 2020;12:254.
18. Xie L, Sun C, Luo C, et al. SARS-CoV-2 and SARS-CoV spike-RBD
structure and receptor binding comparison and potential implications on
neutralizing antibody and vaccine development. 2020.
19. Hung IF, To KK, Lee C-K, et al. Convalescent plasma treatment
reduced mortality in patients with severe pandemic influenza A (H1N1)
2009 virus infection. 2011;52:447-56.
20. Arabi Y, Balkhy H, Hajeer AH, et al. Feasibility, safety, clinical,
and laboratory effects of convalescent plasma therapy for patients with
Middle East respiratory syndrome coronavirus infection: a study
protocol. 2015;4:1-8.
21. Cheng Y, Wong R, Soo Y, et al. Use of convalescent plasma therapy in
SARS patients in Hong Kong. 2005;24:44-6.
22. Yeh K-M, Chiueh T-S, Siu L, et al. Experience of using convalescent
plasma for severe acute respiratory syndrome among healthcare workers in
a Taiwan hospital. 2005;56:919-22.
23. Bao L, Deng W, Gao H, et al. Reinfection could not occur in
SARS-CoV-2 infected rhesus macaques. 2020.
24. Liang T, Cai H, Chen YJTFAH, Zhejiang University School of Medicine.
Compiled According to Clinical Experience. Handbook of COVID-19
prevention and treatment. 2020.
25. Mair-Jenkins J, Saavedra-Campos M, Baillie JK, et al. The
effectiveness of convalescent plasma and hyperimmune immunoglobulin for
the treatment of severe acute respiratory infections of viral etiology:
a systematic review and exploratory meta-analysis. 2015;211:80-90.
26. Lloyd-Sherlock P, Ebrahim S, Geffen L, McKee M. Bearing the brunt of
covid-19: older people in low and middle income countries.
2020;368:m1052.
27. Batool Z, Durrani SH, Tariq SJJoAMCA. Association of ABO and Rh
blood group types to hepatitis B, hepatitis C, HIV and Syphillis
infection, a five year’experience in healthy blood donors in a tertiary
care hospital. 2017;29:90-2.
28. Cheng Y, Cheng G, Chui C, et al. ABO blood group and susceptibility
to severe acute respiratory syndrome. 2005;293:1447-51.
29. Dean L, Dean L. Blood groups and red cell antigens: NCBI Bethesda,
Md, USA; 2005.
30. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D.
Structure, Function, and Antigenicity of the SARS-CoV-2 Spike
Glycoprotein. Cell 2020.
31. Li F. Structure, Function, and Evolution of Coronavirus Spike
Proteins. Annu Rev Virol 2016;3:237-61.
32. Xiao X, Chakraborti S, Dimitrov AS, Gramatikoff K, Dimitrov DS. The
SARS-CoV S glycoprotein: expression and functional characterization.
Biochemical and Biophysical Research Communications 2003;312:1159-64.
33. Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of
SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV.
2020;11:1-12.
34. Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2
is a functional receptor for the SARS coronavirus. 2003;426:450-4.
35. Prabakaran P, Xiao X, Dimitrov DSJB, communications br. A model of
the ACE2 structure and function as a SARS-CoV receptor. 2004;314:235-41.
36. Keidar S, Kaplan M, Gamliel-Lazarovich AJCr. ACE2 of the heart: from
angiotensin I to angiotensin (1–7). 2007;73:463-9.
37. Hamming I, Timens W, Bulthuis M, et al. Tissue distribution of ACE2
protein, the functional receptor for SARS coronavirus. A first step in
understanding SARS pathogenesis. 2004;203:631-7.
38. Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated
with a new coronavirus of probable bat origin. 2020;579:270-3.
39. Qiu T, Mao T, Wang Y, et al. Identification of potential
cross-protective epitope between a new type of coronavirus (2019-nCoV)
and severe acute respiratory syndrome virus. 2020;47:115-7.
40. LE PENDU J, MARIONNEAU S, CAILLEAU-THOMAS A, ROCHER J, LE
MOULLAC-VAIDYE B, CLÉMENT M. ABH and Lewis histo-blood group antigens in
cancer. 2001;109:9-26.
41. Zietz M, Tatonetti NPJm. Testing the association between blood type
and COVID-19 infection, intubation, and death. 2020.
42. Arendrup M, Hansen J-E, Clausen H, Nielsen C, Mathiesen LR, Nielsen
JOJA. Antibody to histo-blood group A antigen neutralizes HIV produced
by lymphocytes from blood group A donors but not from blood group B or O
donors. 1991;5:441-4.
43. Grant OC, Montgomery D, Ito K, Woods RJJb. 3D Models of glycosylated
SARS-CoV-2 spike protein suggest challenges and opportunities for
vaccine development. 2020.
44. Waldmann T. Monoclonal antibodies in diagnosis and therapy.
1991;252:1657-62.
45. Mulangu S, Dodd LE, Davey Jr RT, et al. A randomized, controlled
trial of Ebola virus disease therapeutics. 2019;381:2293-303.
46. Pettitt J, Zeitlin L, Kim DH, et al. Therapeutic intervention of
Ebola virus infection in rhesus macaques with the MB-003 monoclonal
antibody cocktail. 2013;5:199ra13-ra13.
47. Long F, Doyle M, Fernandez E, et al. Structural basis of a potent
human monoclonal antibody against Zika virus targeting a quaternary
epitope. 2019;116:1591-6.
48. Tian X, Li C, Huang A, et al. Potent binding of 2019 novel
coronavirus spike protein by a SARS coronavirus-specific human
monoclonal antibody. 2020;9:382-5.
49. ter Meulen J, Bakker AB, van den Brink EN, et al. Human monoclonal
antibody as prophylaxis for SARS coronavirus infection in ferrets.
2004;363:2139-41.
50. Ter Meulen J, Van Den Brink EN, Poon LL, et al. Human monoclonal
antibody combination against SARS coronavirus: synergy and coverage of
escape mutants. 2006;3.
51. Zhu Z, Chakraborti S, He Y, et al. Potent cross-reactive
neutralization of SARS coronavirus isolates by human monoclonal
antibodies. 2007;104:12123-8.
52. Berry JD, Hay K, Rini JM, et al. Neutralizing epitopes of the
SARS-CoV S-protein cluster independent of repertoire, antigen structure
or mAb technology. MAbs; 2010: Taylor & Francis. p. 53-66.
53. Elshabrawy HA, Coughlin MM, Baker SC, Prabhakar BSJPo. Human
monoclonal antibodies against highly conserved HR1 and HR2 domains of
the SARS-CoV spike protein are more broadly neutralizing. 2012;7.
54. Greenough TC, Babcock GJ, Roberts A, et al. Development and
Characterization of a Severe Acute Respiratory Syndrome—Associated
Coronavirus—Neutralizing Human Monoclonal Antibody That Provides
Effective Immunoprophylaxis in Mice. 2005;191:507-14.
55. Sui J, Li W, Roberts A, et al. Evaluation of human monoclonal
antibody 80R for immunoprophylaxis of severe acute respiratory syndrome
by an animal study, epitope mapping, and analysis of spike variants.
2005;79:5900-6.
56. Coughlin MM, Prabhakar BSJRimv. Neutralizing human monoclonal
antibodies to severe acute respiratory syndrome coronavirus: target,
mechanism of action, and therapeutic potential. 2012;22:2-17.
57. Ng O-W, Keng C-T, Leung CS-W, Peiris JM, Poon LLM, Tan Y-JJPo.
Substitution at aspartic acid 1128 in the SARS coronavirus spike
glycoprotein mediates escape from a S2 domain-targeting neutralizing
monoclonal antibody. 2014;9.
58. Lip K-M, Shen S, Yang X, et al. Monoclonal antibodies targeting the
HR2 domain and the region immediately upstream of the HR2 of the S
protein neutralize in vitro infection of severe acute respiratory
syndrome coronavirus. 2006;80:941-50.
59. Walls AC, Xiong X, Park Y-J, et al. Unexpected receptor functional
mimicry elucidates activation of coronavirus fusion. 2019;176:1026-39.
e15.
60. Wong SK, Li W, Moore MJ, Choe H, Farzan MJJoBC. A 193-amino acid
fragment of the SARS coronavirus S protein efficiently binds
angiotensin-converting enzyme 2. 2004;279:3197-201.
61. Lanzavecchia A, Corti D, Sallusto F. Human monoclonal antibodies by
immortalization of memory B cells. Current Opinion in Biotechnology
2007;18:523-8.
62. Kwakkenbos MJ, Diehl SA, Yasuda E, et al. Generation of stable
monoclonal antibody–producing B cell receptor–positive human memory B
cells by genetic programming. Nature Medicine 2010;16:123-8.
63. Traggiai E, Becker S, Subbarao K, et al. An efficient method to make
human monoclonal antibodies from memory B cells: potent neutralization
of SARS coronavirus. 2004;10:871-5.