References

Abt, M.C., Artis, D., 2013. The dynamic influence of commensal bacteria on the immune response to pathogens. Curr. Opin. Microbiol. 16, 4–9. https://doi.org/10.1016/j.mib.2012.12.002
Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., 2006. Seasonality and the dynamics of infectious diseases 18.
Barriere, A., 2006. Isolation of C. elegans and related nematodes. WormBook. https://doi.org/10.1895/wormbook.1.115.1
Brenner, S., 1974. The Genetics of Caenorhabditis Elegans. Genetics 77, 71–94.
Cabreiro, F., Gems, D., 2013. Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans : The C. elegans-microbe holobiont. EMBO Mol. Med. 5, 1300–1310. https://doi.org/10.1002/emmm.201100972
Cayetano, L., Rothacher, L., Simon, J.-C., Vorburger, C., 2015. Cheaper is not always worse: strongly protective isolates of a defensive symbiont are less costly to the aphid host. Proc. R. Soc. B Biol. Sci. 282, 20142333–20142333. https://doi.org/10.1098/rspb.2014.2333
Clay, K., Holah, J., Rudgers, J.A., 2005. Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc. Natl. Acad. Sci. 102, 12465–12470. https://doi.org/10.1073/pnas.0503059102
Dasgupta, M., Shashikanth, M., Bojanala, N., Gupta, A., Javed, S., Singh, V., 2019. Nuclear hormone receptor NHR-49 shapes immuno-metabolic response of Caenorhabditis elegans to Enterococcus faecalis infection. (preprint). Immunology. https://doi.org/10.1101/549907
Dey, S., Proulx, S.R., Teotónio, H., 2016. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects. PLOS Biol. 29.
Dillon, R.J., Vennard, C.T., Charnley, A.K., 2000. Exploitation of gut bacteria in the locust. Nature 403, 851–851. https://doi.org/10.1038/35002669
Dong, Y., Manfredini, F., Dimopoulos, G., 2009. Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites. PLoS Pathog. 5, e1000423. https://doi.org/10.1371/journal.ppat.1000423
Fenton, A., Johnson, K.N., Brownlie, J.C., Hurst, G.D.D., 2011. Solving the Wolbachia Paradox: Modeling the Tripartite Interaction between Host, Wolbachia, and a Natural Enemy. Am. Nat. 178, 333–342. https://doi.org/10.1086/661247
Finkelman, B.S., 2007. Global Patterns in Seasonal Activity of Influenza A/H3N2, A/H1N1, and B from 1997 to 2005: Viral Coexistence and Latitudinal Gradients. PLoS ONE 10.
Ford, S.A., Williams, D., Paterson, S., King, K.C., 2017. Co-evolutionary dynamics between a defensive microbe and a pathogen driven by fluctuating selection. Mol. Ecol. 26, 1778–1789. https://doi.org/10.1111/mec.13906
Friman, V.-P., Laakso, J., 2011. Pulsed-Resource Dynamics Constrain the Evolution of Predator-Prey Interactions. Am. Nat. 177, 334–345. https://doi.org/10.1086/658364
Friman, V.-P., Laakso, J., Koivu-Orava, M., Hiltunen, T., 2011. Pulsed-resource dynamics increase the asymmetry of antagonistic coevolution between a predatory protist and a prey bacterium: Pulsed-resource dynamics and coevolution. J. Evol. Biol. 24, 2563–2573. https://doi.org/10.1111/j.1420-9101.2011.02379.x
Garsin, D.A., Sifri, C.D., Mylonakis, E., Qin, X., Singh, K. V., Murray, B.E., Calderwood, S.B., Ausubel, F.M., 2001. A simple model host for identifying Gram-positive virulence factors. PNAS 98, 10892–10897.
Gravato-Nobre, M.J., Hodgkin, J., 2005. Caenorhabditis elegans as a model for innate immunity to pathogens. Cell. Microbiol. 7, 741–751. https://doi.org/10.1111/j.1462-5822.2005.00523.x
Gremillion-Smith, C., Woolf, A., 1988. EPIZOOTIOLOGY OF SKUNK RABIES IN NORTH AMERICA. J. Wildl. Dis. 24, 620–626. https://doi.org/10.7589/0090-3558-24.4.620
Harrison, E., Laine, A.-L., Hietala, M., Brockhurst, M.A., 2013. Rapidly fluctuating environments constrain coevolutionary arms races by impeding selective sweeps. Proc. R. Soc. B Biol. Sci. 280, 20130937–20130937. https://doi.org/10.1098/rspb.2013.0937
Hiltunen, T., Friman, V.-P., Kaitala, V., Mappes, J., Laakso, J., 2012. Predation and resource fluctuations drive eco-evolutionary dynamics of a bacterial community. Acta Oecologica 38, 77–83. https://doi.org/10.1016/j.actao.2011.09.010
Holden, M.T.G., Feil, E.J., Lindsay, J.A., Peacock, S.J., Day, N.P.J., Enright, M.C., Foster, T.J., Moore, C.E., Hurst, L., Atkin, R., Barron, A., Bason, N., Bentley, S.D., Chillingworth, C., Chillingworth, T., Churcher, C., Clark, L., Corton, C., Cronin, A., Doggett, J., Dowd, L., Feltwell, T., Hance, Z., Harris, B., Hauser, H., Holroyd, S., Jagels, K., James, K.D., Lennard, N., Line, A., Mayes, R., Moule, S., Mungall, K., Ormond, D., Quail, M.A., Rabbinowitsch, E., Rutherford, K., Sanders, M., Sharp, S., Simmonds, M., Stevens, K., Whitehead, S., Barrell, B.G., Spratt, B.G., Parkhill, J., 2004. Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the rapid evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. 101, 9786–9791. https://doi.org/10.1073/pnas.0402521101
Hooper, L.V., Littman, D.R., Macpherson, A.J., 2012. Interactions Between the Microbiota and the Immune System. Science 336, 1268–1273. https://doi.org/10.1126/science.1223490
Jaenike, J., Unckless, R., Cockburn, S.N., Boelio, L.M., Perlman, S.J., 2010. Spread of a Drosophila Defensive Symbiont. Science 329, 5.
Jansen, G., Crummenerl, L.L., Gilbert, F., Mohr, T., Pfefferkorn, R., Thänert, R., Rosenstiel, P., Schulenburg, H., 2015. Evolutionary Transition from Pathogenicity to Commensalism: Global Regulator Mutations Mediate Fitness Gains through Virulence Attenuation. Mol. Biol. Evol. 32, 2883–2896. https://doi.org/10.1093/molbev/msv160
Jansson, H.-B., 1994. Adhesion of Conidia of Drechmeria coniospora to Caenorhabditis elegans Wild Type and Mutants. J. Nematol. 26, 6.
Jousselin, E., Rasplus, J.-Y., Kjellberg, F., 2003. Convergence and Coevolution in a mutualism: Evidence from a molecular Phylogeny of Ficus. Evolution 57, 1255. https://doi.org/10.1554/02-445
Kamada, N., Seo, S.-U., Chen, G.Y., Núñez, G., 2013. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335. https://doi.org/10.1038/nri3430
King, K.C., 2019. Defensive symbionts. Curr. Biol. 29, R78–R80. https://doi.org/10.1016/j.cub.2018.11.028
King, K.C., Bonsall, M.B., 2017. The evolutionary and coevolutionary consequences of defensive microbes for host-parasite interactions. BMC Evol. Biol. 17, 190. https://doi.org/10.1186/s12862-017-1030-z
King, K.C., Brockhurst, M.A., Vasieva, O., Paterson, S., Betts, A., Ford, S.A., Frost, C.L., Horsburgh, M.J., Haldenby, S., Hurst, G.D., 2016. Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J. 10, 1915–1924. https://doi.org/10.1038/ismej.2015.259
King, K.C., Delph, L.F., Jokela, J., Lively, C.M., 2009. The Geographic Mosaic of Sex and the Red Queen. Curr. Biol. 19, 1438–1441. https://doi.org/10.1016/j.cub.2009.06.062
Koch, H., Schmid-Hempel, P., 2011. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. 108, 19288–19292. https://doi.org/10.1073/pnas.1110474108
Kommineni, S., Bretl, D.J., Lam, V., Chakraborty, R., Hayward, M., Simpson, P., Cao, Y., Bousounis, P., Kristich, C.J., Salzman, N.H., 2015. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526, 719–722. https://doi.org/10.1038/nature15524
Kwiatkowski, M., Vorburger, C., 2012. Modeling the Ecology of Symbiont-Mediated Protection against Parasites. Am. Nat. 179, 595–605. https://doi.org/10.1086/665003
Ley, R.E., Peterson, D.A., Gordon, J.I., 2006. Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell 124, 837–848. https://doi.org/10.1016/j.cell.2006.02.017
Little, T.J., Carius, H.-J., Sakwinska, O., Ebert, D., 2002. Competitiveness and life-history characteristics of Daphnia with respect to susceptibility to a bacterial pathogen: Cost of resistance in Daphnia. J. Evol. Biol. 15, 796–802. https://doi.org/10.1046/j.1420-9101.2002.00436.x
Lively, C.M., 2006. The ecology of virulence: Ecology of virulence. Ecol. Lett. 9, 1089–1095. https://doi.org/10.1111/j.1461-0248.2006.00969.x
Lively, C.M., Clay, K., Wade, M.J., Fuqua, C., 2005. Competitive coexistence of vertically and horizontally transmitted parasites. Evol. Ecol. Res.
London, W.P., Yorke, J.A., 1973. Recurrent Outbreaks of Measles, Chickenpox, and Mumps. Am. J. Epidemiol. 98.
Marsh, E.K., May, R.C., 2012. Caenorhabditis elegans, a Model Organism for Investigating Immunity. Appl. Environ. Microbiol. 78, 2075–2081. https://doi.org/10.1128/AEM.07486-11
Martinez, J., Cogni, R., Cao, C., Smith, S., Illingworth, C.J.R., Jiggins, F.M., 2016. Addicted? Reduced host resistance in populations with defensive symbionts. Proc. R. Soc. B Biol. Sci. 283, 20160778. https://doi.org/10.1098/rspb.2016.0778
Martín-Vivaldi, M., Peña, A., Peralta-Sánchez, J.M., Sánchez, L., Ananou, S., Ruiz-Rodríguez, M., Soler, J.J., 2010. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc. R. Soc. B Biol. Sci. 277, 123–130. https://doi.org/10.1098/rspb.2009.1377
May, G., Nelson, P., 2014. Defensive mutualisms: do microbial interactions within hosts drive the evolution of defensive traits? Funct. Ecol. 28, 356–363. https://doi.org/10.1111/1365-2435.12166
Maynard, C.L., Elson, C.O., Hatton, R.D., Weaver, C.T., 2012. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241. https://doi.org/10.1038/nature11551
McFall-Ngai, M., Hadfield, M.G., Bosch, T.C.G., Carey, H.V., Domazet-Lošo, T., Douglas, A.E., Dubilier, N., Eberl, G., Fukami, T., Gilbert, S.F., Hentschel, U., King, N., Kjelleberg, S., Knoll, A.H., Kremer, N., Mazmanian, S.K., Metcalf, J.L., Nealson, K., Pierce, N.E., Rawls, J.F., Reid, A., Ruby, E.G., Rumpho, M., Sanders, J.G., Tautz, D., Wernegreen, J.J., 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. 110, 3229–3236. https://doi.org/10.1073/pnas.1218525110
Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J.H.M., Piceno, Y.M., DeSantis, T.Z., Andersen, G.L., Bakker, P.A.H.M., Raaijmakers, J.M., 2011. Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Science 332, 1097–1100. https://doi.org/10.1126/science.1203980
Moran, N.A., Tran, P., Gerardo, N.M., 2005. Symbiosis and Insect Diversification: an Ancient Symbiont of Sap-Feeding Insects from the Bacterial Phylum Bacteroidetes. Appl. Environ. Microbiol. 71, 8802–8810. https://doi.org/10.1128/AEM.71.12.8802-8810.2005
Palmer, T.M., Stanton, M.L., Young, T.P., Goheen, J.R., Pringle, R.M., Karban, R., 2008. Breakdown of an Ant-Plant Mutualism Follows the Loss of Large Herbivores from an African Savanna. Science 319, 192–195. https://doi.org/10.1126/science.1151579
Papkou, A., Guzella, T., Yang, W., Koepper, S., Pees, B., Schalkowski, R., Barg, M.-C., Rosenstiel, P.C., Teotónio, H., Schulenburg, H., 2019. The genomic basis of Red Queen dynamics during rapid reciprocal host–pathogen coevolution. Proc. Natl. Acad. Sci. 116, 923–928. https://doi.org/10.1073/pnas.1810402116
Quek, S.-P., Davies, S.J., Itino, T., Pierce, N.E., 2004. Codiversification in an Ant-Plant Mutualism: Stem Texture and the Evolution of Host Use in Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae). Evolution 58, 554. https://doi.org/10.1554/03-361
Rafaluk-Mohr, C., Ashby, B., Dahan, D.A., King, K.C., 2018. Mutual fitness benefits arise during coevolution in a nematode-defensive microbe model. Evol. Lett. 2, 246–256. https://doi.org/10.1002/evl3.58
Schulenburg, H., Ewbank, J.J., 2004. Diversity and specificity in the interaction between Caenorhabditis elegans and the pathogen Serratia marcescens. BMC Evol. Biol. 4, 49. https://doi.org/10.1186/1471-2148-4-49
Shoemaker, D.D., Machado, C.A., Molbo, D., Werren, J.H., Windsor, D.M., Herre, E.A., 2002. The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecology and population structure. Proc. R. Soc. Lond. B Biol. Sci. 269, 2257–2267. https://doi.org/10.1098/rspb.2002.2100
Sifri, C.D., Begun, J., Ausubel, F.M., Calderwood, S.B., 2003. Caenorhabditis elegans as a Model Host for Staphylococcus aureus Pathogenesis. Infect. Immun. 71, 2208–2217. https://doi.org/10.1128/IAI.71.4.2208-2217.2003
Stiernagle, T., 2006. Maintenance of C. elegans. WormBook. https://doi.org/10.1895/wormbook.1.101.1
Tan, M.-W., Mahajan-Miklos, S., Ausubel, F.M., 1999. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. 96, 715–720. https://doi.org/10.1073/pnas.96.2.715
Theologidis, I., Chelo, I.M., Goy, C., Teotónio, H., 2014. Reproductive assurance drives transitions to self-fertilization in experimental Caenorhabditis elegans 21.
Vántus, V.B., Kovács, M., Zsolnai, A., 2014. The rabbit caecal microbiota: development, composition and its role in the prevention of digestive diseases - a review on recent literature in the light of molecular genetic methods. Acta Agrar. Kaposváriensis 18, 55–65.
Vorburger, C., Gouskov, A., 2011. Only helpful when required: a longevity cost of harbouring defensive symbionts: Defensive symbionts reduce host longevity. J. Evol. Biol. 24, 1611–1617. https://doi.org/10.1111/j.1420-9101.2011.02292.x