References
1. Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J
Med 2018; 378(2):169-180.
2. Chitnis T. The role of CD4 T cells in the pathogenesis of multiple
sclerosis. Int Rev Neurobiol 2007; 79:43-72.
3. Kaskow BJ, Baecher-Allan C. Effector T cells in multiple sclerosis.
Cold Spring Harbor perspectives in medicine 2018; 8(4):a029025.
4. Franciotta D, Salvetti M, Lolli F et al . B cells and multiple
sclerosis. The Lancet Neurology 2008; 7(9):852-858.
5. Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in
multiple sclerosis. Nature Immunology 2018; 19(7):696-707.
6. Pappalardo JL, O’Connor KC. B cells drive auto-T cells to the brain.
Sci Immunol 2018; 3(28):eaav4512.
7. Crotty S. Follicular Helper CD4 T Cells (TFH). Annu Rev Immunol 2011;
29(1):621-663.
8. Yu D, Rao S, Tsai LM et al . The transcriptional repressor
Bcl-6 directs T follicular helper cell lineage commitment. Immunity
2009; 31(3):457-468.
9. Bossaller L, Burger J, Draeger R et al . ICOS deficiency is
associated with a severe reduction of CXCR5+CD4 germinal center Th
cells. J Immunol 2006; 177(7):4927-4932.
10. Shi J, Hou S, Fang Q et al . PD-1 Controls Follicular T Helper
Cell Positioning and Function. Immunity 2018; 49(2):264-274.e264.
11. Chtanova T, Tangye SG, Newton R et al . T Follicular Helper
Cells Express a Distinctive Transcriptional Profile, Reflecting Their
Role as Non-Th1/Th2 Effector Cells That Provide Help for B Cells. J
Immunol 2004; 173(1):68.
12. Nurieva RI, Chung Y, Hwang D et al . Generation of T
follicular helper cells is mediated by interleukin-21 but independent of
T helper 1, 2, or 17 cell lineages. Immunity 2008; 29(1):138-149.
13. Bryant VL, Ma CS, Avery DT et al . Cytokine-mediated
regulation of human B cell differentiation into Ig-secreting cells:
predominant role of IL-21 produced by CXCR5+ T follicular helper cells.
J Immunol 2007; 179(12):8180-8190.
14. Chung Y, Tanaka S, Chu F et al . Follicular regulatory T cells
expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med
2011; 17(8):983-988.
15. Venken K, Hellings N, Thewissen M et al . Compromised CD4+
CD25(high) regulatory T-cell function in patients with
relapsing-remitting multiple sclerosis is correlated with a reduced
frequency of FOXP3-positive cells and reduced FOXP3 expression at the
single-cell level. Immunology 2008; 123(1):79-89.
16. Laidlaw BJ, Lu Y, Amezquita RA et al . Interleukin-10 from
CD4(+) follicular regulatory T cells promotes the germinal center
response. Sci Immunol 2017; 2(16):eaan4767.
17. Wollenberg I, Agua-Doce A, Hernandez A et al . Regulation of
the germinal center reaction by Foxp3+ follicular regulatory T cells. J
Immunol 2011; 187(9):4553-4560.
18. Linterman MA, Pierson W, Lee SK et al . Foxp3+ follicular
regulatory T cells control the germinal center response. Nat Med 2011;
17(8):975-982.
19. Linterman MA, Vinuesa CG. T follicular helper cells during immunity
and tolerance. Prog Mol Biol Transl Sci 2010; 92:207-248.
20. Schmitt N, Bentebibel SE, Ueno H. Phenotype and functions of memory
Tfh cells in human blood. Trends Immunol 2014; 35(9):436-442.
21. Sage PT, Alvarez D, Godec J et al . Circulating T follicular
regulatory and helper cells have memory-like properties. J Clin Invest
2014; 124(12):5191-5204.
22. Simpson N, Gatenby PA, Wilson A et al . Expansion of
circulating T cells resembling follicular helper T cells is a fixed
phenotype that identifies a subset of severe systemic lupus
erythematosus. Arthritis Rheum 2010; 62(1):234-244.
23. Asrir A, Aloulou M, Gador M et al . Interconnected subsets of
memory follicular helper T cells have different effector functions. Nat
commun 2017; 8:847.
24. Hale JS, Ahmed R. Memory T follicular helper CD4 T cells. Front.
immunol 2015; 6:16.
25. Morita R, Schmitt N, Bentebibel SE et al . Human blood
CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and
contain specific subsets that differentially support antibody secretion.
Immunity 2011; 34(1):108-121.
26. Xu B, Wang S, Zhou M et al . The ratio of circulating
follicular T helper cell to follicular T regulatory cell is correlated
with disease activity in systemic lupus erythematosus. Clin Immunol
2017; 183:46-53.
27. Liu C, Wang D, Lu S et al . Increased Circulating Follicular
Treg Cells Are Associated With Lower Levels of Autoantibodies in
Patients With Rheumatoid Arthritis in Stable Remission. Arthritis
Rheumatol 2018; 70(5):711-721.
28. Liu R, Wu Q, Su D et al . A regulatory effect of IL-21 on T
follicular helper-like cell and B cell in rheumatoid arthritis.
Arthritis Res Ther 2012; 14(6):R255.
29. Zhang CJ, Gong Y, Zhu W et al . Augmentation of Circulating
Follicular Helper T Cells and Their Impact on Autoreactive B Cells in
Myasthenia Gravis. J Immunol 2016; 197(7):2610-2617.
30. Le Coz C, Joublin A, Pasquali JL et al . Circulating TFH
subset distribution is strongly affected in lupus patients with an
active disease. PLoS One 2013; 8(9):e75319.
31. Arroyo-Villa I, Bautista-Caro M-B, Balsa A et al .
Constitutively altered frequencies of circulating follicullar helper T
cell counterparts and their subsets in rheumatoid arthritis 2014;
16(6):500.
32. Akiyama M, Suzuki K, Yamaoka K et al . Number of Circulating
Follicular Helper 2 T Cells Correlates With IgG4 and Interleukin-4
Levels and Plasmablast Numbers in IgG4-Related Disease. Arthritis
Rheumatol 2015; 67(9):2476-2481.
33. Fan X, Jin T, Zhao S et al . Circulating CCR7+ICOS+ Memory T
Follicular Helper Cells in Patients with Multiple Sclerosis. PLoS One
2015; 10(7):e0134523.
34. Dhaeze T, Peelen E, Hombrouck A et al . Circulating Follicular
Regulatory T Cells Are Defective in Multiple Sclerosis. J Immunol 2015;
195(3):832.
35. Thompson AJ, Banwell BL, Barkhof F et al . Diagnosis of
multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet
Neurol 2018; 17(2):162-173.
36. Arellano G, Acuña E, Reyes LI et al . Th1 and Th17 Cells and
Associated Cytokines Discriminate among Clinically Isolated Syndrome and
Multiple Sclerosis Phenotypes. Front Immunol 2017; 8:753.
37. van Langelaar J, van der Vuurst de Vries RM, Janssen M et al .
T helper 17.1 cells associate with multiple sclerosis disease activity:
perspectives for early intervention. Brain 2018; 141(5):1334-1349.
38. Ramstein J, Broos CE, Simpson LJ et al . IFN-gamma-Producing
T-Helper 17.1 Cells Are Increased in Sarcoidosis and Are More Prevalent
than T-Helper Type 1 Cells. American journal of respiratory and critical
care medicine 2016; 193(11):1281-1291.
39. Linterman MA, Rigby RJ, Wong RK et al . Follicular helper T
cells are required for systemic autoimmunity. J Exp Med 2009;
206(3):561-576.
40. Zhu C, Ma J, Liu Y et al . Increased frequency of follicular
helper T cells in patients with autoimmune thyroid disease. J Clin
Endocrinol Metab 2012; 97(3):943-950.
41. Christensen JR, Börnsen L, Ratzer R et al . Systemic
inflammation in progressive multiple sclerosis involves follicular
T-helper, Th17-and activated B-cells and correlates with progression.
PloS One 2013; 8(3):e57820.
42. Tzartos JS, Craner MJ, Friese MA et al . IL-21 and IL-21
Receptor Expression in Lymphocytes and Neurons in Multiple Sclerosis
Brain. Am J Pathol 2011; 178:794–802.
43. Nicolas P Ruiz A, Cobo-Calvo A et al . The Balance in T
Follicular Helper Cell Subsets Is Altered in Neuromyelitis Optica
Spectrum Disorder Patients and Restored by Rituximab. Front Immunol
2019; 10:2686 .
44. Cunill V, Massot M, Clemente A et al . Relapsing-Remitting
Multiple Sclerosis Is Characterized by a T Follicular Cell
Pro-Inflammatory Shift, Reverted by Dimethyl Fumarate Treatment. Front
immunol 2018; 9:1097.
45. Babaloo Z, Aliparasti MR, Babaiea F et al . The role of Th17
cells in patients with relapsing-remitting multiple sclerosis:
Interleukin-17A and interleukin-17F serum levels. Immunol Lett 2015;
164(2):76-80.
46. Matusevicius D, Kivisäkk P, He B et al . Interleukin-17 mRNA
expression in blood and CSF mononuclear cells is augmented in multiple
sclerosis. Mult Scler 1999; 5(2):101-104.
47. Zhang X, Markovic-Plese S. Interferon beta inhibits the Th17
cell-mediated autoimmune response in patients with relapsing–remitting
multiple sclerosis. Clin Neurol Neurosurg 2010; 112(7):641-645.
48. Wu Q, Wang Q, Mao GA-O et al . Dimethyl Fumarate Selectively
Reduces Memory T Cells and Shifts the Balance between Th1/Th17 and Th2
in Multiple Sclerosis Patients. J Immunol 2017; 198(8):3069-3080.
49. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of
functional suppression by CD4+CD25+ regulatory T cells in patients with
multiple sclerosis. J Exp Med 2004; 199(7):971-979.
50. Mexhitaj I, Nyirenda MH, Li R et al . Abnormal effector and
regulatory T cell subsets in paediatric-onset multiple sclerosis. Brain
2019; 142(3):617-632.51.
51. van Boxel-Dezaire AH, Hoff SC, van Oosten BW et al . Decreased
interleukin-10 and increased interleukin-12p40 mRNA are associated with
disease activity and characterize different disease stages in multiple
sclerosis. Ann Neurol 1999; 45:695–703.
52. Waubant E, Gee L, Bacchetti P et al . Relationship between
serum levels of IL-10, MRI activity and interferon beta-1a therapy in
patients with relapsing remitting MS. J Neuroimmunol 2001; 112:139–145.
53. Petereit H, Pukrop R, Fazekas F et al . Low interleukin-10
production is associated with higher disability and MRI lesion load in
secondary progressive multiple sclerosis. J Neurol Sci 2003; 206:209–
214.
54. Balashov KE, Comabella M, Ohashi T et al . Defective
regulation of IFN- g and IL-12 by endogenous IL-10 in progressive MS.
Neurology 2000; 55: 192– 8.