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1 | INTRODUCTION

Summary

A model for one-dimensional bistable systems characterized by a deformable double-
well energy landscape, is introduced in order to investigate the effect of shape
deformability on the order of phase transition in quantum tunneling, and on the
quasi-exact integrability of the classical statistical mechanics of these systems. The
deformable double-well energy landscape is modelled by a parametrized double-well
potential possessesing two fixed degenerate minima and a constant barrier height,
but a tunable shape of its walls which affects the confinement of the two wells.
It is found that unlike bistable models involving the standard ¢*-field model for
which the transition in quantum tunneling is predicted to be strictly of second order,
a parametrization of the double-well potential also favors a first-order transition
occurring above a universal critical value of the shape deformability parameter. The
partition function of the model is constructed within the framework of the transfer-
integral formalism, with emphasis on low-lying eigenstates of the transfer-integral
operator. A criteria for quasi-exact integrability of the partition function is formu-
lated, in terms of the condition for possible existence of exact eigenstates of the
transfer-integral operator. The quasi-exact solvability condition is obtained analyti-
cally and from this, some exact eigenstates are derived at several temperatures. The
exact probability densities obtained from the analytical expressions of the ground-
state wavefunctions at different temperatures, are found to be in excellent agreement
with the probability density obtained from numerical simulations of the Langevin

equation.

KEYWORDS:
Quantum equilibrium statistical mechanics, Quantum field theory; related classical field theories, Transi-

tion in quantum tunneling, bistable systems, solitons, Langevin equation.

In systems with multiple equilibrium states, the transition between metastable states separated by energy barriers arise either
in the classical regime via thermal activation, or in the quantum regime via tunneling processes. At high temperature, thermal
activation governs the transition which usually occurs as a hopping over the potential barrier. However, at low enough temper-
ature (i.e. near quantum criticality T — 0), the transition is governed by quantum tunnelings through the potential barrier. In
this second context the system dynamics is characterized by classical configurations called instantons"2, which are expected to
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dominate the thermal rate at low temperature®. As the temperature increases, the thermally-induced crossover becomes more
and more important and at some critical temperature, a phenomenon known as "phase transition in quantum tunneling"® can take
place. This phenomenon has recently attracted a great deal of interest, in particular it was demonstrated that some physical sys-
tems can exhibit not only a smooth second-order transition at a critical temperature Ty, but also a first-order transition®/8 2102
at some different temperature.

Another aspect of interest in the study of displacive elementary excitations in condensed matter physics, is their dominant contri-
bution in the low-temperature statistical mechanics of the systems 31413167 Tp the early eighties a soliton-gas phenomenology
was proposed!® to address the problem of low-temperature statistical mechanics of condensed matter systems admitting kin
and solitary-wave solutions in general. This phenomenology, then called transfer-integral formalism, was later generalized to
kink-bearing systems for which kink-phonon interactions lead to reflectionless scattering potentials’®. The transfer-integral for-
malism has gained a constantly growing attention over the four last years, because of the universal framework it offers in the
study of a wide-range of thermodynamics-based processes including in quantum systems 220212223 T kinetic theory the for-
malism has been used to develop nontrivial (i.e. quasi-exact) approaches to escape-rate problems in both classical and quantum
regimes”#23 and so on.

The above mentioned studies, however, rest mainly on the assumption of two universal models namely the sine-Gordon
model, assumed to describe systems with periodic one-site potentials, and the ¢*22% model intended for systems with double-
well (DW) energy landscapes. Yet real physical systems to which these models and studies address are actually far more complex,
sometimes also displaying a rich diversity with unique structural features. For instance the sine-Gordon and ¢* potentials both

26127

have fixed extrema, in addition to their shape profiles that are rigid and hence restrict their applications to only very few physical
contexts. Nonetheless, it has been shown that these weaknesses can be overcomed by envisaging a parametrization of these two
universal models. Indeed the sine-Gordon model was generalized by Remoissenet and Peyrard2~Y!' into a parametrized peri-
odic potential (the so-called Remoissenet-Peyrard potential)?¥*12 and the ¢* potential was parametrized33#33130 into a DW
potential model with a tunable shape profile. It is worthwhile to stress that although some other parametric DW potentials exist
37135139 3313413336 5 peculiar in that it groups three different classes
with distinct shape deformability features, but the three classes admit the ¢* potential as a specific limit.

The importance of shape deformability in the context of bistable systems lies in two issues related to their structural properties.
The first issue is linked with the problem of symmetry breaking, for which the ¢* model predicts the transition in quantum tun-
neling to be strictly of second order®!%12 The second issue is related to observations!?/12 that the transfer-integral formalism
always reduces the classical statistical mechanics of a one-dimensional (1D) ¢*-field theory, to a time-dependent quantum-

1.20 who formulated the
33034135136

in the literature , the family of DW potentials proposed in refs.

mechanical problem for which no exact solution exists. The first issue was recently addressed by Zhou et a
problem of transitions in quantum tunneling for one®# among the three existing classes of parametrized DW potentials
Thus, Zhou et al.#? obtained that due to the extra degree of freedom accounting for shape deformability, bistable systems which
can be described by the parametrized DW potential could exhibit a first-order transition occurring at a finite critical value of the
shape deformability parameter, besides the second-order transition predicted by the ¢* model. As for the second issue, given
that the classical statistical mechanics of a field-theoretical system can be fully analyzed with just the knowledge of its low-lying
eigenstates, parametrized DW models are quite likely to introduce the possibility for quasi-exactly solvable (QES) systems in
field theory H2E3HAHSHG,

In the work of Zhou et al.%%, the parametrized DW potential was one for which the height of the potential barrier could be varied
continuously by varying a shape deformability parameter, leaving unchanged the positions of the two degenerate minima“#, In
the present work we wish to examine the possible occurrence of a first-order transition in quantum tunneling, for a new family
of DW potential which is parametrized in such a way that the barrier height and positions of the two minima are always fix,
but the the steepness of the potential walls can be tuned which affects the confinement of the two potential wells. We shall see
that this model too leads to a first-order transition in quantum, besides the second-order transition predicted within the frame-
work of the ¢* theory. We will also discuss the issue of exact integrability of the statistical-mechanical problem for this new
parametrized DW model. In this purpose the low-temperature partition function will be expressed in terms of a transfer-integral
operator eigenvalue problem''®, for which exact low-lying eigenstates will be shown to exist provided under a specific condi-
tion. Analytical expressions of some exact low-lying eigenfunctions, together with the corresponding energy eigenvalues, will
be derived and results for the probability density functions discussed both analytically and via numerical simulations of the
Langevin equation with a Gaussian white noise.
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V(u,p)
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FIGURE 1 (Color online) Profiles of the parametrized DW potential V' (u, u), for different values of the shape deformability
parameter y: 4 — 0 (Solid line), 4 = 1.0 (Dot-dashed line), 4 = 4.0 (Dotted line). g, = 1.

2 | THE MODEL OF PARAMETRIZED DW POTENTIAL

We are interested in 1D systems for which the bistable energy landscape is represented by a DW potential of the general form:

2
sinh?(a(p)u)

V(u, u) = a(u) [T -1, u>0, (H
where a(u) > 0 and a(u) are two functions of the shape deformability parameter . V' (u, 1) given by @) belongs to a family of
parametric DW potentials33343356l ywhose shape profiles can be tuned differently, but which admit a common asymptotic limit
which is the ¢* potential when g — 0. For the new member the two functions a(u) and a(u) are defined as:

a(p) = sinh_l,u, a(u) = ay, ()

in which case V' (u, u) is a DW potential with two degenerate minima fixed at u = +1, and a barrier height also fixed at a constant
value a,. However a variation of u changes the steepness of the potential walls, and consequently the sharpness (or confinement)
of the potential wells. In fig. V (u, ) is sketched for some arbitrary values of y. When y tends to zero, the parametrized
DW potential reduces to V' (u) = a, (u* — 1)2 3115 When p is varied, the slope of the potential walls gets steeper. Hence the
narrowest part of the potential barrier broadens while the flatness of the barrier top beocomes more pronounced, resulting in
an enhancement of the confinement of the potential wells. Quite instructively, a variation of the barrier shape observed in fig.
[[]is consistent with the experimentally observed rates and experimentally observed kinetic isotope effects, when studying
vibrationally assisted hydrogen tunneling in enzyme-catalyzed reactions“Z. Indeed in these biophysical processes, the effect of
the catalyzer becoming less efficient results in a progressive broadening of the narrowest part of the barrier, with the shoulder
shape of the barrier peak becoming increasingly less pronounced. The patrametrized DW potential eqs. (I)-(2) is infinite at
the boundaries of the final interval and therefore is suitable for modelling hydrogen bonds in enzyme-catalyzed reactions. Also
worthwhile to note, for significant values of the shape deformability parameter ; the DW potential eqs. (I)-(2) displays features
similar to the double-Morse potential, used=” to describe proton motion in the hydrogen bond O — H - - - O in KDP ferroelectrics.
In these specific materials®? the one-body proton potential rises steeply in the vicinity of the oxygen atoms, with a gentler slope
at the sides of the potential barrier. The parametric DW potential egs. (I)-(Z) can reproduce some of these peculiar features,
namely by taking the proton displacement u from the center of the hydrogen bond and using u to mimic the rate of variation of
the O — O bond distance. Last but not least, a confinement of potential wells in bistable systems has recently been shown to hold

a crucial role in the occurrence of stochastic resonance in these systems™®.
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3 | FIRST-ORDER TRANSITION IN QUANTUM TUNNELING

Consider a 1 D quantum system with an Euclidean action (in dimensionless form):

1 /du\?
S:/dr <§ <E) +V(u,;4)>, 3)

where u is a scalar field in one time and zero space dimension, 7 = it is the imaginary time and V (u, p) is the parametrized DW
potential energy. The integral is taken over the period 7, of the path. In statistical mechanics this period is related to temperature
T through the relation 7, = 1/(kT), where kp is the Boltzmann constant. Without loss of generalities we will take 72 = 1.
The decay rate of the system in the semiclassical limit is of the form:

'~ exp_Fm'"/T, )

where F,;, is the minimum of the effective "free energy"!! F = E+T S(E)—E,,,. E is the energy of a classical pseudo-particle
in the system, while E,;,, = 0 corresponds to the bottom of the potential. The minimum of the effective Euclidean action i.e.

S,in» 18 Obtained by minimizing (3)) along the trajectories ¢(z) satisfying the energy-integral equation:
du, 2
—) =2(V(.m-E). 5)

When E = 0, corresponding to 7, = oo and 7" = 0, the particle is at rest at the bottom of one of the two degenerate potential
wells. The solution to eq. (5) in this case is a regular vacuum instanton (kink soliton) given by:

tanh

(6)

u(t) - Ltanh_1 [ a 4 ] ,

() Vit Vadw
where d(u) = u [aoaz(y)(l + yz)] ~l2 is the kink width. Imposing periodic boundary conditions, with 7, the period of motion,
leads instead to the following expression for the trajectory u,(z) with energy E > 0:

u(v) = %ﬂ) tanh™! [C, - sn (Cy7.x)]. ™

with sn(r, k) a Jacobi elliptic function®? the modulus & of which is given by:
(1 - \/E/ao) [l + u? (1 + \/E/a())]
(1+VETa) [1 2 (1= \/E/ao)]

The two parameters C, and C, appearing in formula (/) were defined as:

(1= V)

C] = 2 (9)

1+,42(1_\/m)

) 2%<1+ /£> [1+y2<1— E)] (10)
H a 99

The trajectory possesses real periods for values of its argument equal to 4mK(x), where m is an integer and K(x) is the
quarter period determined by the complete elliptic integral of the first kind*?. Eq. (7) therefore describes a periodic trajectory
which we can refer to as periodon, the period of which is (m = 1):

®)

G

4
5 = g K (11)
The classical action corresponding to the periodon eq. (/) is obtained as:
S(E)y=Et,+W (uc('rp)/Z, E) , (12)

where:

W (u(t,)/2,E) = L[(C“ — kHI(Cy, k) + KK (k) + CHK(k) — E(x))]
o (@) ! v ! '



NAHA NZOUPE ET AL | s

E(x) and TI(C}, x) in the last formula are the complete elliptic integrals of the second and third kinds, respectively”.
At E = a,, which corresponds to the top of the potential barrier, the solution to eq. (3) is the trivial configuration u,(z) = 0.
This trajectory is a sphaleron®” and its action is the thermodynamic action namely:

So(p) = ayr. (13)
For the sphaleron the escape rate has the Boltzmann signature, characteristic of a pure thermal activation i.e.:
I, ~exp (—a(u)r,) = exp (—a(u)/kgT) . (14)

From the above results we can conclude that a periodon interpolates between the sphaleron u,(7) = 0, and the instanton given
by eq. (6). Hence the escape rate in the preriodon sector will be:

I~ exp (=S,um(E)) (15)

where S,,,,(E) = min {S,, S,(E)}.
To examine the possible occurrence and characteristic features of the transition(s) in quantum tunneling, for the 1D quantum
system with the action given by formula (3)), it is useful to start with the remark that for periodic problems in classical statistical
mechanics, the derivative of the action with respect to the energy is equivalent to the oscillation time z of the system with this
energy. Since the oscillation time 7 is proportional to the inverse temperature, with the action corresponding to motion in the
periodon sector we can readily define the period of motion as:
| dS,E)  4s,

7,(E) = T~ dE d_‘rp = a(p). (16)
Taking (16) together with (IT)) and (I2), it is possible to analyze the influence of the shape deformability parameter x on the
temperature dependence of S,,,;,,,
will enable us obtain the critical value of u at which a first-order transition from quantum to thermal regime, can be expected.
Two well-established criteria are known™® which determine conditions for occurrence of transitions in quantum tunnelings, in
the general problem of decay of a metastable state®S821051 The first criteria states that the transition will be of first order if
the period 7,(E) decreases to a minimum, and next increases again when E increases from the potential bottom to the barrier
height. If 7,(E) instead decreases monotonically with increasing E, the transition will be of second order. The second criteria
states that if at some critical temperature the first derivative of S,
in the temperature dependence of the action, then the transition from quantum to thermal regime is a first-order transition in
temperature. The first criteria is equivalent to solving the equation:

d
d—ETp(E) =0, an

where one seeks for nontrivial solutions with the temperature dependence of 7,(E) given by . We solved the last equation
numerically by setting a, = 1/2, and evaluated the energy E; corresponding to the minimum of 7,(E) for some values of u.

Results are shown in table[T]

based upon the energy dependence of the period of periodon 7,(E). In particular these equations

(T) is discontinuous, and an abrupt change is observed

TABLE 1 Numerical computation of critical values of E;.

u? Energy E, at E, = q,
minimun of 7,(E) (barrier height)
9 0.1503 0.5
0.2278 0.5
0.3817 0.5
1.6 0.4691 0.5
1.501 0.4994 0.5

The table indicates the quantity E; approaching the maximum energy E,,, when y tends to 4/3/2. Therefore the critical value
of u for a transition in quantum tunneling would be u, = 4/3/2, and smaller values of y should correspond to unphysical
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FIGURE 2 (Color online) Variation of the instanton period with the energy E for (a) 4 = 1, and (b) y = 3. Here a, = 0.5.
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FIGURE 3 (Color online) Plots of the action versus temperature, the dashed line corresponds to the thermodynamic action and
the solid line to the periodon action: (a) 4 = 1, second-order transition from quantum to thermal regimes, (b) u = 3, First-order
transition from quantum to thermal regimes.

values of the energy E. Clearly, a first-order quantum-classical transition will occur in the parametrized DW model when the
deformability parameter lies in the range y > \/m For values of y far above the critical threshold y., we should have E; ~ 0
and E, — E; as u decreases to y,. So to say, increasing the deformability parameter above the critical value y, should result in
a sharper first-order transition in quantum tunneling>2.

Fig. |Z| represents the energy dependence of the periodon period 7, for two values of the shape deformability parameter y,
selected respectively below and above the critical value .. Fig.[2 (a) suggests a monotonic decrease of the periodon period
with increasing energy, for y = 1 lower than p,. However for y = 3, which is a value greater than u_, the period has a re-
entrant behaviour afer decreasing untill a critical value of the energy as evidenced in fig. 2 |(b). This re-entrant behaviour of the
period actually reflects a favorable condition for a first-order transition. The physical behaviours just discussed and emerging
from fig.[2”] can also be observed in the corresponding plots of the periodon and thermodynamic actions shown in fig.[3] here
also for y = 1 and u = 3 respectively. When the temperature increases we observe a smooth change from S, to .S, in fig. Era),
characteristic of a second-order transition. In fig.[3_(b) the change from quantum to classical regime is abrupt, this abrupt change
in the temperature dependence of the minimum action fulfills the second criterion proposed by Chudnovsky®, for a first-order
phase transition in temperature.
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For the purpose of mathematical simplicity, it can be useful to be able to determine analytically the critical value u, of u for a

first-order transition. In this purpose we exploit the proposal of ref.l, who extended the criteria for determining the order of

transition in quantum tunneling, to the dependence of the Euclidean action with the instanton period. Indeed the authors proposed

that provided the period T(E — V,,) of the periodon close to the barrier peak is accessible, the condition Tp(E - V) —17,<0

2 — cof > 0 will be sufficient for a first-order transition. Here ¥}, and 7, denote respectively, the barrier height and period of

small oscillations around the sphaleron, @ and w, are the corresponding frequencies. In our context the last criteria translates to:
5 [V///(usph’/’l)]z

|44 M) — ————— <0, 18
(usph 1) 3V"(usph»ll) (18)

where u,, = 0 corresponds to position of the sphaleron solution. The potential beeing symmetric, we have V""'(0, u) = 0 such
that the criteria reduces to ¥"”’(0, ) < 0. Using the general expression of the potential given by formula (I), the criteria can be

expressed more generally as:

4

4<%—2>M5’(“)<0, (19)
H H

which suggests a critical value of uz = 3/2 irrespective of the specific forms of a(u) and a(y). This is in agreement with

the results of ref 4%, where the phase transition in quantum tunneling was investigated with different forms of a(u) and a(u)

corresponding to the complete hierarchy of Dikandé-Kofané DW potentials.

or w

To close this section, we wish to underline that the parametrized DW potential considered in this study is member of the family
of potentials changing slowly near the top and the bottom, which were recently designated to stand for ideal candidates for a first
order transition“®. When y — 0, the parametrized DW potential reduces to the ¢* model that can account only for second-order
transition. As y increases, the concave shoulders of the barrier become less pronounced and the narrowest part of the barrier
enlarges progressively. Therefore, as the shape deformability parameter approaches a critical value y,, the barrier top becomes
similar to that of a rectangular barrier and the probability of thermally assisted tunneling, just below the top of the barrier,
decreases gradually due to the increase of the tunneling distance. In the region u > p, this tunneling becomes unfavorable, a
first-order transition occurs as a consequence of a direct competition between the groundstate tunneling and thermal activation.
The independence of p, on the barrier height highlights the critical role of the shape of the top of the potential barrier, in the
occurrence and the nature of the transition from quantum to thermal regime.

4 | STATISTICAL MECHANICS AND QUASI-EXACT SOLVABILITY CONDITION

We now turn to the low-temperature statistical mechanics of the parametrized DW potential model given in (I)-(2), paying
attention to the canonical partition function using the transfer-integral formalism' 451078 The (dimensionless) Hamiltonian
governing the continuum dynamics of the system reads:

H= / dx [%nz + %(axu)2 + V@, y)] , (20)
where 7 is the momentum conjugate to the displacement field u. The solitary-wave solution to the equation of motion, i.e.:
u  Ju
— - —+V@u,pu=0, 21
PR (u, p) 2D

derived from the Hamilonian @ can be shown to express:

tanh

u, (s, u) = +L tanh™!

U
Sal) lm

s = x—Ut,

S
xﬁd(m] ’

(22)

and corresponds to the vacuum instanton already obtained in formula (6). This solution describes a kink (+) or an antikink (-)

with a rest mass:
V2a(u)

Mo = 3 o

[2a(u)(1 + u?) — sinh2p)] . (23)
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For the low-temperature statistical mechanics, we apply the transfer-integral formalism and with the Hamiltonian given in eq.
(20), we find a Schrodinger-like equation for eigenstates of the transfer-integral operator:

sinhz(a(,u)u)

2
1 & 1 = 24
Y+ a(u) T - Y = €y;. (24)

242 ou?
In the thermodynamic limit, the lowest eigenstate with eneregy €, brings the most relevant contribution to the partition function
In this context Z can readily reduce to the classical partition function;

Z, = Qx/pn)N exp (—BNe¢y) . (25)

where f = (k BT)‘l and N (— oo) is the total number of particles in the system.

Most generally, finding exact values of the partition function Z depends on the solvability of the eigenvalue problem (24). To
transform this eigenvalue problem into a form for which the exact solvability is established®3°% we use the variable change
z = a(p)u and introduce & = (1+24%)7!, E; = 4u*&%¢; /a(u). With these new variables the eigenvalue problem becomes:

1 0 a(p)

257022 L ey
Remark that by taking 2 = 1, and rescaling the parameter E; — Ej/n2 with = v\a(u)/[2ua(w)él =n+1,n=0,1,2,..,
the eigenvalue problem turns exactly to the equation treated in ref.*%. In this last work the author obtained exact expressions
of eigenfunctions and energy eigenvalues of the corresponding eigenvalue problem, for some energy levels n. By following a
similar idea in our context, this will mean taking one energy level at a fixed temperature which yields the value of u for which
the system is quasi-exactly solvable. However, what we really want is instead to obtain eigenstates at different temperatures for
each value of u. This is possible by considering a distinct picture in which the temperature is related to the shape deformability
parameter through:

[E; — (& cosh(2z) — 1)*] w; = 0. (26)

_ 2@y’ ,

s 7. @7
a(u)
where g is a positive integer hereafter referred to as "temperature order". Substituting (27) into (26) we obtain:
9?2
i q* |E; — (£cosh(2z) — 1)*] y; = 0. (28)

Equation (28] describes a quasi-exactly solvable system similar to the one studied in refs.38235%_ for the energy level n = 1. We
are interested in solutions which vanish in the limit z — +o00, in this respect we can readily define:

w(z) = r(z) exp [~z, cosh(2z)] , (29)

where the function r(z) is a polynomial expressed as a linear combination of cosh m,,z or sinh m,z and their powers, with z, and
m, (p=0,1,2,...) being constant quantities to be determined.

The exact expressions for the (unnormalized) groundstate wavefunctions, and of the associated energy eigenvalues, are found
for the first four values of g and are list bellow:

qg=1:
W) = [_w
wolu) = T2 ’
a(u)
= o [1+(1+27). 0
q=2:
yo(u) = cosh(a(u)u)exp [_%‘;Lﬁ;)“)]
o = a(u) [3(1 + 27 — 8/42], o

"7 1eut
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FIGURE 4 (Color online) Variation of the inverse temperature § as a function of the shape deformability parameter y, for four
different values of g according to the quasi-exact solvability condition : g = 1 (Solid line), ¢ = 2 (Dashed line), ¢ = 3
(Dash-dotted line), g = 4 (Dotted line). The horizontal line stands for the energy barrier taken to be a, = 1.

q=3:
_ 6 36 B 3 coshQa(u)u)
wo(u) = [—1 ey + (1 +4/1+ —(1 n 2”2)2> coshQRa(u)u)] exp [ —2(1 o) ]
€ = ;’é’;i 19— 2(1 + 26V (1 +24%)% + 36 + 7(1 + 24%)*]. (32)
qg=4:
6 cosh h(3
wo(u) = 2[%‘%‘”‘) + (2,42 —1+VI2—82+ (1 + 2y2)2) %ﬂz‘i’z)“)
y B 2 coshQa(u)u)
1+ 2u2
€ = %"1[2 — 4 — (1 + 2V (A + 2422 — 82 + 12 + %(1 +2u%)*].
1%

(33)

Eigenfunctions and eigenvalues for some higher energy levels are given in the appendix.

The condition for quasi-exact solvability of the system at several temperatures, is defined by relation (28). This relation sets the
dependence of the temperature (in unit of the Boltzmann constant) on the shape deformability parameter u and is illustrated in
Fig.[A] 1t is particularly remarkable that in the limit 4 — 0, the quasi-exact solvability condition requires 7 — oo. This is in
excellent agreement with the transfer-operator prediction relative to the absence of exact solutions at finite temperatures, for the
¢* model. We can also conclude from fig. |4 |that for small values of y, the four temperatures are far greater than the energy
barrier a,. As u gradually increases the temperatures obtained from the largest to the lowest g steadily decrease, and go far
below the energy barrier. For sufficiently larga values of u, the exact solvability condition thus holds at four tempratures lying
below the symmetry-breaking temperature.

The free energy is strongly related to the groundstate energy, the influence of y on the groundstate energies and on their relative
positions with respect to the energy barrier is illustrated in fig.[5 | The groundstate energies are infinitely large for 4 — 0, and
decrease with an increase of y irrespective of q. However, combining the influence of u together with the choice of g affects the
position of the energy level with respect to the energy barrier. Taking ¢ = 1 for illustration, the groundstate energy decreases
drastically but will always remain above the energy barrier. This drastic decrease is also observed for higher values of g, but when
u rises beyond a specific value namely y, = \/m m and p, ~ 0.717 for g = 2, g = 3 and g = 4 respectively, the grounstate
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FIGURE 5 (Color online) Variation of the groundstate energy ¢, with the shape deformability parameter y, for four different
values of ¢ (corresponding to four different temperatures) namely: ¢ = 1 (Solid line), g = 2 (Dashed line), g = 3 (Dash-dotted
line), g = 4 (Dotted line). The horizontal line stands for the energy barrier g, here fixed as a, = 1.

energy drops below the energy barrier and tends to a finite value i.e. €¢y(y = o) = (3/4)a, for g = 2, ¢x(4 = ) = (5/9)q,
for ¢ = 3 and ¢5(u — o) = (7/16)q, for g = 4. Moreover for a fixed value of y, lower energy levels are obtained by increasing
the temperature order q.

With the expressions of the exact groundstate wavefunctions and energy eigenvalues at several temperatures, for arbitrary values
of the deformability parameter u, quantities such as the probability density which are relevant in the formulation of correlation
functions and correlation lengths at low temperatures, turn out to be easily formulated analytically. In effect the probability
density associated with the classical field u, is nothing but the square of the normalized groundstate wavefunction. For this reason
we expect the influence of shape deformability on the probability density, to be qualitatively the same as the influence of the same
parameter on the groundstate wavefunction. The groundstate wavefunctions (unnormalized), for four different temperatures,
are plotted in fig. [6 ] considering different values of the shape deformability parameter x. To capture the physics lying in the
difference in profiles of the probability density which emerges from fig. [6 | it is useful to combine features related to the
deformability and general properties of probability densities for bistable systems. To this last point, in fig. 5 | we have seen
that for small values of y, the groundstate energies were higher than the energy barrier a; and hence correspond to a high-
temperature regime. Thus in this regime the Schrodinger pseudo-particles have sufficient energy to cross the energy barrier,
and move freely from one well to another behaving as if trapped instead by a single-well potential. The full state space is then
covered with power law and the whole space is probable, with a maximum probability density at the barrier peak. As y increases
the probability density at the four temperatures increases in amplitude and a decrease in width, but is still dominated by a single
peak. This is actually justified by the fact that an increase of u enhances the potential confinement by strengthening the steepness
of the reflective walls, thus restricting the attainable space to the region covered by just the valleys and the energy barrier.
The groundstate energy beeing high the energy barrier remains the most probable state. For ¢ = 1 the groundstate energy lies
above the energy barrier independently of . It turns out that even a lowering of temperature by increase in y will still yield a
probability density with a single peak, located at the barrier (top graph in fig.[6_]). However, for choices of ¢ greater than one,
this behaviour is observed only for 4 < ug. When p increases in the range y > pg, the groundstate energy falls below the energy
barrier a, and a decrease in temperature below the transition temperature restricts the transitions form one well to another. The
pseudo-particles are consequently more confined in the potential wells, such that the valleys become more probable. In fig.[6 |
this is illustrated by the probability density showing two peaks, each located in the neighborhood of the degenerate minima of
the parametrized DW potential. To enrich our understanding of the temperature dependence of the probability density for a fixed
u, but at different temperatures, in fig. [/ | we represented the groundstate probability density for 4 = 2 and for three distinct
temperatures at which the quasi-exactly solvable condition holds. We note a continuous shift from a single peak feature to a
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FIGURE 6 (Color online) Groundstate wavefunctions in position space at four different temperatures, for 4 = 0.5 (Solid line),
u = 1 (Dashed line), 4 = 1.5 (Dot-dashed line), u = 2 (Dashed line).

two-peak feature, with decreasing temperature. Remark that the change in the peak width with temperature is different from that
of the ¢* model. Instructively the exact probability densities, are superimposed with those obtained from numerical simulations
of the following additive-noise Langevin equation associated to the model:

02u— 02 u+ndu+dV(u,p)/du= F(x,1), (34)
where the Gaussian white noise F(x, t), and the viscosity #, are related by the fluctuation-dissipation theorem:
(F(x,)F(x', 1)) = 2P~ 8(x — x")8(t —1'). (35)

We used standard techniques™ to solve the discrete version of the above Langevin equation, and sampled the results in time
to obtain time-averaged probability densities after random initial conditions had been driven to equilibrium. In the simulations
we employed both Euler and Runge-Kutta schemes, with a lattice size of typically 350K points taking a lattice spacing of
d = 0.02 and a time step of 4 = 0.001. As evidenced by fig.[7 ] the exact (i.e. analytical) probability density and the results from
numerical simulations, show excellent agreement. This agreement between the analytical and numerical results suggests that
the groundstate energies can be numerically computed using the corresponding probability densities, at any temperature where
quasi-exactly solvable condition holds for a wide range of values of the shape deformability parameter u. A relevant implication
of this is the possibility to compute exactly, thermodynamic quantities such as the enthalpy, the internal energy, the entropy and
SO on.
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FIGURE 7 (Color online) Comparision of the exact (Solid Line) probability density function (PDF) and the results from
numerical simulations of he Langevin equation, for 4 = 2 and for values of § obtained for g = 1 (stars), ¢ = 2 (squares), g = 3
(diamonds) and g = 4 (circles). Note the excellent agreement between exact PDFs and numerical simulations.

S | CONCLUSION

We have investigated the influence of shape deformability on the occurrence and orders of transitions in quantum tunneling,
and on the statistical mechanics of a bistable system characterized by a parametrized DW potential. Systems with this feature
abound in nature, ranging from biology to soft matters such as lipid membranes>, linear polymer chains, molecular crystals
and hydrogen-bonded ferroelectrics and antiferroelectrics. In these systems chemical processes such as the effects of catalyzers
or solvants, isotopic substitutions or simply the intrinsic structure of molecular chains (e.g. flexible chain backbones and soft
interactions) can favor changes in bond lengths and characteristic parameters of the double-well energy landscape as for instance
the height of the potential barrier, positions of the potential wells, the steepness of the potential walls, etc. These characteristic
parameters are well known to govern symmetry-breaking instabilities in low-dimensional systems.

We have established the existence of a critical value of the shape deformability parameter ¢ aobve which a first-order transi-
tion in quantum tunneling would occur, besides the second-order transition inherent to the Ginzburg-Landau feature of the DW
potential energy. We explored the possibility to study the statistical mechanics of the system via the transfer-integral operator
method, with emphasis on conditions for quasi-exact solvability of the associated pseudo-particle’s Schrodinger equation. We
determined the condition, and obtained groundstate wavefunctions and the corresponding energy eigenvalues for temperatures
determined by the quasi-exact solvability condition. Concerning the dependence of these wavefunctions and energy eigenval-
ues on the shape deformability parameter, we found that for each value of u the quasi-exact solvability of the model allows
exact computation of the eigenstates at various temperatures. These temperatures were obtained above and below the transition
temperature, depending on values of the shape deformability parameter. The influence of shape deformability on the probabil-
ity density was also examined. Analytical results showed a striking agreement with large-scale Langevin simulations, implying
that the study of probability density-based thermodynamics via Langevin simulations is feasable for bistable systems with the
parametrized DW potential.
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