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Abstract 

This study provides the optimization of thermophysical properties of Cu/engine oil nanofluid. In this 

optimization, the objective functions were determined with the experimental data of viscosity and TC of 

nanofluid using RSM. Two equations for predicting thermal conductivity (TC) and viscosity data were 

presented which can accurately predict these properties. The NSGA-II method was used for multi-objective 

optimization (Mo-O) and Pareto's front was introduced to study optimal viscosity and TC responses. 

According to the results, the highest TC and the lowest viscosity occurs when the temperature and solid 

volume fraction (SVF) of the nanoparticle are at their maximum values. Among the results, those with the 

highest TC and the lowest viscosity are referred to as optimal points. 
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1. Introduction 

Among various applications of nanofluids, many items such as automotive coolers, electronic 

coolants, solar energy systems, antibacterial applications and polymer membrane fuel cells can be 

pointed [1-6]. Among the thermophysical properties of the fluid, TC and dynamic viscosity play 

an important role in the heat transfer behavior. The addition of nanoparticles increases the TC and 

dynamical viscosity of nanofluid [7-13]. A review of studies on viscosity and TC of nanofluids is 

presented in Table 1. 
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Table 1. Studies on the viscosity and TC of nanofluids. 

Author Type of nanofluid The effect Conclusion 

Águila et al.[14] Cu-PCM 

Thermal 

conductivity and 

viscosity 

Increasing the temperature from 30 to 40 ℃ 

leads to a linear reduction in thermal 

conductivity. The rheological behavior of 

fluids also exhibits a quasi-plastic behavior. 

Kakavand et 

al.[15] 

MWCNTs-SiC/Water-

EG 

Thermal 

conductivity 

At solid volume fraction of 0.75%, thermal 

conductivity increased to 28.86%. 

et  Alirezaie
al.[16] 

Fe and MgO in 

Ethylene Glycol 

Thermal 

conductivity 

Temperature, SVF, nanoparticle diameter, 

specific heat capacity, and density of 

nanoparticles play an important role in 

determining thermal conductivity. 

Dalkılıç et al.[17] Graphite/water-2SiO viscosity 

The highest viscosity increase to 36.12% was 

in a nanofluid with a concentration of 2% at 15 

°C. 

Hemmat et al.[18] 
MWCNT–MgO/water–

EG 

Thermal 

conductivity 

The MWCNT-MgO/water-EG nanofluid has 

better price-performance value, but the 

MWCNT-CuO (10-90%)/water-EG nanofluid 

has a higher thermal conductivity. 

 

In order to predict the thermal and rheological behavior of nanofluids, researchers have 

investigated various methods of modeling such as ANN, GA and RSM method. The results of 

modeling can be useful for use in other studies and reduce the cost of testing [19-20]. In Table 2, 

some studies have been reviewed on the modeling of Nano-fluid properties. 

Table 2. Some modeling in the field of nanofluid properties. 

 

Author 
Type of 

nanofluid 
The effect Modeling method Conclusion 

Hemmat et al.[21] 

NSGA-II 

coupled with 

RSM 

Thermal conductivity 

and viscosity 

NSGA-II coupled 

with RSM 

Maximum thermal 

conductivity and 

minimum viscosity 

occur at the highest SVF 

and temperature. 

Rejvani et al.[22] NSGA-II 
Thermal conductivity 

and viscosity 
NSGA-II 

As the temperature rises, 

the viscosity of the 

nanofluids decreases at 

all SVFs and their 

thermal conductivity 

increases. 

Longo [23] ANN viscosity ANN 

The average absolute 

error percentage of 

predicted data was 

4.15%. 

Alrashed [24] ANN ANFIS 
Thermal conductivity 

and viscosity 
ANN ANFIS 

Has the lowest values of 

MAPE and RMSE in 

predicting the thermal 

conductivity and 



 

Vakili et al. [26] predicted the TC of the graphene/deionized water at weight percent from 0.00025, 

0.0005, 0.001 and 0.005 using a multi-layer perceptron (MLP) ANN. They showed the high 

accuracy of ANN (ANN) compared to other experimental and theoretical modeling by comparing 

the results of modeling results with experimental data and MLP modeling results. Since 

performing experimental processes to determine the TC of graphene nanofluid is costly, the use of 

ANN model was recommended in this study. 

Hemmat et al. [27] investigated the optimization of nanofluid with double-walled carbon 

nanotubes (DWCNTs)/water. The experimental data of their thermal performance coefficients 

were obtained for various SVFs of nanoparticles and Re number. They provided the appropriate 

equations to achieve the lowest cost pattern with respect to the desirable thermal performance. The 

results showed that the cost of the first replication has been reduced by 38%. The maximum 

thermal performance coefficient was obtained at the nanoparticle SVF of 0.365 and the Re number 

of 23.712.  

Tahani et al. [28] examined the prediction of the TC of the nanofluid with graphene/deionized 

oxide nanotubes using ANN and experimental data. They found that the proposed model has a 

high accuracy with respect to the values of statistical indicators. The RMSE value was 0.03, the 

MAPE value was 0.006%, and the R2 was 99.9%. Since experimental research is usually time-

consuming and its equipment is expensive, they suggested using the above method to predict the 

TC of the nanoparticle containing graphene. 

In this paper, the Mo-O has been used by NSGA- II to obtain the highest TC along with the lowest 

viscosity of Cu-engine oil, which was studied by Aberoumand and Jafarimoghaddam [29]. Also, 

two models have been proposed to predict TC and viscosity of nanofluid by using RSM. 

viscosity of both types 

of nanofluids. 

Rostamian et 

]25al.[ 
ANN Thermal conductivity ANN 

Comparison of the 

accuracy of the neural 

network model and 

proposed correlation 

showed that the neural 

network can predict the 

nanofluid thermal 

conductivity more 

accurately. 



2. Simulation  

2.1. RSM 

The design of experiment (DOE) method can be used as a guide and reference for researchers to 

improve the production process. DOE is a practical solution for determining the effect of input 

parameters on output. Also, Design Expert software has been considered as a useful tool for 

designing experiments, providing relationships and analyzing results. The RSM is used in this 

software. RSM is a powerful mathematical tool for developing and optimizing processes. RSM is 

a method for developing or optimizing the process and by integrating mathematical and statistical 

methods. The input variable is known as an independent variable, which is determined according 

to process constraints. This study investigated the statistical modeling of the statistical process 

using RSM statistical modeling. The approximation model is usually derived from the 

experimental data of the process, so it is known as experimental model. The first-order regression 

model has been shown by Eq.1 [30]: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀 (1) 

 

In this linear model, the unknown parameters of 𝛽0, 𝛽1 and 𝛽2 are called regression coefficients. 

Independent variables 𝑥1 and 𝑥2 are also known as predictive variables or regressions. y is the 

objective function (dependent variable). This model in the matrix symbol is as Eq.2: 

𝑌 = 𝑋𝛽 + 𝜀 (2) 

 

Where Y is vector of the observations, X is matrix of the levels of the independent variables, b is 

vector of the regression coefficients, and ε is vector of random errors. 

There are several methods for assessing the accuracy of linear regression models such as Least 

Squares Estimators. The sum of squares of residuals is presented as Eq.3: 

𝑆𝑆𝐸 = ∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

= ∑ 𝑒𝑖
2

𝑛

𝑖=1

= 𝑒𝑇𝑒 
(3) 

 

Since 𝑋𝑇𝑋𝑏 = 𝑋𝑇𝑦 the formula for computing SSE may be appeared as: 



𝑆𝑆𝐸 = 𝑦𝑇𝑦 − 𝑏𝑇𝑋𝑇𝑦 (4) 

 

Eq.5 is known as the error or residual sum of squares. 

Unbiased estimator of X can be shown as Eq.6: 

𝜎 =
𝑆𝑆𝐸

𝑛 − 𝑝
 

(5) 

 

Where n is the number of measurements and represents the number of regression coefficients. 

The total sum of squares is: 

𝑆𝑆𝑇 = 𝑦𝑇𝑦 −
(∑ 𝑦𝑖

𝑛
𝑖=1 )2

𝑛
= ∑ 𝑦𝑖

2 −
(∑ 𝑦𝑖

𝑛
𝑖=1 )2

𝑛

𝑛

𝑖=1

 
(6) 

 

Eq.7 has been presented to calculate the total sum of squares. 

Then the coefficient of determination (R2) has been calculated by Eq.8: 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 

(7) 

 

The investigation of Eq.8 shows that the values of R2 are between zero and one. The closer it is to 

the unit, the higher the accuracy of the model. 

In some studies, 𝑅𝑎𝑑𝑗
2  is also evaluated as Eq.9: 

𝑅𝑎𝑑𝑗
2 = 1 −

𝑆𝑆𝐸 𝑛 − 𝑝⁄

𝑆𝑆𝑇 𝑛 − 1⁄
= 1 −

𝑛 − 1

𝑛 − 𝑝
(1 − 𝑅2) 

(8) 

𝑅𝑎𝑑𝑗
2  Decreases by highly increase the parameter.  

2.2. Regression model 

The regression models of the RSM for determining the TC and viscosity of the Cu/engine oil 

nanoparticles, studied by Aberoumand and Jafarimoghaddam [29], have been shown Eq.10 and 

11: 



𝐾𝑛𝑓 = 0.148928189 +  0.070452536 ∗  𝑝ℎ𝑖 − 0.000858593 ∗  𝑇

+  0.001482324 ∗  𝑝ℎ𝑖 ∗  𝑇 − 0.252294359 ∗  𝑝ℎ𝑖2

+ 1.07655𝐸 − 05 ∗  𝑇2 − 0.000591119 ∗  𝑝ℎ𝑖2 ∗  𝑇 
− 4.12579𝐸 − 06 ∗  𝑝ℎ𝑖 ∗  𝑇2 + 0.177513333 ∗  𝑝ℎ𝑖3

− 4.86548𝐸 − 08 ∗  𝑇3 

(9) 

𝜇𝑛𝑓 = 3871.941168 +  764.1531501 ∗  𝑝ℎ𝑖 − 130.6783731 ∗  𝑇 

− 16.20129806 ∗  𝑝ℎ𝑖 ∗  𝑇 − 134.9668743 ∗  𝑝ℎ𝑖2

+  1.489507577 ∗  𝑇2 + 0.97370388 ∗  𝑝ℎ𝑖2 ∗  𝑇
+ 0.08805177 ∗  𝑝ℎ𝑖 ∗  𝑇2 +  31.7975 ∗  𝑝ℎ𝑖3

− 0.005680515 ∗  𝑇3 

(10) 

 

After modeling based on experimental data of RSM tests, analysis of variance (ANOVA) of TC 

and viscosity relationships have been presented in Tables 3 and 4, respectively. The viscosity and 

TC models have the regression coefficient R2 = 0.9904 and R2 = 0.9924, respectively. This means 

that the accuracy of the response surface model is acceptable. The significance of the regression 

model is determined by the large F value for the TC and viscosity model (respectively 115.0404 

and 204.952) and the small P-value. 

Table 3. Analysis of variance (ANOVA) for TC of nanofluid 

Source Sum of Squares df Mean Square F Value p-value  ,  Prob > F 

Model 0.003222 9 0.000358 115.0404 6.66E-09 significant 

A-phi 4.91E-06 1 4.91E-06 1.578322 0.237558 

B-T 2.07E-05 1 2.07E-05 6.637145 0.027593 

AB 0.000115 1 0.000115 37.02933 0.000118 

A2 0.000145 1 0.000145 46.64079 4.57E-05 

B2 5.41E-06 1 5.41E-06 1.738118 0.216775 

A2B 3.37E-05 1 3.37E-05 10.84139 0.008114 

AB2 6.97E-06 1 6.97E-06 2.238203 0.165514 

A3 0.000219 1 0.000219 70.4982 7.69E-06 

B3 6.82E-07 1 6.82E-07 0.219052 0.649797 

Residual 3.11E-05 10 3.11E-06   

Cor Total 0.003254 19    

Standard deviation = 0.001764201 

R2 (Adequate) = 0.990433952, R2 (Predicted) = 0.877608099, R2 (Adjusted) = 0.981824509 

 



Table 4. Analysis of variance (ANOVA) for viscosity of nanofluid. 

Source Sum of Squares df Mean Square F Value 
p-value            

Prob > F 

Model 83116.56 9 9235.174 204.952 
2.73E-13 

significant 

A-phi 0.426757 1 0.426757 0.009471 0.923853 

B-T 3347.576 1 3347.576 74.29124 5.69E-07 

AB 1188.856 1 1188.856 26.38374 0.000151 

A2 33.50835 1 33.50835 0.743636 0.403029 

B2 15027.26 1 15027.26 333.4932 3.67E-11 

A2B 36.70857 1 36.70857 0.814657 0.382014 

AB2 382.8338 1 382.8338 8.496056 0.011306 

A3 8.448491 1 8.448491 0.187494 0.671607 

B3 943.2737 1 943.2737 20.93365 0.000432 

Residual 630.8424 14 45.06017   

Cor Total 83747.41 23    

Standard deviation = 6.712687379 

R2 (Adequate) = 0.99246732, R2 (Predicted) = 0.974054457, R2 (Adjusted) = 0.987624883 

 

The regression graph of the Expert design software to evaluate the quality of these model functions, 

has been illustrated in Fig.s (1-a) and (1-b), based on experimental results for TC and nanofluid 

viscosity functions. The results indicate that the experimental values have a good agreement with 

the predicted values. 

Fig.1. Comparison of the experimental results and predicted values (a) TC (b) Viscosity. 

The residual graphs of experimental data and predicted results of TC and viscosity with RSM have 

been shown in Fig.s 2a and 2b. The coordination of the modeling results with the actual value 

shows the accuracy. The low amount of residual values indicates the accuracy of prediction 

models. 

Fig.2. Residuals of the experimental results and predicted values (a) TC (b) Viscosity. 

Fig.s (3a) and (3b) show three-dimensional TC and viscosity diagrams based on the temperature 

and SVF of nanoparticles. As it is known, the temperature has a direct effect on TC and inversely 

affect the nanofluid viscosity. But the volume fraction has a direct effect on both thermophysical 

properties. 

Fig.3. Three-dimensional response surface graphs of (a) TC (b) Viscosity. 

Fig.s (4a) and (4b) respectively show TC and viscosity contours, based on the temperature and 

SVF of nanoparticles. The results show that the effect of nanoparticle SVF on TC is much higher 

than nanofluid viscosity. At temperatures above 80 °C, the SVF has a slight effect on nanofluid 



viscosity. Also, according to Fig, with increasing SVF, temperature has a great influence on the 

TC of the nanofluid. 

Fig.4. Contour response surface graphs of (a) TC (b) Viscosity. 

3. Multi-objective optimization of Viscosity and TC  

In this study for reducing viscosity and increasing TC, Mo-O by NSGA II was presented for 

Cu/engine oil nanofluid, which was studied by Aberoumand and Jafarimoghaddam [29]. NSGA II 

was first introduced by Deb in 1994 [31].  

3.1. General procedure of NSGA-II algorithm 

The principles of the genetic algorithm were first introduced by John Holland (1958). Genetic 

algorithm is a general-purpose optimization algorithm, modeled on Darwin's evolutionary theory; 

this algorithm operates on a population of potential answers, and by applying the survival of the 

better, 8 provides a better approximation of the solution [32]. The genetic algorithm consists of 

the design of the original communities (chromosomes), 55 of the best individuals (the survival of 

the most deserving), and the intersection of the generations (the marriage of superior couples). 

Genetic algorithms are suitable for Mo-O due to the investigation of a set of possible solutions and 

also less sensitivity to a particular form of optimal points [31]. The general method is illustrated 

in Fig.6. The NSGA-II flowchart is illustrated in Fig.7.  

Fig.5. Structure of NSGA-II. 

Fig.6. Optimization flowchart. 

 

4. Results 

NSGA II has been used to obtain the highest TC along with the lowest viscosity of Cu/engine oil, 

which was studied by Aberoumand and Jafarimoghaddam [29]. This method demonstrates the 

effectiveness of the optimization algorithm. For the proposed optimization problem, the 

temperature (T) and SVF (φ) of nanoparticles are considered as design variables. The nanofluid 

TC and viscosity objective function was modeled using experimental data and RSM with a 

regression coefficient higher than 0.99. In addition, the powerful NSGA-II algorithm with an initial 

population of 20 was also used for implementing optimization. After implementing the 2-objective 



optimization process, a set of non-dominant results was obtained on the Pareto front and has been 

presented in Fig.8. According to the Fig, by maximizing an objective (TC), the other objective 

(viscosity) will be minimized. This often happens in multi-purpose optimization. As shown in 

Fig.8, all Pareto front points are optimal and have no advantage over each other. Researchers can 

choose any of the points according to their needs. According to the results, the highest TC occurs 

at higher temperatures and higher SVFs. Table 5 has presented the optimal results by the RSM. 

Fig.7. Pareto optimal front. 

Table 5. Optimum points of the Mo-O. 

Phi (%) T (C) K (W/m.k) V (cp) 

0.957431 97.16299 0.162439 37.38207 

0.555087 99.31627 0.154952 27.5083 

0.957431 97.16299 0.162439 37.38207 

0.546184 98.7815 0.154972 28.39495 

0.767292 99.44144 0.155063 30.53843 

0.929409 99.391 0.160527 35.1116 

0.889053 99.36374 0.158441 33.80149 

0.872066 99.29476 0.157726 33.35816 

0.94301 99.23315 0.161372 35.72898 

0.903984 99.38909 0.159147 34.2524 

0.856064 99.37055 0.15713 32.81669 

0.827335 99.42164 0.156246 31.98123 

0.956431 98.84155 0.16229 36.50333 

0.842785 99.40074 0.156693 32.41547 

0.949169 99.03219 0.161785 36.1062 

0.802163 99.12696 0.155652 31.71847 

0.915414 99.37931 0.15974 34.64061 

0.918809 99.32004 0.159927 34.80945 

0.787064 99.40952 0.155363 31.01785 

0.797901 99.42636 0.155564 31.24707 

 

 

6. Conclusion 

In this research for reducing viscosity and increasing TC, optimizing the thermophysical properties 

of Cu/engine oil is investigated. In this optimization, the objective functions are performed with 

the experimental data of viscosity and TC of the nanofluid using RSM. Two equations have been 

presented for predicting TC and viscosity data that can predict their performance well. Also 

NSGA-II method has been introduced to investigate the optimal response of viscosity and TC. 

According to the results the highest TC and the lowest viscosity occurs at maximum of temperature 



and SVF. Among the results, those with the highest TC and the lowest viscosity are referred to as 

optimal points. 
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