A variable-order fractional p(-)-Kirchhoff type problem in RY
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Abstract

This paper is concerned with the existence and multiplicity of solutions for the following variable
s(+)-order fractional p(-)-Kirchhoff type problem

v(x) — v(y)[PEy) . _
(//p O dwdy) (—A)00(@) + [o(@) P %u(2) = pg(e,v) nRY,

|xfy‘N+p z,y)s(z,y)
v € W00

where N > p(z,y)s(z,y) for any (z,y) € RN x RV, (—A):&; is a variable s(-)-order p(-)-fractional
Laplace operator with s(-) : R2V — (0,1) and p(-) : R?N — (1,00), p(x) = p(x,z) for z € RV,
and M is a continuous Kirchhoff-type function, g(z,v) is a Carathéodory function, u > 0 is a
parameter. We obtain that there are at least two distinct solutions for the above problem by
applying the generalized abstract critical point theorem. Under the weaker conditions, we also
show the existence of one solution and infinitely many solutions by using the mountain pass lemma

and fountain theorem, respectively. In particular, the new compact embedding result of the space
WeO2O(RN) into ngx)) (RY) will be used to overcome the lack of compactness in RY. The main
feature and difficulty of this paper is the presence of a double non-local term involving two variable

parameters.

Keywords: Kirchhoff-type; p(-)-fractional Laplacian; Variable-order; Abstract critical point
theorem.

2010 MSC: 46E35; 47G20; 35R11; 35J60.

1 Introduction and main results

The evolution of the Laplace operator has taken on a variety of forms so far. Many researchers devoted
themselves to the integer order Laplace operators. For instance, Tang et al. [32] dealt with the existence
of ground state sign-changing solutions for a class of Kirchhoff-type problems involving the Laplace
operator in bounded domain. In [33], Tang and Chen obtained a ground state solution of Nehari-
Pohozaev type and a least energy solution under some mild assumptions f in the whole space R3.
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T Corresponding author at: College of Mathematics, Changchun Normal University, Changchun, 130032, P.R. China.



Then, the integer order Laplace operators were extended to cases involving the p-Laplace operator and
p(z)-Laplace operator, that is A = A, == Ap,). We still give an example in bounded domain
and in the whole space respectively. With the help of a direct variational approach and the theory
of the variable exponent Sobolev spaces, the existence and multiplicity of solutions to a class of p(z)-
Kirchhoff-type problem with Dirichlet boundary data was proved in [6]. In [19], the existence and
multiplicity of solutions for a class of p(x)-Kirchhoff type Schrédinger problems in RV was obtained by
means of abstract critical point results. For more about the eigenvalue problem of this operator, we
recommend the readers to refer to [25, 31].

In recent years, with the needs of the real world in physics, economics, biology, computing, see [18, 21],
more and more mathematicians began to study a non-local operator, i,e., the fractional Laplace operator
(=A)?®, due to the interest amount of attention towards partial differential equations with nonlocal
problems, especially we encourage readers to pay attention to this famous book [27], subsequently the
non-local operator was further extended to the fractional p-Laplace operator and fractional p(z)-Laplace
operator, that is (—A)® = (-A); = (—A);(z). Again, we point out that Rossi et al. [17] extended
the Sobolev spaces with variable exponents to include the fractional case, they established a compact
embedding theorem of these spaces into variable exponent Lebesgue spaces. As an application, they
studied the existence and uniqueness of a solution for a nonlocal problem involving the fractional p(x)-
Laplacian. In addition, in the whole space, the existence and multiplicity results for a class of fractional
p(z, .)-Kirchhoff-type problems was established by using many kinds of methods in [2].

On the other hand, the fractional variable order derivatives proposed by Lorenzo and Hartley in
[22] were used to introduce different processes of nonlinear diffusion. Subsequently, a new kind of
variable-order fractional operator is established in various problems, such as Schrédinger equations,
Kirchhoff equations, Choquard equations, etc. From this, a great attention has been devoted to the
study of fractional variable order spaces. In particular, see for example, Xiang et al. in [39] considered
a multiplicity result for a Schrédinger equation driven by the variable s(-)-order fractional Laplace
operator via variational methods. Zhang et al. in [35] investigated the existence of infinitely many
solutions for a kind of Kirchhoff type variable s(-)-order problem by using four different critical point
theorems. In [7], Biswas et al. firstly proved a continuous embedding result for the functions in fractional
Sobolev spaces with variable order and variable exponents and under the Amvrosetti and Rabinowitz
condition ((AR)-condition for short; see [20]), they obtained existence and multiplicity of solutions for
the following problem

(~8ute) = Mu()P - 2ute) + ([ Ty ) o) i

u(z) =0 in RV \ Q.

S~

We refer the interested readers to [23, 43] about variable-order problems.

However, as far as we know, there are few results concerned with the Kirchhoff type problem driven
by a p(-)-fractional Laplace operator with variable s(-)-order in the whole space RY. Inspired by above
works, in this paper, we are interested in the existence and multiplicity of solutions for the following
new double variable order fractional Kirchhoff type problems in R :

[o(@) — v(y)Pe o (o)
( / / o Tl -y (ry)da:dy> (=800 + @@ o(@) = pgloo), )
ve wst) )

where N > p(z,y)s(x,y) for any (z,y) € RY x RY, with s(-) : R?Y — (0,1) and p(-) : R*V — (1, 00),



s

p(z) = p(x,z) for € RV and p is a real parameter. Here, the main operator (—A)p

)) is the fractional

—~

variable s(-)-order p(-)-Laplacian given by

AV () — |u(z) — u(y) P2 (u(z) — u(y)) N
( A)p(_)u(a:) = P.V. /RN [z — y Vs dy, x €RY,

along any u € C$°(RY), where P.V. denotes the Cauchy principle value.
It is worth mentioning that Kirchhoff in 1883 (see[15]) presented a stationary verion of differential
equation, the so-called Kirchhoff equation
821) Po € 2 v
— =0 1.2
Por ( [ 2L ’ | )8x2 ’ (12)

where p, [, e, L, py are positive constants which represent the corresponding physical meanings. (1.2) is
a generalization of D’Alembert equation. From then on, much interest has been focused on combining
this model with many kinds of problems due to its nonlocal nature; Such as, the existence, multiplicity,
and concentration of solutions on (critical) Kirchhoff equations, Kirchhoff system and so on. We
only present some very new literature for readers to refer, for instance, Fiscella and Valdinoci firstly
proposed a critical Kirchhoff type problem involving a nonlocal operator in [10] and Radulescu et al.
[40] considered the existence and multiplicity of solutions for a Schrédinger-Kirchhoff type problem
involving the fractional p-Laplacian and critical exponent in RY. By means of some appropriate
variational arguments, Ambrosio et al. [1] investigated the existence and concentration of positive
solutions for a class of fractional p-Kirchhoff type problem R?®. Xu et al. [36] studied a Kirchhoff-type
system with linear weak damping and logarithmic nonlinearities. For more on Kirchhoff, we can also
refer to the literature [5, 11, 13, 14, 28, 29, 41, 42, 45].
In order to simplify the notation, throughout this paper, we denote

- + - +
S = min ST S = max S(x = min X = max X
o (2, 9), L (,y), P (xy)€R2Np( ), P o p(z,y),

0= min g(@). pie) = o)

2€RN N sap@ W P@) =pa), 5@ = s ),

C(RY) = {qu(RN) 1 < q(x) for all :ce]RN}.

We consider problem (1.1) under some mild assumptions. For this, we assume that M : RS’ — Rt is
a continuous function satisfying conditions:

(M) There exists 6 € [1, (p%)~/pT) such that
tM(t) < OM(t) for any te R{,
where M (t fo
(Ms) For any T > 0 there exists m = m(1) > 0 such that

M(t)>m forany t>T.



A classic example of the Kirchhoff function M satisfying (M) — (Ma), is given by
M@E)=a+bt"1 ab>0, a+b>0, t>0

and
Be(l,00) if b>0,

=1 if b=0.
(M3) M :R$ — RY is a decreasing function.

Here, let us consider another example that the Kirchhoff function satisfies conditions (M7) — (M3), is
given by

1

While, let a : RV — R be a function satisfies the following conditions:
(Ay) a € L"@)(RN) such that a(z) > 0, where a € C (RV);
(A2) a € C(RN x R) such that a(x) >0 for all z € RV and a # 0.

We all know that the (AR)-condition is an important content that the functional associated with the
equation satisfies the Palais-Smale condition, which provides a guarantee for ensuring the boundedness
of the Palais-Smale sequence. However, this condition is sometimes restrictive about several nonlin-
earities, so we let g satisfy a weaker condition than the (AR)-condition; see [12, 24, 26]. Accurately,
g:RY xR — R is a Carathéodory function and is supposed to satisfy the following assumptions:

(G1) Let p,g € CL(RN) and 1 < p~ < p(x) < pT < ¢~ < q(x) < ¢ < pi(z) for all z € RY, there
exists a(x) given by (Aj) such that

l9(z, )] < a(@)|t]1® 1 for all (z,t) € RY x R;

(G2) There exist A € (fp™,00) and a(z) given by (A1) such that
MG (z,t) < tg(z,t) + a(x)[t]P” for all (z,t) € RN x R,
where G(x,t) = fgg(l',T)dT;

(G3) limpy_q i‘(é’i) = 0o uniformly for almost z € RY;

(G4) g(x,—t) = —g(z,t) for a.e. z € RN and t € R;

(G5) There exists a constant A\ > 1 such that AG(z,t) > G(x,vt) for (z,t) € RY x R and v € [0, 1],
where G(z,t) = g(x,t)t — pTG(z,1).

Last but not least, we suppose that s(-) : R2¥ — (0,1) and p(-) : R?Y — (1, 00) are continuous functions
fulfilling

(H) 0<s  <stT<l<p <ph;

(Hs) s(-) and p(-) are symmetric, that is, s(z,y) = s(y,z) and p(x,y) = p(y, ) for any (z,y) € R,



We can give the definition of (weak) solutions for problem (1.1). The space X will be introduced in
the next section.

Definition 1.1. We say that a function v € X is a weak solution of problem (1.1), if

// [o(2) = v(y) P (@) — v(y)) (6(2) —90) 4y
R2N

—2 = xr,v X
+ [ @ P 2o@)oade = [ gla,0)od

(@) — vl
//RZN p T y |1‘ ‘Neracy (my)dfﬂdy

Now, we state our main results. The functional I, will be covered in the section 3.

Theorem 1.1. Let N > p(z,y)s(x,y) for any (z,y) € RN xRN where s(-) and p(-) verify (H1)— (Hz).
Assume that (My) — (Ms) and (G1) — (G3) are satisfied. Then, there exists p* > 0 such that problem
(1.1) admits at least two distinct weak solutions in X for any u € (0, u*).

Theorem 1.2. Let N > p(z,y)s(x,y) for any (z,y) € RN xRN, where s(-) and p(-) verify (Hy)— (Hz).
Assume that (My)—(M3), (G1), (G3) and (Gs) are satisfied. Then, there exists pi* > 0 such that problem
(1.1) admits at least two distinct weak solutions in X for any p € (0, u*).

Theorem 1.3. Let N > p(z,y)s(x,y) for any (x,y) € RN xRN where s(-) and p(-) verify (Hy)
Assume that (My) — (M2) and (G1) — (G3) are satisfied. Then, for any p > 0 problem (1.1

nontrivial weak solution.

Theorem 1.4. Let N > p(z,y)s(x,y) for any (z,y) € RN xRN where s(-) and p(-) verify (Hy)— (Hz).
Assume that (M) — (M3), (G1),(G3) and (G5) are satisfied. Then, for any p > 0 problem (1.1) has a
nontrivial weak solution.

Theorem 1.5. Let N > p(z,y)s(x,y) for any (x,y) € RN xRN where s(-) and p(-) verify (Hy)
Assume that (My) — (Mz) and (G1) — (Ga) are satisfied. Then, for any p > 0 problem (1.1
sequence of nontrivial weak solutions {v;} in X such that I,,(vj) — 0o as n — oo.

Theorem 1.6. Let N > p(z,y)s(x,y) for any (z,y) € RN xRN where s(-) and p(-) verify (Hy)— (Hz).
Assume that (My) — (M3), (G1) and (G3) — (Gs) are satisfied. Then, for any u > 0 problem (1.1) has
a sequence of nontrivial weak solutions {v;} in X such that I,,(vj) — 0o as n — oo.

for all p € X, where

—(Hz).
) has a

—(Hz).
) has a

The novelty of this article is that the problem (1.1) is studied in the whole space for the first time and
in order to overcome the lack of compactness in the whole space RY | a new compact embedding theorem
is established which is different from fractional p(z, .)-Kirchhoff-type cases. Moreover, the proof method
of Theorem 1.1 and Theorem 1.5 is new in setting of variable-order fractional p(z, .)-Laplacian. To the
best of our knowledge, there are no works on double variable order fractional Kirchhoff type problems
without the (AR)-condition. Thus, our main results generalize reference [2, 5, 9, 38, 44] in several
directions.

The paper is structured as follows. In Section 2, we first introduce some preliminary knowledge on
variable exponent Lebesgue spaces and variable-order fractional Sobolev spaces with variable exponent,
and then we establish a compact embedding of the space W*()2()(RN) into ng) (RM). In Section 3,
we verify the compactness condition. In Section 4, we prove Theorem 1.1 and Theorem 1.2 by using
the abstract critical point theory. In Section 5, with the help of mountain pass lemma and fountain
theorem, we give the proof of Theorems 1.3-1.4 and Theorems 1.5-1.6.



2 Functional analytic setup and preliminaries results

In this section, first of all, we review some basic information about the variable exponent spaces and
the variable order fractional Sobolev spaces. Here we can refer the recent monograph about variational
analysis of the problems with variable exponents by Radulescu and Repovs [30]. Then, we give some
basic lemmas and a new compact embedding theorem that will be used in this paper.

For any ¢q € C’+(RN ), the variable exponent Lebesgue space is

LI@(RNY) = {v :RY — R is measurable /
RN

. x)|a(@)
= inf B s <1y
lollgzy = in {7 >0 /RN ) o I

Then (LI@(RN), | - l4¢)) is a separable reflexive Banach space, see [16, Theorem 2.5 and Corollaries
2.7 and 2.12] and [8].
Let ¢ € Cy(RY) be the conjugate exponent of g, that is

L+~L:1 for all z € Q.

q(z)  q(z)
Then we have the following Hélder inequality, whose proof can be found in [16, Theorem 2.1].

Lemma 2.1. Suppose that v € Lq(')(RN) and u € LIO(RN); then

| [ o] < (= + =)ol el < 2ol ey

lo(z) 1@ de < oo},

with the Luxemburg norm

A very important role is played by the modular of the LI®)(RN) space, which defined by

ey (v) = [ lo(a) ",
RN
we have the next crucial result given in [7].

Proposition 2.1. Let v € LIO(RYN) and {v;} € LIO(RYN), then

(1

l|lv <1(resp. =1,> 1) & 04y (v) < L(resp. = 1,> 1),

Hq(')

2) v

. -
oy < 1= [vlldy < 0g0)(0) < [0l

_ +
oy > 1= 19ll] ) < eqey(0) < NI0ll} ),

) Jim [lvjflge) = 0(c0 )‘:’}H& 2q((v5) = 0(0),

)

(2)

3) v
(4)

(5) le |vj = vllgey =0 < ]11)1110 0q(y(vj —v) = 0.

Lemma 2.2. (see, [2, Lemma 2.2]) Let |v|¢®) € LA®)/a@)(RN) where ¢, 8 € Cy (RY) and ¢(z) < B(z)
for all z € RY, then v € L#®)(RYN) and there exists a number g € [¢~, ¢t] such that

[y = (o)™

Blx)/q(z



The variable-order fractional Sobolev spaces with variable exponent via the Gagliardo approach is
defined by

_ 1rs()p() (RN _ (o) (RV) v(y) Py)
X=W (R™) {v e LPY(R //RQN v xy)’x — y’Ner(x’y)S(I’y) dxdy < oo for some v > 0
with the norm ||[v]|x = [[v||5@) + [v]s(),p(.)> Where

. . v(z) — v(y) Py
[U]s(~),p(~) = inf {7 >0: //Rw "}/p(x’y)|l’ — y|N+p(z7y)s(m7y) dxdy < 1

is a Gagliardo seminorm with variable-order and variable exponent.
The space X is a separable reflexive Banach space, see [4, 7]. We define the convex modular function

s() .
%) : X — R by

) ()P dxdy + |v() P da
) R2N |x — |N+p(x,y)s(a: y) RN ’

whose associated norm define by

ol = ol =int {5 > 02430 (2) <1,

which is equivalent to the norm || - || x. Note that the norm || || will be used in this paper. Then, similar
to Proposition 2.1, we have the next result of [2, Proposition 2.3].

Proposition 2.2. Let v € X and {v;} C X, then

()

4

(1) |lvllx < 1(resp.=1,>1) < QS()(U) < 1(resp.=1,>1),
@) [olx <1= ok <@ < llol%

(3) Iolx > 1= ol < ol @) < |lvll%

(4

@wmu=m>@hm@
(5) lim [Joj —vlx =0 & Jim QSE
Jj—

Lemma 2.3. (see, [4, Theorem 3.1]) Let p(-) and s(-) satisfy (H;) — (Hz2), with N > p(x,y)s(z,y) for
any (z,y) € Q x Q. Let h € C;(Q) satisfy

1 <h™ =minh(z) < h(z) < pi(z) = Np()

——— __ forany z € ,
ren N = p()s(2) '

where p(z) = p(z,x) and 5(z) = s(z,z). Then, there exists a positive constant Cy, = Cp,(N, s,p, h,Q)
such that
[vllney < Chllvllwsorpe o)

for any v € W*()P()(Q). Moreover, the embedding W*")*()(Q) — LM (Q) is compact.



Lemma 2.4. (see, [4, Theorem 3.2]) Let p(-) and s(-) be uniformly continuous functions satisfying
(Hy) — (H>), suppose that h € C; (RY) is a uniformly continuous such that p(z) < h(z) < p:(zx) for
z € RN. Then, the embedding X — L")(RV) is continuous.

For ¢ € C+(Q) and a satisfying (As), we define
LIE(RN) = {v :RY — R is measurable / a(z)|v(z)| @ dz < oo}
RN

with the norm

. v(x) |ale)
= = a = . S .
ol g1 vy = el nﬁ{v:>0L4Na@ﬂ | 1}

It is obvious that g4 = [pw a(z)|v(z)|9®) dz is a semimodular, (see, [7, Definition 2.1.1]). Furthermore,

Ly (RY) is a Banach space (see [7, Theorem 2.3.13]), which is separable and reflexive (Similar to the
proof of Lemma 3.4.4 and Theorem 3.4.7 in [7], we can obtain this property).

Lemma 2.5. (see, [34, Lemma 2.1])

lim ||vj][g,a = 0 < lim g44(v;) = 0.
—00 Jj—00

We note that the embedding X «— L) (RN) is no longer compact, which makes it difficult to verify
the Palais-Smale condition. The embedding result below provides a new tool to overcome this difficulty
and is very critical in this paper.

Lemma 2.6. Let p(-) and s(-) satisfy (H1) — (Hz). Let ¢ € C+(RN) with 1 < ¢~ < q(x) < ¢ < pi(x)
for all x € RN, Suppose that (A1) holds with h fulfilling
_ h(z)q(x) N
< =72 < p* i R™.
pla) < Bo) = 0™ < pifa) for all o €
Then, the embedding X — Lg(x)(RN) is continuous. Furthermore, if 3% < p%(x) for all x € RN. Then,
X — L3 (RN) is compact.

Proof. Notice that our work space X is different from the work space X in [2]. Thus, we only need
to make a slight modification, that is, according to Lemma 2.4, we know that the embedding X —
LM (RN) is also continuous. Next, our discussion is exactly the same as Lemma 2.4 in [2] by combining
with Lemmas 2.1-2.3, which we omit here. 0

Lemma 2.7. Let p(-) and s(-) satisfy (Hy) — (Hz). Let ¢ € C+(RYN). Suppose that (A1) holds. Then
for any v € X there exist two positive constants q € [q,q"| and Cyq such that

Qq7a(v) S qua ||U ||E'

Proof. Tt follows from Lemma 2.6 that the embedding X — Lg(z) (RM) is continuous. So, for the rest,
our argument is the same as Lemma 2.5 in [2]. O



Now, we study the functional I : X — R, defined by

1L u(@) —o(y) =) / 1 B(z)
I = - P(T) 1.
() / /Rw p(x,y) o — y|Ntp@y)s(z.y) dady + r2n D(a) [ole) [ de

We conclude this section presenting a technical result useful to study the compactness condition. The
proof of this proposition can be given arguing similarly to [2, Lemma 2.6] and [3, Lemma 4.2], hence,
its proof is omitted.

Proposition 2.3. Let p(-) and s(-) satisfy (H1) — (Hz). We consider the following functional £ : X —
X*, with X* the dual space of X, such that

(L(v), d) =(I (v), ) (2.1)
v(x) — v(y)PEV 2 (v(x) — v x) — _

for any v, ¢ € X. Then:

(i) L is a bounded and strictly monotone operator;

(i) L is a mapping of type (S4), that is, if v; = v in X and limsup L(v;)(v; — v) <0, then v; — v
Jj—00

m X,

(i1i) L : X — X* is a homeomorphism.

Throughout the paper, for simplicity, we use {C;, i € NT} to denote different non-negative or positive
constant.

3 Compactness condition
Let us consider the following functional associated to problem (1.1), defined by Z,, : X — R
T,(v) = A(v) — uB(v),

where

A) = T (8,0, (0)) + /R e, B = [ Gl

Clearly, according to Lemma 2.6, Proposition 2.3 and (G1), we know that Z, is well defined. By
the continuity of M yields that M € Cl(R,R), by Proposition 2.3 we get that Op(y(v) and v +—
Jgon (1/B(2))|v(2)[P@dz are in C1(X,R). Since g : RY x R — R is a Carathéodory function, then
v [pn G(z,v)dz is also in C*(X,R). Thus Z,, is of class C' on X. Moreover, we have that its Fréchet
derivative is given by

/ v(z) — v(y)|PEY2(v(z) — v ) —
03000 =31 (ngo0) [ L2 E00) o0 0l) 0D o

M |z — y|N+pEy)s(z.y)

+ [ @PEo@eta)d — [ ot vota)da

RN

for all v, ¢ € X. Therefore, the weak solutions of problem (1.1) are the critical points of Z,,.



Definition 3.1. We say that Z,, fulfills the Cerami condition at the level ¢ € R if any sequence {v;} C X
satisfying

{Z.(vj)} is bounded and (1+ HU||)||I;L(U])|

x> —0 as j— oo, (3.1)

possesses a convergent subsequence in X .

Lemma 3.1. Suppose that (M) — (Ms), (G1) — (G3) and (Hy) — (H2) hold. Then, for any u > 0 the
functional Z,, fulfills the Cerami condition at the level c € R.

Proof. Let {v;} be a Cerami sequence in X fulfilling (3.1), which implies that

sup |Z,(vj)| < Cy and (Z;(vj),vj) = o(1), (3.2)

where o(1) — 0 as j — oc.

Step 1. We prove that the sequence {v;} is bounded in X. For this purpose we make use of contra-
diction, it is supposed that |[vj]] — oo as j — oco. We define a new sequence {z;} to be denoted by
zj = vj/||vj||. Then, it is clear that {z;} C X and |z;|| = 1. Without loss of generality, according to
the reflexivity of the space X, there exists a sub-sequence which is still expressed as {z;}, such that

zj = zin X, zj — 2z in LIO(RY), zj(z) — 2(x) ae. in RY (3.3)

for 1 < r(z) < pk(x) thanks to Lemma 2.6.
From Proposition 2.2, (M), (Ma2), (G2) and (3.2), we have

1 1
Ch+ XO(l) ZIM(U]‘) - X<Iy(vj)avj>
o~ ' [0 () — v (y) [P
=M <5p<~>(va)) / /Rw 7 — |N+p<x,y)s(x,y) dudy
— / G( .)_l( ) d+/ R ;P dz
W Jo \ G 0) = Xt v)v; ) d m) A

1 ) ' 1 v (%) — v;(y)[P p(=y)
2 M (3500 (09)) 3y (0) = M (851 (03 //RQN \x_yymp Vst 0

1 ) 1 B (3.4)
— 'u/sz <G(w,vj) — )\g(x,vj)U]) dx + /RN <p(:c) - )\> |v;[P@) da
_ (z,
= (9;+ N /1\> )(3) / /RQN }ZJ_ yN}r)zj)(:v yZmZ) dedy
L (G- i) P @as =2 [ oo da
> (g = 3 ) min (Ll = Sl
Dividing both sides of this inequality (3.4) by ||v;||P and let j — oo, we have
1oy i (3.5)

~— (A= 0pt)min{l, m}

10



On the basis of (3.5), we deduce that z # 0. Set Q1 = {z € RV : z(x) # 0}.
On the other hand, by (M3), Proposition 2.2 and (3.2), we have

C1>T,(vj) = M(ép(.)(vj)> + /]RN (1)]vj]p(x)dx — u/ G(z,v;)dx

> md +/ 7Up(xdx— / G(z,v;)dx
()() ]RNp( )|]’ J)

(3.6)
[vj () — v;(y) P 1P(a) ,
/ /RQN = |N+p(x,y> o) W E /RN oy e = /RN Cla,v;)de
min{l,m -
> %nwnp —i [ | Glavy)da,
p RN
Since |Jvj]| — oo as j — oo, we get
min{1,m} -
> rm_ ,
o G(z,v;) p leAl L (3.7)
as j — oo. Moreover,
Zu(vj) = M<5P()(U])> +/ )|U3|p Jdw — / G(z,vj)dx
SM(é (vj) —|—/ v;[P®)da — p / G(z,vj)d
Thus
— 1 _
0 (5,00(0)) + = / o, P dz > / G, v))dz + T, (v;). (3.9)
b JrN RN

It follows from (Gs3) that there exists g > 1 such that G(z,t) > [¢|%" for all z € RN and |t| > r¢. From
(G1) and g is a Carathéodory function, we know that there exists Cy such that |G(x,t)| < Cy for all
(z,t) € RN x [~rg,70]. Hence, there is a real number Cy such that G(z,t) > Cj for all (z,t) € RY x R,
So,

G(x, 'I}j) - Co

— - >0
M (8,0) (7)) + 7= fan I @
for any # € RY and for all j € N. It follows from (3.3) that |vj(x)| = |z;(z)|||v;]| — oo as j — oo for
any x € ;. In addition, by (G3), for all z € Q;, we obtain
hm — G(‘T?lv]) —
I M (30 (v )) + 5= Jaw 0P d
> ,hm _ G(xévj) : -
J—=0 M(l) (1 + (5p(4)(vj)) ) + e fRN ‘Uj‘p(z)dx
> lim — G, vj) " : " (3.9)
7= M) (14 o ) ol + & flosl1o
. ) -
= lim —— |2 ()
j—00 (M(l) (1 + o )9) + p%) ‘Uj‘9p+
= OO,

11



where M (1) < M (1 + /%) for all . € RT Because if 0 < ¢ < 1, then M (¢ = [y M (t)dt < M(1), and if
¢ > 1, then M( ) < ( ). According to (3.7)-(3.9) and Fatou’s lemma, we obtain

l = lim inf fRN (z,v;)d > liminf/ G, vy) dx
pog—eo pi Jon G(z,v5)de + I,(vi) — e Jrw M((Sp(.)(vj)) + p%fRN v |P@) dae
> lim inf — Gz, v)) — dr — lim sup/ — Co — dx
j—oo Ja, M(ép(,)(vj)> + pi_ Jon |v;[P@)dz j—oo JOy M<5p(.)(vj)> + pL_ Jan [v;P@da
= lim 1nf/ — Glw,v) = Co dx (3.10)
j—oo Jo, M(dp()(vj) + p% f]RN "UJ‘P( dzx
> / liminf — Glz,v5) — Co dx
0, 100 M(ép()(v])> + oL o [0 P@ d
:/ lim inf — G, vy) d;v—/ lim sup — Co — dx
@ e M<5p( )(UJ)> + p% S~ |vj|P@) daz Q1 j—oo M(dp(.)(vj)> + p*l, Jon [v;[P@) dz

= 00,

which is a contradiction. So, |2;| = 0, this is impossible due to (3.5). Therefore, {v;} is bounded in X.
Step 2. We will show that {v;} converges strongly in X. It follows from Lemma 2.6, combined with
the reflexivity of X, that there exists a subsequence, still denoted by {v;}, and v € X such that

v; —=v in X, v; — v in LIO(RN), vi(z) — v(z) ae in RY (3.11)

for any g € C+(RY), with 1 < g(x) < p%(x) for z € RY. Using (G1), we get

< 20" 1 (/ a(@)fv; — "W de +/ a(@)[o] 7oy - ”|d$> :
RN RN

It follows from (3.11) that [py a(z z)|v|9®) " y; —v]dz — 0 as j — co. Again by Lemma 2.5 and strong
convergence of sequences, we also obtain [px a(x)lv; — v]?®)dz — 0 as j — oo. So,

lim [ g(z,vj)(v; —v)dr = 0. (3.12)
j— Jo
In view of (3.11), we get
(Z,,(vj),v; — v) — 0. (3.13)

Thus, we get
vj () — v ()P 2 (v —v vi(z) — v —(v(z) —v
Q; = p( () //RQN v i ()] (v (@) = v (®)) ((v;(2) = v;(y)) = (@) =vW) ;o

‘x—y‘N‘i’p )s(z,y)

—i—/RN v () PO =20, (z) (v (z) — v(z))dz — 0 as j — oco.

12



By (M) and (2.1), we have
Q; > m(L(vj),v; —v).
It follows from lim @; = 0 and (3.11) that

Jj—oo

v; =~v€X, limsup(L(v;)—L(v),v; —v) <0, L isa mapping of type (Sy),
Jj—o0
which imply that v; — v in X, thanks to Proposition 2.3. Consequently, Z, satisfies the Cerami
condition. O

Lemma 3.2. Suppose that (M) — (Ms), (G1) — (G2), (Gs), and (Hy1) — (Hz) hold. Then, for any
p > 0 the functional Z,, fulfills the Cerami condition at the level ¢ € R.

Proof. Take {v;} be a Cerami sequence in X fulfilling (3.1). Then, (3.2) holds. Thanks to Lemma
(3.1), we only need to show that {v;} is bounded in X. For this, discussing by contradiction, it is
supposed that ||v;|| > 1 and ||v;|| — oo as j — oo, define z; = v;/||v;||. Then, up to a subsequence, still
denoted by z;, we get

zj =z in X, zj — z in LIO(RYN), zj(z) — z(z) ae. in RY, (3.14)

for 1 < g(x) < pi(z) thanks to Lemma 2.6. Take Oy = {z € RV : 2(z) #0}. According to the
same argument as in Lemma 3.1, we know that || = 0, thereby, z(z) = 0 for almost all z €
RN, Because I,(tv;) is continuous in ¢t € [0,1], for each j € N, there exists ¢; € [0,1] such that
L,(tjvj) := maxyepo 1 I, (tvj). Suppose that there exists a positive sequence {(,} of real numbers such
that lim, .o ¢, = 00 and (, > 1 for all n. Clearly, we can get ||(,2;|| = ¢, > 1 for all n and j. Let
n be fixed. On the basis of the continuity of the Nemytskii operator, we have that G(x,(,2;) — 0 in

LYRYN) due to z; — 0 in Lg(')(RN) as j — o0o. Therefore,

lim G(z,(nzj) = 0. (3.15)
]—)OO RN
According to ||v;|| — oo as j — oo, we have ||v;|| = (, > 1 for enough large j. Hence, from (3.15) and

(Ms), we obtain
Tultsts) 2 Q;\)‘%@W>

— 1 B
= M<5p(~)(<nzj)> + /RN %anj\p(x)dx - M/ G(z,Cnzj)da
> mdyp()(Gnz;) "’/R e )’anﬂp( dr — / G(z, Cnzj)de

|CTLZ] CnZ]( )|p (@) 1 |P(x) .
//RQN P |N+p PYRTIER dzxdy + +/RN |Cnzi| P\ da _H/RN G(, Gnzj)dx

mln{l m}

> By 7 —u/ G (@, Cozj)d

min{1,m}
2p*

<
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as j — oo. In what follows, taking j — oo and n — oo , we have

lim Z,,(tjv;) = oo. (3.16)

Jj—oo

It follows from (3.2) and Z,(0) = 0 that t; € (0,1) and (Z (t vj),tjv;) = 0. So, from (Msz) and (G5),
for all sufficiently large j, we obtain

1 1 1
qu(tjvj) = XIM(tjvj) +)\< (t v]) tj v]> +O(
1 N 1 [t (x) — tyv; ()Y
=M (8pc t507)) - a0 E05) //RN |x — le+p rste) 0
1 1 1 ()
g 3Gl tjv;) —ﬁg(x,tju]-)tjvj do + ) [tjv P\ dx
1 _
L . |P(2)
— /RN 1t0;P@d + o(1)
1~ " 1 [tjv5 () — tjv;(y) [P
= XM(ép(')(tJUJD p )\ )(ivs) //R2N |z — \NJ“D e
1 1 1
p+)\/ gxtv])d:c+)\/ ()|tvj‘ dx — +)\/ ]tv]| d$+0()
— . |vj(@) — v;(y y) [Py
< M(%()(%)) - ‘519( (v5) //R?N |z — ‘N+p z,y)s(z,y) dudy

p 1 !
e Qx,v'd:v—l—/ v'px)d:v—/ 0 P®dz + o(1
+ /RN (&, 3) RN p(:(;)’ i p+ & .
. 1 [ (%) — v; ()P
< M (8 (vy)) - FM ) (49) //RN - y\N” DEETR

1 1 _
— G(z,v;) — —g(z,v d$+/ ;[P x—/ 0:[P®dz + o(1
w [ (G = Satwn ) dot [ P@de- [ 0

1 1
= 3 Zulvj) = E(%(vg‘),vﬁ +o(1)
<C;
as j — 0o, which contradicts (3.16). The proof is completed. O

4 Proof of Theorems 1.1-1.2

The proof of Theorems 1.1-1.2 are based on the application of an abstract critical point result for
an energy functional fulfilling the Cerami condition, which can be found in [19]. For the reader’s
convenience, we now state the abstract critical point theorem.

Theorem 4.1. Let X be a real Banach space and consider two locally Lispschitz continuous functionals
A, B: X — R. Assume that A is bounded from below and A(0) = B(0) = 0. Set n > 0 be fized, and it

is supposed that for each
n
1% € FO = 0, )
( SupveA1<(—oo,n>>B(”>>
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the functional Z,, = A — uBB fulfills the Cerami condition for any p € Ty and is unbounded from below.
Then, for any p € L'y, the functional Z,, has two distinct critical points.

Proof of Theorem 1.1. It is clear that A is bounded from below and A(0) = B(0) = 0. According
to (G3), for any C5 > 0, there exists a constant Cy > 0 such that

F(x,t) > Cst|?" (4.1)

for |t| > C4 and for almost all z € RY. Let v € X\{0}. Then, for enough large ¢ > 1, by (4.1) we have

T, (tv) = M(ap(,)(tv)> +/ L

rN P(7)

1 Bz
< M(1) (5p(.)(tv))9 + p— /RN |tw|P@) da: — ,u/RN G(z,tv)dx (4.2)

M(1) o 1 _ ‘
opt 0
< |t|% <(p_)9 (0py(0))" + — /RN |v|p(z)dx—,uC’3/RN |v|P )dm,

|tw[P@) d — u/ G(z,tv)dx
RN

p

where 0 is given in (M), thanks to M (:) < M (1) for . > 1. If Cj is large enough, then we infer that
Z,(tv) — —oo as t — oo. Therefore, Z,, is unbounded from below. It follows from (G1) and Lemma 2.7
that

Bw) = [ Gla,v)de < / UL) | ) 1)
RN RNy q(7)
1 1 - 1 I _
< —00a(0) < —Challv]|? < —Cyemaxy [[v]|2, [|v]|? §, 4.3
< 000(0) < = Cpallol7 < —Coamax {J]*", o]} (4.3)

where C , is given in Lemma 2.7. Take = 1. Then for each v € A1 ((—00, 1)), we have

1

o (sm)” )} - ()

1 p+ p
* 70 I
A P <mm{1,m}>

Denote

Considering (4.3), we get that

+

g

1 + P 1 1
sup B(U) < TCq,a ( .719 >P =—<-.
veA~1((—o0,1)) q mln{17m} K ©

By Lemma 3.1, we know that the functional Z, fulfills Cerami condition for any p > 0. Thus, all
conditions of Theorem 4.1 are satisfied. So, for any p € (0, u*) C I'g, problem (1.1) admits two distinct
weak solutions in X. This concludes the proof of Theorem 1.1. O

Proof of Theorem 1.2. By Lemma 3.2, obviously, this theorem holds. O

15



5 Proof of Theorems 1.3-1.4 and Theorems 1.5-1.6.

Next, we will use the following classic mountain pass theorem to prove our second main result Theorem
1.3.

Theorem 5.1. ([37]) Let X be a real Banach space and Z,, € C*(X,R) with Z,,(0) = 0. Assume that
7, satisfies the Cerami condition and

() there exist a, k > 0 such that Z,,(v) > « for all v € Xy, ||v]| = &;
(77) there exists w € X satisfying ||w| > & such that Z,(w) < 0.

Define
I'={y € C([0,1], Xo) : 7(0) = 0,7(1) = w}.

Then

= inf Z >
W=l gy o) 2 e

is a critical value of Z,,.

Proof of Theorem 1.3. Obviously, according to an argument similar to (4.2) of Theorem 1.1. We
know that (ii) in the mountain pass geometry is satisfied for any u > 0. So it is sufficient to prove the
geometry (i). Indeed, let v € X and p > 0 be such that

-
_ ¢~ min{l,m}\? 77
”'UH =K E <O,m1n {1, ]./Cqﬂ, (W)

with Cy, given in Lemma 2.7. From (M), (G1), Proposition 2.2 and Lemma 2.7, we have

2,(0) 2 W (py () + [ | sl Pde = [ S8 ool

1 - 1
> md —i—/ —— ;[P dz — p— 40 (v
20(03) RN]Kx)|J| o 01a(0)

_ p(z,y) 1 _ 1 =
// [v5(@) — v ()] dxdy + +/ |0, P da — p—Cyal|v]|7 (5.1)
R PT JRrN q

N |z — \N+p z,y)s(z,y)

mm{l m} -
> T g " —u—C v||?
et 1 o~ Caellvl

= min{l, m} K =a>0.
2pt
Here we used the fact ¢~ > p*. Therefore, the condition (i) is fulfilled. Again by Lemma 3.1, we know
that the functional Z,, fulfills Ceraml condition for any p > 0. Moreover, observe that Z,,(0) = 0, from
(G1) we see that v is a strict local minimum for Z,(v). So all conditions of Theorem 5.1 are satisfied.
Consequently, problem (1.1) has a nontrivial weak solution for any p > 0. This ends the proof. O

Proof of Theorem 1.4. Considering Lemma 3.2, it is clear that the proof of this theorem holds. [
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At the end of the paper, in order to prove Theorem 1.5, we use the critical point theory in symmetric
form, i.e., the fountain theorem.

To do this, since X is a reflexive and separable real Banach space, there exist {w;} C X and
{w}} € X* such that

X = span{w; : i € Nt} X* = span{wj : i € Nt}

and

J oo
X' = span{w;}, Yj:@Xi, Zj:@Xi, i=1,2,....

Then, we can introduce the following version of the Fountain Theorem.

Theorem 5.2. ([37]) Consider an even functional Z,, € C*(X,R). Assume that for every j € N, there
exist p; > v; > 0 such that

L) a;:= max Z,(v) <0;
() a; veYy,[lvlix=p; #v)

(I2) bj = inf Z,(v) — 00, j — 00;
veZj||vllx=7;

(I3) Z,, fulfills the Cerami condition for every ¢ > 0.
Then Z,, has an unbounded sequence of critical values.

Lemma 5.1. Suppose that (Hy) — (Hs) hold. Let q € C(Q), with 1 < q(z) < pi(z) for any x € RY,
and denote

& =sup {/ a(@)|v(@)1Ddz . ve Z;, |v|x < 1}, (5.2)
RN
where a fulfills (A1). Then, §§ — 0 as j — oo.

Proof. It follows from the similar argument in [34, Lemma 2.4] that we can get the result of Lemma
5.1. O

Proof of Theorem 1.5. We have noted that the functional Z,, fulfills the Cerami condition by Lemma
3.1 and Z,,(v) = Z,(—v) by (G4). In what follows, we only show that 7, satisfies the condition (/2) of
Theorem 5.2 because the condition (1) is obviously true which can be obtained a discussion similar to
(4.2) of Theorem 1.1 for any v € Y; with ||v|| = 1. Let p > 0. According to (G1), (5.2) and Proposition
2.2, for any v € Z; with [jv]|x > 1, we get

— 1 a(x .
L) 2 M (5y00) + [ —oluP o = [ 480 e
1 = 1
0 P@da — p— 044 (v
)| ]| Mq, 9q, (v)

&N D()
2 My ])Jr/wp(w

vj(z) —v;(y )‘p =) 1 |p(x) L@
=] ‘N+W)S(M)dmdy+p—+ [P gl 6

mln{l,m} ot
v [P = _5. ot
pea 1 el

+ (min{l,m} 1 T
oyt (22 gl

Y
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Define

1

¢ min{l,m}\ ¢ *"
V= ,

2pt pé;

then since 7; — 0o as j — 0o by Lemma 5.1 and the fact that ¢* > p~ by (G1), we can assume that
v; > 1 for j even larger. Hence, by (5.3) applied for any v € Z; with ||v| x = ~;, we get

min{l,m} ,+

u(v) = T’YJ — 0

as j — 0o, by Lemma 5.1. Hence, the condition (I2) of Theorem 5.2 is fulfilled. The proof of Theorem
1.5 is complete. O

Proof of Theorem 1.6. It follows from Lemma 3.2 that the proof of this theorem is complete. [
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