References
Abdulla, H. A. N., Minor, E. C., Dias, R. F., & Hatcher, P. G. (2010).
Changes in the compound classes of dissolved organic matter along an
estuarine transect: A study using FTIR and 13C NMR. Geochimica et
Cosmochimica Acta, 74 (13), 3815-3838. doi:10.1016/j.gca.2010.04.006
Andersen, C. M., & Bro, R. (2003). Practical aspects of PARAFAC
modeling of fluorescence excitation‐emission data. Journal of
Chemometrics: A Journal of the Chemometrics Society, 17 (4), 200-215.
Carstea, E. M., Baker, A., Pavelescu, G., & Boomer, I. (2009).
Continuous fluorescence assessment of organic matter variability on the
Bournbrook River, Birmingham, UK. Hydrological Processes, 23 (13),
1937-1946. doi:10.1002/hyp.7335
Cawley, K. M., Murray, A. E., Doran, P. T., Kenig, F., Stubbins, A.,
Chen, H., . . . McKnight, D. M. (2016). Characterization of dissolved
organic material in the interstitial brine of Lake Vida, Antarctica.Geochimica et Cosmochimica Acta, 183 , 63-78.
doi:10.1016/j.gca.2016.03.023
Chen, W., Smith, D., & Guéguen, C. (2013). Influence of water chemistry
and dissolved organic matter (DOM) molecular size on copper and mercury
binding determined by multiresponse fluorescence quenching.Chemosphere, 92 (4), 351-359.
Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003).
Fluorescence excitation− emission matrix regional integration to
quantify spectra for dissolved organic matter. Environmental
Science & Technology, 37 (24), 5701-5710.
Chen, W. B., Smith, D. S., & Gueguen, C. (2013). Influence of water
chemistry and dissolved organic matter (DOM) molecular size on copper
and mercury binding determined by multiresponse fluorescence quenching.Chemosphere, 92 (4), 351-359.
doi:10.1016/j.chemosphere.2012.12.075
Christl, I., Milne, C. J., Kinniburgh, D. G., & Kretzschmar, R. (2001).
Relating ion binding by fulvic and humic acids to chemical composition
and molecular size. 2. Metal binding. Environmental Science &
Technology, 35 (12), 2512-2517. doi:10.1021/es0002520
Coble, P. G. (1996). Characterization of marine and terrestrial DOM in
seawater using excitation-emission matrix spectroscopy. Marine
Chemistry, 51 (4), 325-346.
Coble, P. G., Green, S. A., Blough, N. V., & Gagosian, R. B. (1990).
Characterization of dissolved organic matter in the Black Sea by
fluorescence spectroscopy. Nature, 348 (6300), 432-435.
de Zarruk, K. K., Scholer, G., & Dudal, Y. (2007). Fluorescence
fingerprints and Cu2+-complexing ability of individual molecular size
fractions in soil-and waste-borne DOM. Chemosphere, 69 (4),
540-548.
DeVilbiss, S. E., Zhou, Z., Klump, J. V., & Guo, L. (2016).
Spatiotemporal variations in the abundance and composition of bulk and
chromophoric dissolved organic matter in seasonally hypoxia-influenced
Green Bay, Lake Michigan, USA. Science of the Total Environment,
565 , 742-757.
Dittmar, T., Koch, B., Hertkorn, N., & Kattner, G. (2008). A simple and
efficient method for the solid-phase extraction of dissolved organic
matter (SPE-DOM) from seawater. Limnology and Oceanography:
Methods, 6 (6), 230-235.
Fan, C. H., Chang, M., & Zhang, Y. C. (2016). Spectral Characteristics
of Dissolved Organic Matter (DOM) Derived from Water and Sediment in
Normal Flow Period of the Intersection Zone of Jing River and Wei River.Spectroscopy and Spectral Analysis, 36 (9), 2863-2869.
doi:10.3964/j.issn.1000-0593(2016)09-2863-07
Fan, X., Song, J., & Peng, P. (2013). Comparative study for separation
of atmospheric humic-like substance (HULIS) by ENVI-18, HLB, XAD-8 and
DEAE sorbents: elemental composition, FT-IR, 1H NMR and off-line
thermochemolysis with tetramethylammonium hydroxide (TMAH).Chemosphere, 93 (9), 1710-1719.
doi:10.1016/j.chemosphere.2013.05.045
Fan, X., Song, J., & Peng, P. a. (2012). Comparison of isolation and
quantification methods to measure humic-like substances (HULIS) in
atmospheric particles. Atmospheric Environment, 60 , 366-374.
doi:10.1016/j.atmosenv.2012.06.063
Gueguen, C., & Cuss, C. W. (2011). Characterization of aquatic
dissolved organic matter by asymmetrical flow field-flow fractionation
coupled to UV-Visible diode array and excitation emission matrix
fluorescence. Journal of Chromatography A, 1218 (27), 4188-4198.
doi:10.1016/j.chroma.2010.12.038
Guo, L., Wen, L.-S., Tang, D., & Santschi, P. H. (2000). Re-examination
of cross-flow ultrafiltration for sampling aquatic colloids: evidence
from molecular probes. Marine Chemistry, 69 (1-2), 75-90.
Hays, M. D., Ryan, D. K., & Pennell, S. (2004). A modified multisite
stern-volmer equation for the determination of conditional stability
constants and ligand concentrations of soil fulvic acid with metal ions.Analytical Chemistry, 76 (3), 848-854. doi:10.1021/ac0344135
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J.,
& Mopper, K. (2008). Absorption spectral slopes and slope ratios as
indicators of molecular weight, source, and photobleaching of
chromophoric dissolved organic matter. Limnology and Oceanography,
53 (3), 955-969.
Hosen, J. D., Armstrong, A. W., & Palmer, M. A. (2018). Dissolved
organic matter variations in coastal plain wetland watersheds: The
integrated role of hydrological connectivity, land use, and seasonality.Hydrological Processes, 32 (11), 1664-1681. doi:10.1002/hyp.11519
Hung, C.-C., Tang, D., Warnken, K. W., & Santschi, P. H. (2001).
Distributions of carbohydrates, including uronic acids, in estuarine
waters of Galveston Bay. Marine Chemistry, 73 (3-4), 305-318.
Hur, J., & Lee, B. M. (2011). Characterization of binding site
heterogeneity for copper within dissolved organic matter fractions using
two-dimensional correlation fluorescence spectroscopy.Chemosphere, 83 (11), 1603-1611.
doi:10.1016/j.chemosphere.2011.01.004
Hussain A. N. Abdulla, Elizabeth C. Minor, and Patrick G. Hatcher ,.
(2010). Using Two-Dimensional Correlations of 13C NMR and FTIR To
Investigate Changes in the Chemical Composition of Dissolved Organic
Matter along an Estuarine Transect. Environmental Science and
Technology, 44 , 8044–8049.
Koprivnjak, J. F., Pfromm, P. H., Ingall, E., Vetter, T. A.,
Schmitt-Kopplin, P., Hertkorn, N., . . . Perdue, E. M. (2009). Chemical
and spectroscopic characterization of marine dissolved organic matter
isolated using coupled reverse osmosis–electrodialysis.Geochimica et Cosmochimica Acta, 73 (14), 4215-4231.
doi:10.1016/j.gca.2009.04.010
Kruger, B. R., Dalzell, B. J., & Minor, E. C. (2011). Effect of organic
matter source and salinity on dissolved organic matter isolation via
ultrafiltration and solid phase extraction. Aquatic Sciences,
73 (3), 405-417. doi:10.1007/s00027-011-0189-4
Lakshman, S., Mills, R., Patterson, H., & Cronan, C. (1993). Apparent
differences in binding-site distributions and aluminum(iii) complexation
for 3 molecular-weight fractions of a coniferous soil fulvic-acid.Analytica Chimica Acta, 282 (1), 101-108.
doi:10.1016/0003-2670(93)80357-q
Leenheer, J. A., & Croué, J.-P. (2003). Peer reviewed: characterizing
aquatic dissolved organic matter. Environmental Science &
Technology .
Leenheer, J. A., Noyes, T. I., Rostad, C. E., & Davisson, M. L. (2004).
Characterization and origin of polar dissolved organic matter from the
Great Salt Lake. Biogeochemistry, 69 (1), 125-141.
Li, H., & Minor, E. C. (2015). Dissolved organic matter in Lake
Superior: insights into the effects of extraction methods on chemical
composition. Environmental Science Processes & Impacts, 17 (10),
1829-1840. doi:10.1039/c5em00199d
Li, Y., Harir, M., Lucio, M., Kanawati, B., Smirnov, K., Flerus, R., . .
. Hertkorn, N. (2016). Proposed Guidelines for Solid Phase Extraction of
Suwannee River Dissolved Organic Matter. Analytical Chemistry,
88 (13), 6680-6688. doi:10.1021/acs.analchem.5b04501
Li, Y., Harir, M., Uhl, J., Kanawati, B., Lucio, M., Smirnov, K. S., . .
. Hertkorn, N. (2017). How representative are dissolved organic matter
(DOM) extracts? A comprehensive study of sorbent selectivity for DOM
isolation. Water Research, 116 , 316-323.
doi:10.1016/j.watres.2017.03.038
Li, Z., Peng, H., Xie, B., Liu, C., Nie, X., Wang, D., . . . Jiang, J.
(2020). Dissolved organic matter in surface runoff in the Loess Plateau
of China: The role of rainfall events and land-use. Hydrological
Processes, 34 (6), 1446-1459. doi:10.1002/hyp.13660
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe,
T., & Andersen, D. T. (2001). Spectrofluorometric characterization of
dissolved organic matter for indication of precursor organic material
and aromaticity. Limnology and Oceanography, 46 (1), 38-48.
Minor, E., & Stephens, B. (2008). Dissolved organic matter
characteristics within the Lake Superior watershed. Organic
Geochemistry, 39 (11), 1489-1501. doi:10.1016/j.orggeochem.2008.08.001
Minor, E. C., Swenson, M. M., Mattson, B. M., & Oyler, A. R. (2014).
Structural characterization of dissolved organic matter: a review of
current techniques for isolation and analysis. Environ Sci Process
Impacts, 16 (9), 2064-2079. doi:10.1039/c4em00062e
Murphy, K. R., Stedmon, C. A., Graeber, D., & Bro, R. (2013).
Fluorescence spectroscopy and multi-way techniques. PARAFAC.Analytical Methods, 5 (23). doi:10.1039/c3ay41160e
Myklestad, S. M., Skånøy, E., & Hestmann, S. (1997). A sensitive and
rapid method for analysis of dissolved mono-and polysaccharides in
seawater. Marine Chemistry, 56 (3-4), 279-286.
Ohno, T. (2002). Fluorescence inner-filtering correction for determining
the humification index of dissolved organic matter. Environmental
Science & Technology, 36 (4), 742-746.
Ohno, T., Amirbahman, A., & Bro, R. (2007). Parallel factor analysis of
excitation–emission matrix fluorescence spectra of water soluble soil
organic matter as basis for the determination of conditional metal
binding parameters. Environmental Science & Technology, 42 (1),
186-192.
Peng-Sheng, S., Wu, L., Bai, S., Zhen, N., Ling-Zhong, B., & Yun-Sheng,
W. (2011). Recent Development on Comprehensive Utilization of Salt Lake
Resources. Chinese Journal of Inorganic Chemistry, 27 (5), 15.
Perminova, I. V., Dubinenkov, I. V., Kononikhin, A. S., Konstantinov, A.
I., Zherebker, A. Y., Andzhushev, M. A., . . . Nikolaev, E. N. (2014).
Molecular mapping of sorbent selectivities with respect to isolation of
Arctic dissolved organic matter as measured by Fourier transform mass
spectrometry. Environmental Science and Technology, 48 (13),
7461-7468. doi:10.1021/es5015423
Retelletti Brogi, S., Ha, S. Y., Kim, K., Derrien, M., Lee, Y. K., &
Hur, J. (2018). Optical and molecular characterization of dissolved
organic matter (DOM) in the Arctic ice core and the underlying seawater
(Cambridge Bay, Canada): Implication for increased autochthonous DOM
during ice melting. Science of the Total Environment, 627 ,
802-811. doi:10.1016/j.scitotenv.2018.01.251
Sandron, S., Rojas, A., Wilson, R., Davies, N. W., Haddad, P. R.,
Shellie, R. A., . . . Paull, B. (2015). Chromatographic methods for the
isolation, separation and characterisation of dissolved organic matter.Environ Sci Process Impacts, 17 (9), 1531-1567.
doi:10.1039/c5em00223k
Shalev, N., Lazar, B., Köbberich, M., Halicz, L., & Gavrieli, I.
(2018). The chemical evolution of brine and Mg-K-salts along the course
of extreme evaporation of seawater–an experimental study.Geochimica et Cosmochimica Acta, 241 , 164-179.
Shin, H. S., Hong, K. H., Lee, M. H., Cho, Y. H., & Lee, C. W. (2001).
Fluorescence quenching of three molecular weight fractions of a soil
fulvic acid by UO2(II). Talanta, 53 (4), 791-799.
doi:10.1016/s0039-9140(00)00567-1
Singh, S., Inamdar, S., & Mitchell, M. (2015). Changes in dissolved
organic matter (DOM) amount and composition along nested headwater
stream locations during baseflow and stormflow. Hydrological
Processes, 29 (6), 1505-1520. doi:10.1002/hyp.10286
Stedmon, C. A., & Bro, R. (2008). Characterizing dissolved organic
matter fluorescence with parallel factor analysis: a tutorial.Limnology and Oceanography: Methods , 572-579.
Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved
organic matter in aquatic environments using a new approach to
fluorescence spectroscopy. Marine Chemistry, 82 (3-4), 239-254.
doi:10.1016/s0304-4203(03)00072-0
Waiser, M. J., & Robarts, R. D. (2000). Changes in composition and
reactivity of allochthonous DOM in a prairie saline lake.Limnology and Oceanography, 45 (4), 763-774.
Wang, X., Cai, Y., & Guo, L. (2010). Preferential removal of dissolved
carbohydrates during estuarine mixing in the Bay of Saint Louis in the
northern Gulf of Mexico. Marine Chemistry, 119 (1-4), 130-138.
doi:10.1016/j.marchem.2010.01.006
Wang, X., Goual, L., & Colberg, P. J. (2012). Characterization and
treatment of dissolved organic matter from oilfield produced waters.Journal of Hazardous materials, 217-218 , 164-170.
doi:10.1016/j.jhazmat.2012.03.006
Weber, T., Allard, T., & Benedetti, M. F. (2006). Iron speciation in
interaction with organic matter: Modelling and experimental approach.Journal of Geochemical Exploration, 88 (1-3), 166-171.
doi:10.1016/j.gexplo.2005.08.030
Wu, F. C., & Tanoue, E. (2001). Geochemical characterization of organic
ligands for copper(II) in different molecular size fractions in Lake
Biwa, Japan. Organic Geochemistry, 32 (11), 1311-1318.
doi:10.1016/s0146-6380(01)00094-8
Wu, J., Zhang, H., He, P. J., & Shao, L. M. (2011). Insight into the
heavy metal binding potential of dissolved organic matter in MSW
leachate using EEM quenching combined with PARAFAC analysis. Water
Research, 45 (4), 1711-1719. doi:10.1016/j.watres.2010.11.022
Wu, J., Zhang, H., Yao, Q.-S., Shao, L.-M., & He, P.-J. (2012). Toward
understanding the role of individual fluorescent components in DOM-metal
binding. Journal of Hazardous materials, 215 , 294-301.
Xiping, Z. (2008). Impact of organics in bittern on the quality of
BaSO_4 products [J]. Inorganic Chemicals Industry, 11 , 3.
Xu, H., & Guo, L. (2017). Molecular size-dependent abundance and
composition of dissolved organic matter in river, lake and sea waters.Water Research, 117 , 115-126. doi:10.1016/j.watres.2017.04.006
Xu, H., Guo, L., & Jiang, H. (2016). Depth-dependent variations of
sedimentary dissolved organic matter composition in a eutrophic lake:
implications for lake restoration. Chemosphere, 145 , 551-559.
Xu, H., Yan, M., Li, W., Jiang, H., & Guo, L. (2018). Dissolved organic
matter binding with Pb(II) as characterized by differential spectra and
2D UV-FTIR heterospectral correlation analysis. Water Research,
144 , 435-443. doi:10.1016/j.watres.2018.07.062
Xu, H., Zou, L., Guan, D., Li, W., & Jiang, H. (2019). Molecular
weight-dependent spectral and metal binding properties of sediment
dissolved organic matter from different origins. Science of the
Total Environment, 665 , 828-835. doi:10.1016/j.scitotenv.2019.02.186
Yamashita, Y., & Jaffé, R. (2008). Characterizing the interactions
between trace metals and dissolved organic matter using excitation−
emission matrix and parallel factor analysis. Environmental
Science & Technology, 42 (19), 7374-7379.
Yang, K., Zhang, Y., Dong, Y., & Li, W. (2017). Selectivity of solid
phase extraction for dissolved organic matter in the hypersaline Da
Qaidam Lake, China. Environmental Science-Processes & Impacts,
19 (11), 1374-1386. doi:10.1039/c7em00263g
Yang, K., Zhang, Y., Dong, Y., Nie, Z., & Li, W. (2017). Comparative
Study of Solid-Phase Extraction of Dissolved Organic Matter from
Oilfield-Produced Brine by Different Sorbents. Environmental
Engineering Science, 34 (9), 675-686. doi:10.1089/ees.2016.0488
Yang, X., Meng, L., & Meng, F. (2019). Combination of self-organizing
map and parallel factor analysis to characterize the evolution of
fluorescent dissolved organic matter in a full-scale landfill leachate
treatment plant. Science of the Total Environment, 654 ,
1187-1195.
Yu, G. H., Wu, M. J., Wei, G. R., Luo, Y. H., Ran, W., Wang, B. R., . .
. Shen, Q. R. (2012). Binding of organic ligands with Al(III) in
dissolved organic matter from soil: implications for soil organic carbon
storage. Environmental Science and Technology, 46 (11), 6102-6109.
doi:10.1021/es3002212
Zhang, D., Pan, X., Mostofa, K. M., Chen, X., Mu, G., Wu, F., . . . Fu,
Q. (2010). Complexation between Hg(II) and biofilm extracellular
polymeric substances: an application of fluorescence spectroscopy.Journal of Hazardous materials, 175 (1-3), 359-365.
doi:10.1016/j.jhazmat.2009.10.011
Zheng, M. (2011). Resources and eco-environmental protection of salt
lakes in China. Environmental Earth Sciences, 64 (6), 1537-1546.