References
Abdulla, H. A. N., Minor, E. C., Dias, R. F., & Hatcher, P. G. (2010). Changes in the compound classes of dissolved organic matter along an estuarine transect: A study using FTIR and 13C NMR. Geochimica et Cosmochimica Acta, 74 (13), 3815-3838. doi:10.1016/j.gca.2010.04.006
Andersen, C. M., & Bro, R. (2003). Practical aspects of PARAFAC modeling of fluorescence excitation‐emission data. Journal of Chemometrics: A Journal of the Chemometrics Society, 17 (4), 200-215.
Carstea, E. M., Baker, A., Pavelescu, G., & Boomer, I. (2009). Continuous fluorescence assessment of organic matter variability on the Bournbrook River, Birmingham, UK. Hydrological Processes, 23 (13), 1937-1946. doi:10.1002/hyp.7335
Cawley, K. M., Murray, A. E., Doran, P. T., Kenig, F., Stubbins, A., Chen, H., . . . McKnight, D. M. (2016). Characterization of dissolved organic material in the interstitial brine of Lake Vida, Antarctica.Geochimica et Cosmochimica Acta, 183 , 63-78. doi:10.1016/j.gca.2016.03.023
Chen, W., Smith, D., & Guéguen, C. (2013). Influence of water chemistry and dissolved organic matter (DOM) molecular size on copper and mercury binding determined by multiresponse fluorescence quenching.Chemosphere, 92 (4), 351-359.
Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 37 (24), 5701-5710.
Chen, W. B., Smith, D. S., & Gueguen, C. (2013). Influence of water chemistry and dissolved organic matter (DOM) molecular size on copper and mercury binding determined by multiresponse fluorescence quenching.Chemosphere, 92 (4), 351-359. doi:10.1016/j.chemosphere.2012.12.075
Christl, I., Milne, C. J., Kinniburgh, D. G., & Kretzschmar, R. (2001). Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding. Environmental Science & Technology, 35 (12), 2512-2517. doi:10.1021/es0002520
Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51 (4), 325-346.
Coble, P. G., Green, S. A., Blough, N. V., & Gagosian, R. B. (1990). Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature, 348 (6300), 432-435.
de Zarruk, K. K., Scholer, G., & Dudal, Y. (2007). Fluorescence fingerprints and Cu2+-complexing ability of individual molecular size fractions in soil-and waste-borne DOM. Chemosphere, 69 (4), 540-548.
DeVilbiss, S. E., Zhou, Z., Klump, J. V., & Guo, L. (2016). Spatiotemporal variations in the abundance and composition of bulk and chromophoric dissolved organic matter in seasonally hypoxia-influenced Green Bay, Lake Michigan, USA. Science of the Total Environment, 565 , 742-757.
Dittmar, T., Koch, B., Hertkorn, N., & Kattner, G. (2008). A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnology and Oceanography: Methods, 6 (6), 230-235.
Fan, C. H., Chang, M., & Zhang, Y. C. (2016). Spectral Characteristics of Dissolved Organic Matter (DOM) Derived from Water and Sediment in Normal Flow Period of the Intersection Zone of Jing River and Wei River.Spectroscopy and Spectral Analysis, 36 (9), 2863-2869. doi:10.3964/j.issn.1000-0593(2016)09-2863-07
Fan, X., Song, J., & Peng, P. (2013). Comparative study for separation of atmospheric humic-like substance (HULIS) by ENVI-18, HLB, XAD-8 and DEAE sorbents: elemental composition, FT-IR, 1H NMR and off-line thermochemolysis with tetramethylammonium hydroxide (TMAH).Chemosphere, 93 (9), 1710-1719. doi:10.1016/j.chemosphere.2013.05.045
Fan, X., Song, J., & Peng, P. a. (2012). Comparison of isolation and quantification methods to measure humic-like substances (HULIS) in atmospheric particles. Atmospheric Environment, 60 , 366-374. doi:10.1016/j.atmosenv.2012.06.063
Gueguen, C., & Cuss, C. W. (2011). Characterization of aquatic dissolved organic matter by asymmetrical flow field-flow fractionation coupled to UV-Visible diode array and excitation emission matrix fluorescence. Journal of Chromatography A, 1218 (27), 4188-4198. doi:10.1016/j.chroma.2010.12.038
Guo, L., Wen, L.-S., Tang, D., & Santschi, P. H. (2000). Re-examination of cross-flow ultrafiltration for sampling aquatic colloids: evidence from molecular probes. Marine Chemistry, 69 (1-2), 75-90.
Hays, M. D., Ryan, D. K., & Pennell, S. (2004). A modified multisite stern-volmer equation for the determination of conditional stability constants and ligand concentrations of soil fulvic acid with metal ions.Analytical Chemistry, 76 (3), 848-854. doi:10.1021/ac0344135
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., & Mopper, K. (2008). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography, 53 (3), 955-969.
Hosen, J. D., Armstrong, A. W., & Palmer, M. A. (2018). Dissolved organic matter variations in coastal plain wetland watersheds: The integrated role of hydrological connectivity, land use, and seasonality.Hydrological Processes, 32 (11), 1664-1681. doi:10.1002/hyp.11519
Hung, C.-C., Tang, D., Warnken, K. W., & Santschi, P. H. (2001). Distributions of carbohydrates, including uronic acids, in estuarine waters of Galveston Bay. Marine Chemistry, 73 (3-4), 305-318.
Hur, J., & Lee, B. M. (2011). Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy.Chemosphere, 83 (11), 1603-1611. doi:10.1016/j.chemosphere.2011.01.004
Hussain A. N. Abdulla, Elizabeth C. Minor, and Patrick G. Hatcher ,. (2010). Using Two-Dimensional Correlations of 13C NMR and FTIR To Investigate Changes in the Chemical Composition of Dissolved Organic Matter along an Estuarine Transect. Environmental Science and Technology, 44 , 8044–8049.
Koprivnjak, J. F., Pfromm, P. H., Ingall, E., Vetter, T. A., Schmitt-Kopplin, P., Hertkorn, N., . . . Perdue, E. M. (2009). Chemical and spectroscopic characterization of marine dissolved organic matter isolated using coupled reverse osmosis–electrodialysis.Geochimica et Cosmochimica Acta, 73 (14), 4215-4231. doi:10.1016/j.gca.2009.04.010
Kruger, B. R., Dalzell, B. J., & Minor, E. C. (2011). Effect of organic matter source and salinity on dissolved organic matter isolation via ultrafiltration and solid phase extraction. Aquatic Sciences, 73 (3), 405-417. doi:10.1007/s00027-011-0189-4
Lakshman, S., Mills, R., Patterson, H., & Cronan, C. (1993). Apparent differences in binding-site distributions and aluminum(iii) complexation for 3 molecular-weight fractions of a coniferous soil fulvic-acid.Analytica Chimica Acta, 282 (1), 101-108. doi:10.1016/0003-2670(93)80357-q
Leenheer, J. A., & Croué, J.-P. (2003). Peer reviewed: characterizing aquatic dissolved organic matter. Environmental Science & Technology .
Leenheer, J. A., Noyes, T. I., Rostad, C. E., & Davisson, M. L. (2004). Characterization and origin of polar dissolved organic matter from the Great Salt Lake. Biogeochemistry, 69 (1), 125-141.
Li, H., & Minor, E. C. (2015). Dissolved organic matter in Lake Superior: insights into the effects of extraction methods on chemical composition. Environmental Science Processes & Impacts, 17 (10), 1829-1840. doi:10.1039/c5em00199d
Li, Y., Harir, M., Lucio, M., Kanawati, B., Smirnov, K., Flerus, R., . . . Hertkorn, N. (2016). Proposed Guidelines for Solid Phase Extraction of Suwannee River Dissolved Organic Matter. Analytical Chemistry, 88 (13), 6680-6688. doi:10.1021/acs.analchem.5b04501
Li, Y., Harir, M., Uhl, J., Kanawati, B., Lucio, M., Smirnov, K. S., . . . Hertkorn, N. (2017). How representative are dissolved organic matter (DOM) extracts? A comprehensive study of sorbent selectivity for DOM isolation. Water Research, 116 , 316-323. doi:10.1016/j.watres.2017.03.038
Li, Z., Peng, H., Xie, B., Liu, C., Nie, X., Wang, D., . . . Jiang, J. (2020). Dissolved organic matter in surface runoff in the Loess Plateau of China: The role of rainfall events and land-use. Hydrological Processes, 34 (6), 1446-1459. doi:10.1002/hyp.13660
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46 (1), 38-48.
Minor, E., & Stephens, B. (2008). Dissolved organic matter characteristics within the Lake Superior watershed. Organic Geochemistry, 39 (11), 1489-1501. doi:10.1016/j.orggeochem.2008.08.001
Minor, E. C., Swenson, M. M., Mattson, B. M., & Oyler, A. R. (2014). Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis. Environ Sci Process Impacts, 16 (9), 2064-2079. doi:10.1039/c4em00062e
Murphy, K. R., Stedmon, C. A., Graeber, D., & Bro, R. (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC.Analytical Methods, 5 (23). doi:10.1039/c3ay41160e
Myklestad, S. M., Skånøy, E., & Hestmann, S. (1997). A sensitive and rapid method for analysis of dissolved mono-and polysaccharides in seawater. Marine Chemistry, 56 (3-4), 279-286.
Ohno, T. (2002). Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environmental Science & Technology, 36 (4), 742-746.
Ohno, T., Amirbahman, A., & Bro, R. (2007). Parallel factor analysis of excitation–emission matrix fluorescence spectra of water soluble soil organic matter as basis for the determination of conditional metal binding parameters. Environmental Science & Technology, 42 (1), 186-192.
Peng-Sheng, S., Wu, L., Bai, S., Zhen, N., Ling-Zhong, B., & Yun-Sheng, W. (2011). Recent Development on Comprehensive Utilization of Salt Lake Resources. Chinese Journal of Inorganic Chemistry, 27 (5), 15.
Perminova, I. V., Dubinenkov, I. V., Kononikhin, A. S., Konstantinov, A. I., Zherebker, A. Y., Andzhushev, M. A., . . . Nikolaev, E. N. (2014). Molecular mapping of sorbent selectivities with respect to isolation of Arctic dissolved organic matter as measured by Fourier transform mass spectrometry. Environmental Science and Technology, 48 (13), 7461-7468. doi:10.1021/es5015423
Retelletti Brogi, S., Ha, S. Y., Kim, K., Derrien, M., Lee, Y. K., & Hur, J. (2018). Optical and molecular characterization of dissolved organic matter (DOM) in the Arctic ice core and the underlying seawater (Cambridge Bay, Canada): Implication for increased autochthonous DOM during ice melting. Science of the Total Environment, 627 , 802-811. doi:10.1016/j.scitotenv.2018.01.251
Sandron, S., Rojas, A., Wilson, R., Davies, N. W., Haddad, P. R., Shellie, R. A., . . . Paull, B. (2015). Chromatographic methods for the isolation, separation and characterisation of dissolved organic matter.Environ Sci Process Impacts, 17 (9), 1531-1567. doi:10.1039/c5em00223k
Shalev, N., Lazar, B., Köbberich, M., Halicz, L., & Gavrieli, I. (2018). The chemical evolution of brine and Mg-K-salts along the course of extreme evaporation of seawater–an experimental study.Geochimica et Cosmochimica Acta, 241 , 164-179.
Shin, H. S., Hong, K. H., Lee, M. H., Cho, Y. H., & Lee, C. W. (2001). Fluorescence quenching of three molecular weight fractions of a soil fulvic acid by UO2(II). Talanta, 53 (4), 791-799. doi:10.1016/s0039-9140(00)00567-1
Singh, S., Inamdar, S., & Mitchell, M. (2015). Changes in dissolved organic matter (DOM) amount and composition along nested headwater stream locations during baseflow and stormflow. Hydrological Processes, 29 (6), 1505-1520. doi:10.1002/hyp.10286
Stedmon, C. A., & Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial.Limnology and Oceanography: Methods , 572-579.
Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82 (3-4), 239-254. doi:10.1016/s0304-4203(03)00072-0
Waiser, M. J., & Robarts, R. D. (2000). Changes in composition and reactivity of allochthonous DOM in a prairie saline lake.Limnology and Oceanography, 45 (4), 763-774.
Wang, X., Cai, Y., & Guo, L. (2010). Preferential removal of dissolved carbohydrates during estuarine mixing in the Bay of Saint Louis in the northern Gulf of Mexico. Marine Chemistry, 119 (1-4), 130-138. doi:10.1016/j.marchem.2010.01.006
Wang, X., Goual, L., & Colberg, P. J. (2012). Characterization and treatment of dissolved organic matter from oilfield produced waters.Journal of Hazardous materials, 217-218 , 164-170. doi:10.1016/j.jhazmat.2012.03.006
Weber, T., Allard, T., & Benedetti, M. F. (2006). Iron speciation in interaction with organic matter: Modelling and experimental approach.Journal of Geochemical Exploration, 88 (1-3), 166-171. doi:10.1016/j.gexplo.2005.08.030
Wu, F. C., & Tanoue, E. (2001). Geochemical characterization of organic ligands for copper(II) in different molecular size fractions in Lake Biwa, Japan. Organic Geochemistry, 32 (11), 1311-1318. doi:10.1016/s0146-6380(01)00094-8
Wu, J., Zhang, H., He, P. J., & Shao, L. M. (2011). Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis. Water Research, 45 (4), 1711-1719. doi:10.1016/j.watres.2010.11.022
Wu, J., Zhang, H., Yao, Q.-S., Shao, L.-M., & He, P.-J. (2012). Toward understanding the role of individual fluorescent components in DOM-metal binding. Journal of Hazardous materials, 215 , 294-301.
Xiping, Z. (2008). Impact of organics in bittern on the quality of BaSO_4 products [J]. Inorganic Chemicals Industry, 11 , 3.
Xu, H., & Guo, L. (2017). Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters.Water Research, 117 , 115-126. doi:10.1016/j.watres.2017.04.006
Xu, H., Guo, L., & Jiang, H. (2016). Depth-dependent variations of sedimentary dissolved organic matter composition in a eutrophic lake: implications for lake restoration. Chemosphere, 145 , 551-559.
Xu, H., Yan, M., Li, W., Jiang, H., & Guo, L. (2018). Dissolved organic matter binding with Pb(II) as characterized by differential spectra and 2D UV-FTIR heterospectral correlation analysis. Water Research, 144 , 435-443. doi:10.1016/j.watres.2018.07.062
Xu, H., Zou, L., Guan, D., Li, W., & Jiang, H. (2019). Molecular weight-dependent spectral and metal binding properties of sediment dissolved organic matter from different origins. Science of the Total Environment, 665 , 828-835. doi:10.1016/j.scitotenv.2019.02.186
Yamashita, Y., & Jaffé, R. (2008). Characterizing the interactions between trace metals and dissolved organic matter using excitation− emission matrix and parallel factor analysis. Environmental Science & Technology, 42 (19), 7374-7379.
Yang, K., Zhang, Y., Dong, Y., & Li, W. (2017). Selectivity of solid phase extraction for dissolved organic matter in the hypersaline Da Qaidam Lake, China. Environmental Science-Processes & Impacts, 19 (11), 1374-1386. doi:10.1039/c7em00263g
Yang, K., Zhang, Y., Dong, Y., Nie, Z., & Li, W. (2017). Comparative Study of Solid-Phase Extraction of Dissolved Organic Matter from Oilfield-Produced Brine by Different Sorbents. Environmental Engineering Science, 34 (9), 675-686. doi:10.1089/ees.2016.0488
Yang, X., Meng, L., & Meng, F. (2019). Combination of self-organizing map and parallel factor analysis to characterize the evolution of fluorescent dissolved organic matter in a full-scale landfill leachate treatment plant. Science of the Total Environment, 654 , 1187-1195.
Yu, G. H., Wu, M. J., Wei, G. R., Luo, Y. H., Ran, W., Wang, B. R., . . . Shen, Q. R. (2012). Binding of organic ligands with Al(III) in dissolved organic matter from soil: implications for soil organic carbon storage. Environmental Science and Technology, 46 (11), 6102-6109. doi:10.1021/es3002212
Zhang, D., Pan, X., Mostofa, K. M., Chen, X., Mu, G., Wu, F., . . . Fu, Q. (2010). Complexation between Hg(II) and biofilm extracellular polymeric substances: an application of fluorescence spectroscopy.Journal of Hazardous materials, 175 (1-3), 359-365. doi:10.1016/j.jhazmat.2009.10.011
Zheng, M. (2011). Resources and eco-environmental protection of salt lakes in China. Environmental Earth Sciences, 64 (6), 1537-1546.