REFERENCES
  1. Julie Robinson and Kirt Costello (Editors.), International Space Station Benefits for Humanity, 3rd Edition, NP-2018-06-013-JSC, June 2018, www.nasa.gov
  2. H. Klinkrad, Space Debris. Encyclopedia of Aerospace Engineering, 2010,  doi:10.1002/9780470686652.eae325
  3. V.R.Sanal Kumar, Vigneshwaran Sankar, Nichith Chandrasekaran, Ajith Sukumaran, Sulthan Ariff Rahman Mohamed Rafic, Roshan Vignesh Baskaran, R.S.Bharath, Charlie Oommen, Pradeep Kumar Radhakrishnan, Shiv Kumar Choudhary, “Sanal Flow Choking: A Paradigm Shift in Computational Fluid Dynamics Code Verification and Diagnosing Detonation and Hemorrhage in Real‐World Fluid‐Flow Systems,” Global Challenges,2000012, Wiley Publication, May 2020, https://doi.org/10.1002/gch2.202000012
  4. J.-C. Liou, M. Kieffer, A. Drew, and A. Sweet, The 2019 U.S. Government Orbital Debris Mitigation Standard Practices, Orbital Debris Quarterly News, Volume 24, Issue 1 February 2020, https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv24i1.pdf
  5. J.-C. Liou et al. ”NASA ODPO’s Large Constellation Study,” Orbital Debris Quarterly News, Vol.22, No.3, pp. 4-7, 2018, https://www.orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv22i3.pdf
  6. J.-C. Liou. “An active debris removal parametric study for LEO environment remediation,” Adv. Space Res. 47, pp. 1865-1876, 2011, doi:10.1016/j.asr.2011.02.003
  7. J.-C. Liou and N. L. Johnson, Planetary Science: Risks in Space from Orbiting Debris. Science, 311(5759), 340–341, 2006,  doi:10.1126/science.1121337
  8. J.-C. Liou and N. L. Johnson, Controlling the growth of future LEO debris populations with active debris removal. Acta Astronautica 66: 648–653, 2010, https://doi.org/10 .1016/j.actaastro.2009.08.005.
  9. Nickolay N. Smirnov, “Space Debris – Hazard, Evaluation and Mitigation”, ISBN 0-415-27907-0, ISSN 1026-2660, London ; New York : Taylor & Francis, 2002,  Advances in Space Research, Volume 30, Issue 2, p. 427-428, July 2002, DOI: 10.1016/S0273-1177(02)00366-6
  10. United Nations Technical Report on Space Debris, A/AC.105/720, United Nations Publication, ISBN 92-1-100813-1, New York, 1999, http://www.unoosa.org/pdf/reports/ac105/AC105_720E.pdf
  11. United Nations General Assembly, Committee on the Peaceful Uses of Outer Space, Scientific and Technical Subcommittee Fifty-fourth session, Vienna, 30 January - 10 February 2017, A/AC.105/C.1/111, https://undocs.org/A/AC.105/C.1/111
  12. M. Palmroth, et al., FORESAIL‐1 cubesat mission to measure radiation belt losses and demonstrate de‐orbiting. Journal of Geophysical Research: Space Physics, 2019,  doi:10.1029/2018ja026354
  13. J. Slíz-Balogh, D. Horváth, R. Szabó, and G. Horváth, G,Dynamics of spherical space debris of different sizes falling to Earth. Astronomische Nachrichten, 2020,  doi:10.1002/asna.202023688
  14. U.S. Government Orbital Debris Mitigation Standard Practices, (www.orbitaldebris.jsc .nasa.gov/library/usg_od_standard_practices.pdf), accessed March 16, 2019.
  15. Rogerio Atemde Carvalho, Jaime Estela, and Martin Langer (Eds.), Nanosatellites: Space and Ground Technologies, Operations and Economics, First Edition, ©2020John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd. DOI:10.1002/9781119042044.
  16. N. Zinner, et al., Junk Hunter: Autonomous Rendezvous, Capture, and De-Orbit of Orbital Debris. AIAA SPACE 2011 Conference & Exposition, 2011,  doi:10.2514/6.2011-7292
  17. R.R.Deepaa Anandhi, A. Akash Chandran, N.D. Hemasai, Sivabalan Mani, and V.R. Sanal Kumar, Statistical Studies on Space Launches and the need for Active Debris Removal System. AIAA SPACE 2015 Conference and Exposition, 2015,  doi:10.2514/6.2015-4573
  18. Amrith Mariappan, V.R.Sanal Kumar, Vishnu Anand, Steve Weddell, and In-Seuck Jeung, A Conceptual Method to Recycle Space Debris into Fuels and Artificial Soil in the ISS for Numerous Applications. AIAA Propulsion and Energy 2019 Forum, Indianapolis, 19-21 August 2019, doi:10.2514/6.2019-4157
  19. V.R.Sanal Kumar, Sharad Sharan, Kumar Ashish, Jerin John, V. K. Vijil Lal, Vignesh Venkatachalam, Chinnasamy Cibi Vishnu, and Ajith Sukumaran. Dual-head Electromagnetic Variable Sweeping Speed Space Broom for Space Debris Mitigation. AIAA SPACE 2016,  13 - 16 September 2016, California doi:10.2514/6.2016-5522
  20. H. Jiang, et al., A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity. Science Robotics, 2(7), eaan4545, 2017,  doi:10.1126/scirobotics.aan4545
  21. D.J. Kessler, and B.G. Cour-Palais, Collision frequency of artificial satellites: The creation of a debris belt. Journal of Geophysical Research, 83(A6), 2637, 1978, doi:10.1029/ja083ia06p02637
  22. ESA’s Annual Space Environment Report, European Space Operations Centre, ESA Space Debris Office, GEN-DB-LOG-00271-OPS-SD, Issue 3.2, 17 July 2019, https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf
  23. Gasser F. Abdelal, Nader Abuelfoutouh, Ahmed H. Gad, Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing, eBook ISBN 978-1-4471-4637-7, DOI: 10.1007/978-1-4471-4637-7, Springer-Verlag London, 2013.
  24. Chad Frost, Elwood Agasid, Rogan Shimmin, Elwood Agasid, Roland Burton, Roberto Carlino, Gregory Defouw, Andres Dono Perez, Arif Göktuğ Karacalıoğlu, Benjamin Klamm, Abraham Rademacher, James Schalkwyck, Rogan Shimmin, Julia Tilles, Sasha Weston, “State of the Art of Small Spacecraft Technology, Structures, Materials and Mechanisms,” NASA Ames Research Center, Mission Design Division, September, 2015, NASA/TP–2015–216648/REV1
  25. M. Tajmar, Homopolar artificial gravity generator based on frame-dragging. Acta Astronautica, 66(9-10), 1297–1301, 2010, doi:10.1016/j.actaastro.2009.10.022
  26. V.R.Sanal Kumar et al., A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers, AIP Advances, 8:1-22, 2018, https://doi.org/10.1063/1.5020333.
  27. V.R.Sanal Kumar, et al., Boundary layer Blockage, Venturi Effect and Cavitation Causing Aerodynamic Choking and Shock Waves in Human Artery Leading to Hemorrhage and Massive Heart Attack – A New Perspective.2018 Applied Aerodynamics Conference.  doi:10.2514/6.2018-3962
  28. V.R.Sanal Kumar, “Biofluid Choking a Paradigm Shift in the Diagnostic Sciences of Stroke - Blood Pressure Ratio and Heat Capacity Ratio Are the Risk Factors for Hemorrhage and Heart Attack,” OSF Preprints, February 5, 2020, doi:10.31219/osf.io/bce2n.
  29. Kazunori Takahashi, Christine Charles, Rod W.Boswell, Akria Ando, Demonstrating a new technology for space debris removal using a bi-directional plasma thruster, Nature Scientific Reports 8, Article number: 14417(2018), https://doi.org/10.1038/s41598-018-32697-4
  30. E. Deorbit, ESA’s active debris removal mission: https://www.esa.int/spaceinvideos/Videos/2016/05/ESA_s_active_debris_removal_mission_e.Deorbit
  31. Sathish Paulraj Gundupalli, Subrata Hait, Atul Thakur, A review on automated sorting of source-separated municipal solid waste for recycling, Waste Management, Volume 60, February 2017, pp 56-74, https://doi.org/10.1016/j.wasman.2016.09.015
  32. Manouchehri, Hamid-Reza. Northland Oretech Consulting Co., Kvartsstigen 6, SE-977 53, Luleå, Sweden, ”Application of optoelectronic sorting technique for upgrading minerals and wastes.”Konferens i mineralteknik 2006: 07/02/2006-08/02/2006 . Föreningen Mineralteknisk Forskning/Swedish Mineral Processing Research Association, 2006, https://www.diva-portal.org/smash/get/diva2:1003813/FULLTEXT01.pdf
  33. S. Koyanaka., and K. Kobayashi, Automatic sorting of lightweight metal scrap by sensing apparent density and three-dimensional shape.Resources, Conservation and Recycling, 54(9), 571–578, 2010,doi:10.1016/j.resconrec.2009.10.014
  34. Oleg D. Neikov, Stanislav S. Naboychenko, Nikolay A. Yefimov, Handbook of Non-Ferrous Metal Powders: Technologies and Applications, Second Edition, 2019, ISBN: 978-0-08-100543-9, Copyright © 2019 Elsevier Ltd. DOI: https://doi.org/10.1016/C2014-0-03938-X
  35. B.S. Tubana., T. Babu, and L.E.Datnoff, A Review of Silicon in Soils and Plants and Its Role in US Agriculture. Soil Science, 1, 2016,  doi:10.1097/ss.0000000000000179
  36. Steve Price, Tony Phillips, Gil Knier, Staying Cool on the ISS, March 20, 2001. https://science.nasa.gov/science-news/science-at-nasa/2001/ast21mar_1
  37. The Truth About Space Debris, Real Engineering, Published on Apr 26, 2019, https://www.youtube.com/watch?v=itdYS9XF4a0&feature=youtu.be
  38. Ankit Bairwa, Ashok Kumar Reddy, Gurmeet Singh, Vijay Kumar Sharma, ”Granulation and Atomization Process for Production of Metal Granules and Powders,” International Journal of Mechanical and Production Engineering (IJMPE), pp. 24-28, Vol. 6, Issue-4, 2018, ISSN(p): 2320-2092, ISSN(e): 2321-2071, http://www.iraj.in/journal/journal_file/journal_pdf/2-461-153112853324-28.pdf
  39. A. Boušková, J. La Cour Jansen, and E. Persson. “The effect of operational temperature on dewatering characteristics of digested sludge”, Journal of residuals science and technology 3(1):43-49, January 2006, http://lup.lub.lu.se/record/410745
  40. Robert W Bussard, Galactic Matter and Interstellar Flight, January 1960 Astronautica Acta 6(4), https://machinman.net/intersideral/references/bussard.pdf
  41. Steve Taranovich, International Space Station (ISS) power system, January 26, 2014. https://www.edn.com/design/power-management/4427522/International-Space-Station–ISS–power-system
  42. Easton, R. L., and M. J. Votaw, Vanguard I IGY satellite (1958 Beta), Rev. Sci. Instrum., 30, 70-75, Feb. 1959, DOI: 10.1063/1.1716492
  43. Michael D. Del, Apollo Lunar Astronauts Show Higher Cardiovascular Disease Mortality: Possible Deep Space Radiation Effects on the Vascular Endothelium, Scientific Reports, 6:29901, DOI: 10.1038/srep29901
  44. Clare Wilson, Low gravity in space made some astronauts’ blood flow backwards, SPACE 15 November 2019, New Scientist.
  45. K. Marshall-Goebel, et al. Assessment of Jugular Venous Blood Flow Stasis and Thrombosis During Spaceflight. JAMA Network Open, 2(11), 2019, e1915011.  doi:10.1001/jamanetworkopen.2019.15011
  46. M. Garcia, Space debris and human spacecraft (2016); www.nasa.gov/mission_pages/ station/news/orbital_debris.html.
  47. K. Wormnes, R. Le Letty, L. Summerer, R. Schonenborg, O. Dubois-Matra, E. Luraschi, A. Cropp, H. Krag, and J. Delaval, ESA technologies for space debris remediation, Proceedings of the 6th European Conference on Space Debris, Darmstadt, Germany, 22–25 April 2013 (ESA SP-723, August 2013), https://conference.sdo.esoc.esa.int/proceedings/sdc6/paper/116/SDC6-paper116.pdf
  48. Zinner, N., Williamson, A., Brenner, K., Curran, J., Isaak, A., Knoch, M., … Lestishen, J., Junk Hunter: Autonomous Rendezvous, Capture, and De-Orbit of Orbital Debris. AIAA SPACE 2011 Conference & Exposition.  27 - 29 September 2011, Long Beach, California, 2011, doi:10.2514/6.2011-7292 , https://conference.sdo.esoc.esa.int/proceedings/sdc6/paper/116/SDC6-paper116.pdf
  49. NASA Procedural Requirements, Office of Safety and Mission Assurance, NPR 8715.6B, NASA Procedural Requirements for Limiting Orbital Debris and Evaluating the Meteoroid and Orbital Debris Environments, February 16, 2017, https://orbitaldebris.jsc.nasa.gov/library/npr_8715_006b_.pdf
  50. Terrence W Wilcutt, NASA TECHNICAL STANDARD, Process for Limiting Orbital Debris, NASA-STD-8719.14B – 2019-04-25, 25 April 2019, https://standards.nasa.gov/standard/nasa/nasa-std-871914