Literature cited
Afify, A., & Galizia, C. G. (2015). Chemosensory cues for mosquito
oviposition site selection. J. Med. Entomol., 52 (2), 120-130.
doi:10.1093/jme/tju024
Albeny-Simoes, D., Murrell, E. G., Elliot, S. L., Andrade, M. R., Lima,
E., Juliano, S. A., & Vilela, E. F. (2014). Attracted to the enemy:Aedes aegypti prefers oviposition sites with predator-killed
conspecifics. Oecologia., 175 (2), 481-492.
doi:10.1007/s00442-014-2910-1
Allan, S. A., & Kline, D. L. (1998). Larval Rearing Water and
Preexisting Eggs Influence Oviposition by Aedes aegypti and Ae.
albopictus (Diptera: Culicidae). J. Med. Entomol., 35 (6),
943-947. doi:10.1093/jmedent/35.6.943
Arbaoui, A., & Chua, T. (2014). Bacteria as a source of oviposition
attractant for Aedes aegypti mosquitoes. Trop Biomed.,
31 (1), 134-142.
Aubry, F., Martynow, D., Baidaliuk, A., Merkling, S., Dickson, L.,
Romero-Vivas, C., . . . Paupy, C. (2018). A worldwide survey ofAedes aegypti susceptibility to Zika virus sheds light on the
african exception to Zika emergence. Am. J. Trop. Med. Hyg.,
99 (4), 72-72.
Ayala, D., Fontaine, M. C., Cohuet, A., Fontenille, D., Vitalis, R., &
Simard, F. (2011). Chromosomal inversions, natural selection and
adaptation in the malaria vector Anopheles funestus . Mol.
Biol. Evol., 28 (1), 745-758.
Barrera, R., & Medialdea, V. (1996). Development time and resistance to
starvation of mosquito larvae. J. Nat. Hist., 30 (3), 447-458.
doi:10.1080/00222939600770231
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear
mixed-effects models using lme4. arXiv preprint arXiv:1406.5823 .
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg,
C. W., Nielsen, A., . . . Bolker, B. M. (2017). glmmTMB balances speed
and flexibility among packages for zero-inflated generalized linear
mixed modeling. The R journal, 9 (2), 378-400.
Brown, J. E., Evans, B. R., Zheng, W., Obas, V., Barrera-Martinez, L.,
Egizi, A., . . . Powell, J. R. (2014). Human impacts have shaped
historical and recent evolution in Aedes aegypti , the dengue and
yellow fever mosquito. Evolution, 68 (2), 514-525.
doi:10.1111/evo.12281
Brown, J. E., McBride, C. S., Johnson, P., Ritchie, S., Paupy, C.,
Bossin, H., . . . Powell, J. R. (2011). Worldwide patterns of genetic
differentiation imply multiple ’domestications’ of Aedes aegypti ,
a major vector of human diseases. Proc Biol Sci, 278 (1717),
2446-2454. doi:10.1098/rspb.2010.2469
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A.
J. A., & Holmes, S. P. (2016). DADA2: high-resolution sample inference
from Illumina amplicon data. Nat. Methods, 13 (7), 581.
Carvalho, F. D., & Moreira, L. A. (2017). Why is Aedes aegypti Linnaeus
so Successful as a Species? Neotrop. Entomol., 46 (3), 243-255.
doi:10.1007/s13744-017-0520-4
Chadee, D. D., Ward, R. A., & Novak, R. J. (1998). Natural habitats ofAedes aegypt i in the Caribbean–a review. J. Am. Mosq.
Control Assoc., 14 (1), 5-11.
Christophers, S. R. (1960). Aedes aegypti (L.) the yellow fever
mosquito: its life history, bionomics and structure : Cambridge
University Press, Cambridge, England.
Clements, A. N. (1999). The biology of mosquitoes. Volume 2:
sensory reception and behaviour : CABI publishing.
Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y.,
. . . Tiedje, J. M. (2014). Ribosomal Database Project: data and tools
for high throughput rRNA analysis. Nucleic Acids Res., 42 (D1),
D633-D642.
Colton, Y., Chadee, D., & Severson, D. (2003). Natural skip oviposition
of the mosquito Aedes aegypti indicated by codominant genetic markers.Med. Vet. Entomol., 17 (2), 195-204.
Correa, M. A., Matusovsky, B., Brackney, D. E., & Steven, B. (2018).
Generation of axenic Aedes aegypti demonstrate live bacteria are not
required for mosquito development. Nature Communications, 9 (1),
4464. doi:10.1038/s41467-018-07014-2
Crawford, J. E., Alves, J. M., Palmer, W. J., Day, J. P., Sylla, M.,
Ramasamy, R., . . . Jiggins, F. M. (2017). Population genomics reveals
that an anthropophilic population of Aedes aegypti mosquitoes in
West Africa recently gave rise to American and Asian populations of this
major disease vector. BMC Biol., 15 (1), 16.
Day, J. F. (2016). Mosquito oviposition behavior and vector control.Insects, 7 (4), 65.
Dickson, L. B., Jiolle, D., Minard, G., Moltini-Conclois, I., Volant,
S., Ghozlane, A., . . . Lambrechts, L. (2017). Carryover effects of
larval exposure to different environmental bacteria drive adult trait
variation in a mosquito vector. Science Advances, 3 (8), e1700585.
doi:10.1126/sciadv.1700585
Edgar, R. C. (2010). Search and clustering orders of magnitude faster
than BLAST. Bioinformatics, 26 (19), 2460-2461.
Fontenille, D., & Powell, J. R. (2020). From Anonymous to Public Enemy:
How Does a Mosquito Become a Feared Arbovirus Vector? Pathogens,
9 (4), 265.
Gimonneau, G., Bouyer, J., Morand, S., Besansky, N. J., Diabate, A., &
Simard, F. (2010). A behavioral mechanism underlying ecological
divergence in the malaria mosquito Anopheles gambiae. Behav.
Ecol., 21 (5), 1087-1092. doi:10.1093/beheco/arq114
Gloria‐Soria, A., Ayala, D., Bheecarry, A., Calderon‐Arguedas, O.,
Chadee, D. D., Chiappero, M., . . . Kamal, H. A. (2016). Global genetic
diversity of Aedes aegypti . Mol. Ecol., 25 (21), 5377-5395.
Goldford, J. E., Lu, N., Bajić, D., Estrela, S., Tikhonov, M.,
Sanchez-Gorostiaga, A., . . . Sanchez, A. (2018). Emergent simplicity in
microbial community assembly. Science, 361 (6401), 469-474.
doi:10.1126/science.aat1168
Harrington, L. C., Ponlawat, A., Edman, J. D., Scott, T. W., &
Vermeylen, F. (2008). Influence of container size, location, and time of
day on oviposition patterns of the dengue vector, Aedes aegypti, in
Thailand. Vector Borne Zoonotic Dis., 8 (3), 415-423.
doi:10.1089/vbz.2007.0203
Hoffmann, A. A., & Ross, P. A. (2018). Rates and patterns of laboratory
adaptation in (mostly) insects. J. Econ. Entomol., 111 (2),
501-509.
Johnson, M. T. J., & Munshi-South, J. (2017). Evolution of life in
urban environments. Science, 358 (6363), eaam8327.
doi:10.1126/science.aam8327
Kemp, A., & Jupp, P. (1991). Potential for dengue in South Africa:
Mosquito ecology with particular reference to Aedes aegypti. J.
Am. Mosq. Control Assoc., 7 (4), 574-583.
Kotsakiozi, P., Evans, B. R., Gloria‐Soria, A., Kamgang, B., Mayanja,
M., Lutwama, J., . . . Badolo, A. (2018). Population structure of a
vector of human diseases: Aedes aegypti in its ancestral range,
Africa. Ecol. Evol., 8 (16), 7835-7848.
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., &
Schloss, P. D. (2013). Development of a dual-index sequencing strategy
and curation pipeline for analyzing amplicon sequence data on the MiSeq
Illumina sequencing platform. Appl. Environ. Microbiol., 79 (17),
5112-5120.
Kramer, W. L., & Mulla, M. S. (1979). Oviposition attractants and
repellents of mosquitoes: oviposition responses of Culexmosquitoes to organic infusions. Environ. Entomol., 8 (6),
1111-1117.
Leahy, S. M., VandeHey, R., & Booth, K. (1978). Differential response
to oviposition site by feral and domestic populations of Aedes
aegypti (L.)(Diptera: Culicidae). Bull. Entomol. Res., 68 (03),
455-463.
Lenth, R., Singmann, H., & Love, J. (2018). Emmeans: estimated marginal
means, aka least-squares means. R package version, 1 (1).
Liaw, A., & Wiener, M. (2002). Classification and regression by
randomForest. R news, 2 (3), 18-22.
Lounibos, L. (1981). Habitat segregation among African treehole
mosquitoes. Ecol. Entomol., 6 (2), 129-154.
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome
biology, 15 (12), 550.
Mangudo, C., Aparicio, J. P., & Gleiser, R. M. (2015). Tree holes as
larval habitats for Aedes aegypti in urban, suburban and forest
habitats in a dengue affected area. Bull. Entomol. Res., 105 (6),
679-684.
McBride, C. S. (2016). Genes and odors underlying the recent evolution
of mosquito preference for humans. Curr. Biol., 26 (1), R41-R46.
McBride, C. S., Baier, F., Omondi, A. B., Spitzer, S. A., Lutomiah, J.,
Sang, R., . . . Vosshall, L. B. (2014). Evolution of mosquito preference
for humans linked to an odorant receptor. Nature, 515 (7526),
222-227. doi:10.1038/nature13964
McKinney, M. L. (2008). Effects of urbanization on species richness: A
review of plants and animals. Urban Ecosyst., 11 (2), 161-176.
doi:10.1007/s11252-007-0045-4
McMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for
reproducible interactive analysis and graphics of microbiome census
data. PloS one, 8 (4).
Nosil, P., Funk, D. J., & Ortiz‐Barrientos, D. (2009). Divergent
selection and heterogeneous genomic divergence. Mol. Ecol.,
18 (3), 375-402.
Otto, S. P. (2018). Adaptation, speciation and extinction in the
Anthropocene. Proceedings of the Royal Society B: Biological
Sciences, 285 (1891), 20182047. doi:doi:10.1098/rspb.2018.2047
Pamplona Lde, G., Alencar, C. H., Lima, J. W., & Heukelbach, J. (2009).
Reduced oviposition of Aedes aegypti gravid females in domestic
containers with predatory fish. Trop. Med. Int. Health, 14 (11),
1347-1350. doi:10.1111/j.1365-3156.2009.02377.x
Paupy, C., Brengues, C., Kamgang, B., Hervé, J.-P., Fontenille, D., &
Simard, F. (2014). Gene flow between domestic and sylvan populations ofAedes aegypti (Diptera: Culicidae) in North Cameroon. J.
Med. Entomol., 45 (3), 391-400.
Petersen, J. L. (1977). Behavioral Differences in Two Subspecies
of Aedes aegypti (L.) (Diptera: Culicidae) in East Africa. (Ph.D.
dissertation), University of Notre Dame, Indiana,
Ponnusamy, L., Schal, C., Wesson, D. M., Arellano, C., & Apperson, C.
S. (2015). Oviposition responses of Aedes mosquitoes to bacterial
isolates from attractive bamboo infusions. Parasites Vectors, 8 ,
486. doi:10.1186/s13071-015-1068-y
Ponnusamy, L., Wesson, D. M., Arellano, C., Schal, C., & Apperson, C.
S. (2010). Species composition of bacterial communities influences
attraction of mosquitoes to experimental plant infusions. Microb.
Ecol., 59 (1), 158-173.
Ponnusamy, L., Xu, N., Nojima, S., Wesson, D. M., Schal, C., &
Apperson, C. S. (2008). Identification of bacteria and
bacteria-associated chemical cues that mediate oviposition site
preferences by Aedes aegypti. Proc. Natl. Acad. Sci. U. S. A.,
105 (27), 9262-9267. doi:10.1073/pnas.0802505105
Powell, J. R., Gloria-Soria, A., & Kotsakiozi, P. (2018). Recent
history of Aedes aegypti : vector genomics and epidemiology
records. Bioscience, 68 (11), 854-860.
Powell, J. R., & Tabachnick, W. J. (2013). History of domestication and
spread of Aedes aegypti -A Review. Mem. Inst. Oswaldo Cruz,
108 , 11-17.
Qi, Y. (2012). Random forest for bioinformatics. In Ensemble
machine learning (pp. 307-323): Springer.
Ramette, A. (2007). Multivariate analyses in microbial ecology.FEMS Microbiol. Ecol., 62 (2), 142-160.
Refsnider, J. M., & Janzen, F. J. (2010). Putting Eggs in One Basket:
Ecological and Evolutionary Hypotheses for Variation in Oviposition-Site
Choice. Annu Rev Ecol Evol Syst, 41 (1), 39-57.
doi:10.1146/annurev-ecolsys-102209-144712
Reiskind, M. H., & Zarrabi, A. A. (2012). Water surface area and depth
determine oviposition choice in Aedes albopictus (Diptera: Culicidae).J. Med. Entomol., 49 (1), 71-76.
Rey, J. R., & O’Connell, S. M. (2014). Oviposition by Aedes aegypti and
Aedes albopictus: Influence of congeners and of oviposition site
characteristics. J. Vector Ecol., 39 (1), 190-196.
doi:https://doi.org/10.1111/j.1948-7134.2014.12086.x
Rose, N. H., Sylla, M., Badolo, A., Lutomiah, J., Ayala, D., Aribodor,
O. B., . . . McBride, C. S. (2020). Climate and Urbanization Drive
Mosquito Preference for Humans. Curr. Biol., 30 (18),
3570-3579.e3576. doi:https://doi.org/10.1016/j.cub.2020.06.092
Rueda, L. M. (2004). Pictorial keys for the identification of mosquitoes
(Diptera: Culicidae) associated with Dengue Virus Transmission.2004, 589 (1), 60. doi:10.11646/zootaxa.589.1.1
Saul, S. H., Novak, R. J., & Ross, Q. E. (1980). The role of the
preadult stages in the ecological separation of two subspecies of Aedes
aegypti. Am. Midl. Nat. , 118-134.
Schluter, D. (2000). The ecology of adaptive radiation : OUP
Oxford.
Servedio, M. R., Van Doorn, G. S., Kopp, M., Frame, A. M., & Nosil, P.
(2011). Magic traits in speciation:‘magic’but not rare? Trends
Ecol. Evol., 26 (8), 389-397.
Shafer, A., & Wolf, J. B. (2013). Widespread evidence for incipient
ecological speciation: a meta‐analysis of isolation‐by‐ecology.Ecol. Lett., 16 (7), 940-950.
Shannon, C. E. (1948). A mathematical theory of communication.Bell system technical journal, 27 (3), 379-423.
Singer, M. C. (2004). Oviposition preference: its definition,
measurement and correlates, and its use in assessing risk of host
shifts. Paper presented at the Proceedings of the XI International
Symposium on Biological Control of Weeds.
Soghigian, J., Andreadis, T. G., & Livdahl, T. P. (2017). From ground
pools to treeholes: convergent evolution of habitat and phenotype in
Aedes mosquitoes. BMC Evol. Biol., 17 (1), 262.
doi:10.1186/s12862-017-1092-y
Soghigian, J., Gloria‐Soria, A., Robert, V., Le Goff, G., Failloux, A.
B., & Powell, J. R. (2020). Genetic evidence for the origin ofAedes aegypti , the yellow fever mosquito, in the southwestern
Indian Ocean. Mol. Ecol., 29 (19), 3593-3606.
doi:10.1111/mec.15590
Soman, R. S., & Reuben, R. (1970). Studies on the preference shown by
ovipositing females of Aedes aegypti for water containing
immature stages of the same species. J. Med. Entomol., 7 (4),
485-489.
Souza, R. S., Virginio, F., Riback, T. I. S., Suesdek, L., Barufi, J.
B., & Genta, F. A. (2019). Microorganism-Based Larval Diets Affect
Mosquito Development, Size and Nutritional Reserves in the Yellow Fever
Mosquito Aedes aegypti (Diptera: Culicidae). Frontiers in
Physiology, 10 (152). doi:10.3389/fphys.2019.00152
Starrfelt, J., & Kokko, H. (2012). Bet‐hedging—a triple trade‐off
between means, variances and correlations. Biol. Rev., 87 (3),
742-755.
Swan, T., Lounibos, L., & Nishimura, N. (2018). Comparative oviposition
site selection in containers by Aedes aegypti and Aedes albopictus
(Diptera: Culicidae) from Florida. J. Med. Entomol., 55 (4),
795-800.
Sylla, M., Bosio, C., Urdaneta-Marquez, L., Ndiaye, M., & Black IV, W.
C. (2009). Gene flow, subspecies composition, and dengue virus-2
susceptibility among Aedes aegypti collections in Senegal.PLoS Negl. Trop. Dis., 3 (4), e408.
Szulkin, M., Munshi-South, J., & Charmantier, A. (2020). Urban
evolutionary biology : Oxford University Press, USA.
Tabachnick, W. J., Munstermann, L. E., & Powell, J. R. (1979). Genetic
distinctness of sympatric forms of Aedes aegypti in East Africa.Evolution , 287-295.
Trpis, M., & Hausermann, W. (1975). Demonstration of differential
domesticity of Aedes aegypti (L.)(Diptera, Culicidae) in Africa
by mark-release-recapture. Bull. Entomol. Res., 65 (02), 199-208.
Vezzani, D. (2007). Artificial container‐breeding mosquitoes and
cemeteries: a perfect match. Trop. Med. Int. Health, 12 (2),
299-313.
Vonesh, J. R., & Blaustein, L. (2010). Predator-induced shifts in
mosquito oviposition site selection: a meta-analysis and implications
for vector control. Isr J Ecol Evol, 56 (3-4), 263-279.
Wong, J., Morrison, A. C., Stoddard, S. T., Astete, H., Chu, Y. Y.,
Baseer, I., & Scott, T. W. (2012). Linking oviposition site choice to
offspring fitness in Aedes aegypti: consequences for targeted larval
control of dengue vectors. PLoS Negl. Trop. Dis., 6 (5), e1632.
doi:10.1371/journal.pntd.0001632
World Health Organization. (2014). A global brief on vector-borne
diseases . WHO, Geneva, Switzerland.
Xia, S. (2021). Laboratory Oviposition Choice of Aedes aegypti (Diptera:
Culicidae) From Kenya and Gabon: Effects of Conspecific Larvae,
Salinity, Shading, and Microbiome. J. Med. Entomol.doi:10.1093/jme/tjaa285
Xia, S., Cosme, L. V., Lutomiah, J., Sang, R., Ngangue, M. F., Rahola,
N., . . . Powell, J. R. (2020). Genetic structure of the mosquitoAedes aegypti in local forest and domestic habitats in Gabon and
Kenya. Parasites Vectors, 13 (1), 417.
doi:10.1186/s13071-020-04278-w
Yee, D. A. (2008). Tires as habitats for mosquitoes: a review of studies
within the eastern United States. J. Med. Entomol., 45 (4),
581-593.
Yee, D. A., Allgood, D., Kneitel, J. M., & Kuehn, K. A. (2012).
Constitutive Differences Between Natural and Artificial Container
Mosquito Habitats: Vector Communities, Resources, Microorganisms, and
Habitat Parameters. J. Med. Entomol., 49 (3), 482-491.
doi:10.1603/me11227
Zahiri, N., & Rau, M. E. (1998). Oviposition attraction and repellency
of Aedes aegypti (Diptera: Culicidae) to waters from conspecific
larvae subjected to crowding, confinement, starvation, or infection.J. Med. Entomol., 35 , 782-787.