Literature cited
Afify, A., & Galizia, C. G. (2015). Chemosensory cues for mosquito oviposition site selection. J. Med. Entomol., 52 (2), 120-130. doi:10.1093/jme/tju024
Albeny-Simoes, D., Murrell, E. G., Elliot, S. L., Andrade, M. R., Lima, E., Juliano, S. A., & Vilela, E. F. (2014). Attracted to the enemy:Aedes aegypti prefers oviposition sites with predator-killed conspecifics. Oecologia., 175 (2), 481-492. doi:10.1007/s00442-014-2910-1
Allan, S. A., & Kline, D. L. (1998). Larval Rearing Water and Preexisting Eggs Influence Oviposition by Aedes aegypti and Ae. albopictus (Diptera: Culicidae). J. Med. Entomol., 35 (6), 943-947. doi:10.1093/jmedent/35.6.943
Arbaoui, A., & Chua, T. (2014). Bacteria as a source of oviposition attractant for Aedes aegypti mosquitoes. Trop Biomed., 31 (1), 134-142.
Aubry, F., Martynow, D., Baidaliuk, A., Merkling, S., Dickson, L., Romero-Vivas, C., . . . Paupy, C. (2018). A worldwide survey ofAedes aegypti susceptibility to Zika virus sheds light on the african exception to Zika emergence. Am. J. Trop. Med. Hyg., 99 (4), 72-72.
Ayala, D., Fontaine, M. C., Cohuet, A., Fontenille, D., Vitalis, R., & Simard, F. (2011). Chromosomal inversions, natural selection and adaptation in the malaria vector Anopheles funestus . Mol. Biol. Evol., 28 (1), 745-758.
Barrera, R., & Medialdea, V. (1996). Development time and resistance to starvation of mosquito larvae. J. Nat. Hist., 30 (3), 447-458. doi:10.1080/00222939600770231
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823 .
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., . . . Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R journal, 9 (2), 378-400.
Brown, J. E., Evans, B. R., Zheng, W., Obas, V., Barrera-Martinez, L., Egizi, A., . . . Powell, J. R. (2014). Human impacts have shaped historical and recent evolution in Aedes aegypti , the dengue and yellow fever mosquito. Evolution, 68 (2), 514-525. doi:10.1111/evo.12281
Brown, J. E., McBride, C. S., Johnson, P., Ritchie, S., Paupy, C., Bossin, H., . . . Powell, J. R. (2011). Worldwide patterns of genetic differentiation imply multiple ’domestications’ of Aedes aegypti , a major vector of human diseases. Proc Biol Sci, 278 (1717), 2446-2454. doi:10.1098/rspb.2010.2469
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods, 13 (7), 581.
Carvalho, F. D., & Moreira, L. A. (2017). Why is Aedes aegypti Linnaeus so Successful as a Species? Neotrop. Entomol., 46 (3), 243-255. doi:10.1007/s13744-017-0520-4
Chadee, D. D., Ward, R. A., & Novak, R. J. (1998). Natural habitats ofAedes aegypt i in the Caribbean–a review. J. Am. Mosq. Control Assoc., 14 (1), 5-11.
Christophers, S. R. (1960). Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure : Cambridge University Press, Cambridge, England.
Clements, A. N. (1999). The biology of mosquitoes. Volume 2: sensory reception and behaviour : CABI publishing.
Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., . . . Tiedje, J. M. (2014). Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res., 42 (D1), D633-D642.
Colton, Y., Chadee, D., & Severson, D. (2003). Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers.Med. Vet. Entomol., 17 (2), 195-204.
Correa, M. A., Matusovsky, B., Brackney, D. E., & Steven, B. (2018). Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development. Nature Communications, 9 (1), 4464. doi:10.1038/s41467-018-07014-2
Crawford, J. E., Alves, J. M., Palmer, W. J., Day, J. P., Sylla, M., Ramasamy, R., . . . Jiggins, F. M. (2017). Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector. BMC Biol., 15 (1), 16.
Day, J. F. (2016). Mosquito oviposition behavior and vector control.Insects, 7 (4), 65.
Dickson, L. B., Jiolle, D., Minard, G., Moltini-Conclois, I., Volant, S., Ghozlane, A., . . . Lambrechts, L. (2017). Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Science Advances, 3 (8), e1700585. doi:10.1126/sciadv.1700585
Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26 (19), 2460-2461.
Fontenille, D., & Powell, J. R. (2020). From Anonymous to Public Enemy: How Does a Mosquito Become a Feared Arbovirus Vector? Pathogens, 9 (4), 265.
Gimonneau, G., Bouyer, J., Morand, S., Besansky, N. J., Diabate, A., & Simard, F. (2010). A behavioral mechanism underlying ecological divergence in the malaria mosquito Anopheles gambiae. Behav. Ecol., 21 (5), 1087-1092. doi:10.1093/beheco/arq114
Gloria‐Soria, A., Ayala, D., Bheecarry, A., Calderon‐Arguedas, O., Chadee, D. D., Chiappero, M., . . . Kamal, H. A. (2016). Global genetic diversity of Aedes aegypti . Mol. Ecol., 25 (21), 5377-5395.
Goldford, J. E., Lu, N., Bajić, D., Estrela, S., Tikhonov, M., Sanchez-Gorostiaga, A., . . . Sanchez, A. (2018). Emergent simplicity in microbial community assembly. Science, 361 (6401), 469-474. doi:10.1126/science.aat1168
Harrington, L. C., Ponlawat, A., Edman, J. D., Scott, T. W., & Vermeylen, F. (2008). Influence of container size, location, and time of day on oviposition patterns of the dengue vector, Aedes aegypti, in Thailand. Vector Borne Zoonotic Dis., 8 (3), 415-423. doi:10.1089/vbz.2007.0203
Hoffmann, A. A., & Ross, P. A. (2018). Rates and patterns of laboratory adaptation in (mostly) insects. J. Econ. Entomol., 111 (2), 501-509.
Johnson, M. T. J., & Munshi-South, J. (2017). Evolution of life in urban environments. Science, 358 (6363), eaam8327. doi:10.1126/science.aam8327
Kemp, A., & Jupp, P. (1991). Potential for dengue in South Africa: Mosquito ecology with particular reference to Aedes aegypti. J. Am. Mosq. Control Assoc., 7 (4), 574-583.
Kotsakiozi, P., Evans, B. R., Gloria‐Soria, A., Kamgang, B., Mayanja, M., Lutwama, J., . . . Badolo, A. (2018). Population structure of a vector of human diseases: Aedes aegypti in its ancestral range, Africa. Ecol. Evol., 8 (16), 7835-7848.
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol., 79 (17), 5112-5120.
Kramer, W. L., & Mulla, M. S. (1979). Oviposition attractants and repellents of mosquitoes: oviposition responses of Culexmosquitoes to organic infusions. Environ. Entomol., 8 (6), 1111-1117.
Leahy, S. M., VandeHey, R., & Booth, K. (1978). Differential response to oviposition site by feral and domestic populations of Aedes aegypti (L.)(Diptera: Culicidae). Bull. Entomol. Res., 68 (03), 455-463.
Lenth, R., Singmann, H., & Love, J. (2018). Emmeans: estimated marginal means, aka least-squares means. R package version, 1 (1).
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2 (3), 18-22.
Lounibos, L. (1981). Habitat segregation among African treehole mosquitoes. Ecol. Entomol., 6 (2), 129-154.
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 15 (12), 550.
Mangudo, C., Aparicio, J. P., & Gleiser, R. M. (2015). Tree holes as larval habitats for Aedes aegypti in urban, suburban and forest habitats in a dengue affected area. Bull. Entomol. Res., 105 (6), 679-684.
McBride, C. S. (2016). Genes and odors underlying the recent evolution of mosquito preference for humans. Curr. Biol., 26 (1), R41-R46.
McBride, C. S., Baier, F., Omondi, A. B., Spitzer, S. A., Lutomiah, J., Sang, R., . . . Vosshall, L. B. (2014). Evolution of mosquito preference for humans linked to an odorant receptor. Nature, 515 (7526), 222-227. doi:10.1038/nature13964
McKinney, M. L. (2008). Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst., 11 (2), 161-176. doi:10.1007/s11252-007-0045-4
McMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS one, 8 (4).
Nosil, P., Funk, D. J., & Ortiz‐Barrientos, D. (2009). Divergent selection and heterogeneous genomic divergence. Mol. Ecol., 18 (3), 375-402.
Otto, S. P. (2018). Adaptation, speciation and extinction in the Anthropocene. Proceedings of the Royal Society B: Biological Sciences, 285 (1891), 20182047. doi:doi:10.1098/rspb.2018.2047
Pamplona Lde, G., Alencar, C. H., Lima, J. W., & Heukelbach, J. (2009). Reduced oviposition of Aedes aegypti gravid females in domestic containers with predatory fish. Trop. Med. Int. Health, 14 (11), 1347-1350. doi:10.1111/j.1365-3156.2009.02377.x
Paupy, C., Brengues, C., Kamgang, B., Hervé, J.-P., Fontenille, D., & Simard, F. (2014). Gene flow between domestic and sylvan populations ofAedes aegypti (Diptera: Culicidae) in North Cameroon. J. Med. Entomol., 45 (3), 391-400.
Petersen, J. L. (1977). Behavioral Differences in Two Subspecies of Aedes aegypti (L.) (Diptera: Culicidae) in East Africa. (Ph.D. dissertation), University of Notre Dame, Indiana,
Ponnusamy, L., Schal, C., Wesson, D. M., Arellano, C., & Apperson, C. S. (2015). Oviposition responses of Aedes mosquitoes to bacterial isolates from attractive bamboo infusions. Parasites Vectors, 8 , 486. doi:10.1186/s13071-015-1068-y
Ponnusamy, L., Wesson, D. M., Arellano, C., Schal, C., & Apperson, C. S. (2010). Species composition of bacterial communities influences attraction of mosquitoes to experimental plant infusions. Microb. Ecol., 59 (1), 158-173.
Ponnusamy, L., Xu, N., Nojima, S., Wesson, D. M., Schal, C., & Apperson, C. S. (2008). Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proc. Natl. Acad. Sci. U. S. A., 105 (27), 9262-9267. doi:10.1073/pnas.0802505105
Powell, J. R., Gloria-Soria, A., & Kotsakiozi, P. (2018). Recent history of Aedes aegypti : vector genomics and epidemiology records. Bioscience, 68 (11), 854-860.
Powell, J. R., & Tabachnick, W. J. (2013). History of domestication and spread of Aedes aegypti -A Review. Mem. Inst. Oswaldo Cruz, 108 , 11-17.
Qi, Y. (2012). Random forest for bioinformatics. In Ensemble machine learning (pp. 307-323): Springer.
Ramette, A. (2007). Multivariate analyses in microbial ecology.FEMS Microbiol. Ecol., 62 (2), 142-160.
Refsnider, J. M., & Janzen, F. J. (2010). Putting Eggs in One Basket: Ecological and Evolutionary Hypotheses for Variation in Oviposition-Site Choice. Annu Rev Ecol Evol Syst, 41 (1), 39-57. doi:10.1146/annurev-ecolsys-102209-144712
Reiskind, M. H., & Zarrabi, A. A. (2012). Water surface area and depth determine oviposition choice in Aedes albopictus (Diptera: Culicidae).J. Med. Entomol., 49 (1), 71-76.
Rey, J. R., & O’Connell, S. M. (2014). Oviposition by Aedes aegypti and Aedes albopictus: Influence of congeners and of oviposition site characteristics. J. Vector Ecol., 39 (1), 190-196. doi:https://doi.org/10.1111/j.1948-7134.2014.12086.x
Rose, N. H., Sylla, M., Badolo, A., Lutomiah, J., Ayala, D., Aribodor, O. B., . . . McBride, C. S. (2020). Climate and Urbanization Drive Mosquito Preference for Humans. Curr. Biol., 30 (18), 3570-3579.e3576. doi:https://doi.org/10.1016/j.cub.2020.06.092
Rueda, L. M. (2004). Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with Dengue Virus Transmission.2004, 589 (1), 60. doi:10.11646/zootaxa.589.1.1
Saul, S. H., Novak, R. J., & Ross, Q. E. (1980). The role of the preadult stages in the ecological separation of two subspecies of Aedes aegypti. Am. Midl. Nat. , 118-134.
Schluter, D. (2000). The ecology of adaptive radiation : OUP Oxford.
Servedio, M. R., Van Doorn, G. S., Kopp, M., Frame, A. M., & Nosil, P. (2011). Magic traits in speciation:‘magic’but not rare? Trends Ecol. Evol., 26 (8), 389-397.
Shafer, A., & Wolf, J. B. (2013). Widespread evidence for incipient ecological speciation: a meta‐analysis of isolation‐by‐ecology.Ecol. Lett., 16 (7), 940-950.
Shannon, C. E. (1948). A mathematical theory of communication.Bell system technical journal, 27 (3), 379-423.
Singer, M. C. (2004). Oviposition preference: its definition, measurement and correlates, and its use in assessing risk of host shifts. Paper presented at the Proceedings of the XI International Symposium on Biological Control of Weeds.
Soghigian, J., Andreadis, T. G., & Livdahl, T. P. (2017). From ground pools to treeholes: convergent evolution of habitat and phenotype in Aedes mosquitoes. BMC Evol. Biol., 17 (1), 262. doi:10.1186/s12862-017-1092-y
Soghigian, J., Gloria‐Soria, A., Robert, V., Le Goff, G., Failloux, A. B., & Powell, J. R. (2020). Genetic evidence for the origin ofAedes aegypti , the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol., 29 (19), 3593-3606. doi:10.1111/mec.15590
Soman, R. S., & Reuben, R. (1970). Studies on the preference shown by ovipositing females of Aedes aegypti for water containing immature stages of the same species. J. Med. Entomol., 7 (4), 485-489.
Souza, R. S., Virginio, F., Riback, T. I. S., Suesdek, L., Barufi, J. B., & Genta, F. A. (2019). Microorganism-Based Larval Diets Affect Mosquito Development, Size and Nutritional Reserves in the Yellow Fever Mosquito Aedes aegypti (Diptera: Culicidae). Frontiers in Physiology, 10 (152). doi:10.3389/fphys.2019.00152
Starrfelt, J., & Kokko, H. (2012). Bet‐hedging—a triple trade‐off between means, variances and correlations. Biol. Rev., 87 (3), 742-755.
Swan, T., Lounibos, L., & Nishimura, N. (2018). Comparative oviposition site selection in containers by Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Florida. J. Med. Entomol., 55 (4), 795-800.
Sylla, M., Bosio, C., Urdaneta-Marquez, L., Ndiaye, M., & Black IV, W. C. (2009). Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal.PLoS Negl. Trop. Dis., 3 (4), e408.
Szulkin, M., Munshi-South, J., & Charmantier, A. (2020). Urban evolutionary biology : Oxford University Press, USA.
Tabachnick, W. J., Munstermann, L. E., & Powell, J. R. (1979). Genetic distinctness of sympatric forms of Aedes aegypti in East Africa.Evolution , 287-295.
Trpis, M., & Hausermann, W. (1975). Demonstration of differential domesticity of Aedes aegypti (L.)(Diptera, Culicidae) in Africa by mark-release-recapture. Bull. Entomol. Res., 65 (02), 199-208.
Vezzani, D. (2007). Artificial container‐breeding mosquitoes and cemeteries: a perfect match. Trop. Med. Int. Health, 12 (2), 299-313.
Vonesh, J. R., & Blaustein, L. (2010). Predator-induced shifts in mosquito oviposition site selection: a meta-analysis and implications for vector control. Isr J Ecol Evol, 56 (3-4), 263-279.
Wong, J., Morrison, A. C., Stoddard, S. T., Astete, H., Chu, Y. Y., Baseer, I., & Scott, T. W. (2012). Linking oviposition site choice to offspring fitness in Aedes aegypti: consequences for targeted larval control of dengue vectors. PLoS Negl. Trop. Dis., 6 (5), e1632. doi:10.1371/journal.pntd.0001632
World Health Organization. (2014). A global brief on vector-borne diseases . WHO, Geneva, Switzerland.
Xia, S. (2021). Laboratory Oviposition Choice of Aedes aegypti (Diptera: Culicidae) From Kenya and Gabon: Effects of Conspecific Larvae, Salinity, Shading, and Microbiome. J. Med. Entomol.doi:10.1093/jme/tjaa285
Xia, S., Cosme, L. V., Lutomiah, J., Sang, R., Ngangue, M. F., Rahola, N., . . . Powell, J. R. (2020). Genetic structure of the mosquitoAedes aegypti in local forest and domestic habitats in Gabon and Kenya. Parasites Vectors, 13 (1), 417. doi:10.1186/s13071-020-04278-w
Yee, D. A. (2008). Tires as habitats for mosquitoes: a review of studies within the eastern United States. J. Med. Entomol., 45 (4), 581-593.
Yee, D. A., Allgood, D., Kneitel, J. M., & Kuehn, K. A. (2012). Constitutive Differences Between Natural and Artificial Container Mosquito Habitats: Vector Communities, Resources, Microorganisms, and Habitat Parameters. J. Med. Entomol., 49 (3), 482-491. doi:10.1603/me11227
Zahiri, N., & Rau, M. E. (1998). Oviposition attraction and repellency of Aedes aegypti (Diptera: Culicidae) to waters from conspecific larvae subjected to crowding, confinement, starvation, or infection.J. Med. Entomol., 35 , 782-787.