References
- M. Abdel-Basset, M. Gunasekaran, M. Mohamed, F. Smarandache, A novel
method for solving the fully neutrosophic linear programming problems.
Neural Comput. Appl. (2018).
https://doi.org/10.1007/s00521-018-3404-6.
- K.T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20
(1986) pp. 87–96.
- K.T. Atanassov, G. Gargov, Interval-valued intuitionistic fuzzy sets.
Fuzzy Sets Sys. 31 (1989) pp. 343–349.
- H. Garg, A novel accuracy function under interval-valued pythagorean
fuzzy environment for solving multicriteria decision making problem.
J. Intell. Fuzzy Syst. 31 (1) (2016) pp. 529–540.
- H. Garg, A novel improved accuracy function for interval-valued
Pythagorean fuzzy sets and its applications in the decision-making
process. Int. J. Intell. Syst. 32 (12) (2017) pp. 1247–1260.
- H. Garg, A new improved score function of an interval-valued
Pythagorean fuzzy set based TOPSIS method. Int. J. Uncertainty
Quantification. 7 (5) (2017) pp. 463-474.
- H. Garg, A linear programming method based on an improved score
function for interval-valued Pythagorean fuzzy numbers and its
application to decision-making. Int. J. Uncertain. Fuzziness.
Knowl.-Based Syst. 26 (1) (2018) pp. 67-80.
- D.-F. Li, Multiattribute decision making models and methods using
intuitionistic fuzzy sets. J. Comput. Syst. Sci. 70 (2005) pp. 73–85.
- L. Lin, X.-H. Yuan, Z.-Q. Xia, Multicriteria decision-making methods
based on intuitionistic fuzzy sets. J. Comput. Syst. Sci. 73
(2007) pp. 84–88.
- Nancy, H. Garg, An improved score function for ranking neutrosophic
sets and its application to decision-making process. Int. J.
Uncertainty Quantification. 6 (5) (2016) pp. 377-385.
- X. Peng, Y. Yang, Some results for Pythagorean fuzzy sets. Int. J.
Intell. Syst. 30 (11) (2015) pp. 1133– 1160.
- X. Peng, Y. Yang, Fundamental properties of interval-valued
Pythagorean fuzzy aggregation operators. Int. J. Intell. Syst. 31 (5)
(2015) pp. 444-487.
- R. Sahin, Multi-criteria neutrosophic decision making method based on
score and accuracy functions under neutrosophic environment, (Dec 17,
2014). http://arxiv.org/abs/1412.5202.
- A. Singh, A. Kumar, S. S. Appadoo, Modified approach for optimization
of real life transportation problem in neutrosophic environment. Math.
Probl. Eng. 2017 Article ID 2139791 (2017) 9 pages.
- A. Singh, A. Kumar, S. S. Appadoo, A novel method for solving the
fully neutrosophic linear programming problems: Suggested
modifications. J. Intell. Fuzzy Syst. 37 (2019) pp. 885–895.
- A. Singh, N. Singh, A note on “A novel accuracy function under
interval-valued Pythagorean fuzzy environment for solving
multi-criteria decision-making problem”. Int. J Resea Engi Sci Mg. 3
(5) (May 2020) pp. 1235-1237.
https://www.ijresm.com/volume-3-issue-5-may-2020/
- A. Singh, N. Singh, A note on “A novel improved accuracy function for
interval-valued Pythagorean fuzzy sets and its applications in
decision-making process”. Int J Emerging Tech. Inno. Resea.7 (6), pp. 900-902, ISSN:2349-5162, 2020.
DOI:http://doi.one/10.1729/Journal.23774.
- F. Smarandache, A Unifying Field in Logics. Neutrosophy: Neutrosophic
Probability, Set and Logic, Rehoboth, American Research Press, 1999.
- F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic.
Multi-Valued Logic, 8 (2002) pp. 385-438.
- F. Smarandache, Neutrosophic set, a generalization of the
intuitionistic fuzzy set. Int. J. Pure Appl. Math. 24 (2005) pp.
287–297.
- A. Thamaraiselvi, R. Santhi, A new approach for optimization of real
life transportation problem in neutrosophic environment. Math. Probl.
Eng. 2016, Article ID 5950747 (2016) 9 pages.
- H. Wang, F. Smarandache, Y.Q. Zhang, R. Sunderraman, Interval
Neutrosophic Sets and Logic: Theory and Applications in Computing,
Phoenix, AZ: Hexis, 2005.
- H. Wang, F. Smarandache, Y.Q. Zhang, R. Sunderraman, Single valued
neutrosophic sets, Multispace Multistruct. 4 (2010) pp. 410–413.
- R.R. Yager, Pythagorean fuzzy subsets. In Proc.: Joint IFSA World
Congress and NAFIPS Annual Meeting (IFSA/NAFIPS) 2013 June 24,Edmonton, Canada, pp. 57–61, IEEE 2013.
- R.R. Yager, Pythagorean membership grades in multicriteria decision
making. IEEE Transa. Fuzzy Syst. 22 ( 2014) pp.
958–965.
- R.R. Yager, A.M. Abbasov, Pythagorean membership grades, complex
numbers and decision making. Int. J. Intell. Sys. 28 (2013) pp.
436–452.
- L.A. Zadeh, Fuzzy sets. Inf. Control. 8 (1965) pp. 338–353.
- L.A. Zadeh, Fuzzy sets and systems. Int. J. Gen. Syst. 17 (1965) pp.
129-138.
- L.A. Zadeh, Is there a need for fuzzy logic? Inf. Sci. 178 (2008) pp.
2751–2779.
- F. Zhang, Y. Ge, H. Garg, L. Luo, Commentary on “A new generalized
improved score function of interval-valued intuitionistic fuzzy sets
and applications in expert systems” [Appl. Soft Comput., 2016 (38)
988-999]. Appl. Soft Comput. 52 (2017) pp. 48–52.
- X.L. Zhang, Z.S. Xu, Extension of TOPSIS to multi-criteria decision
making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 29 (2014)
pp. 1061–1078.
- X. Zhang, Multi-criteria Pythagorean fuzzy decision analysis: A
hierarchical QULAIFLEX approach with the closeness index based
ranking. Inf. Sci. 330 (2016) pp. 104-124.