References
  1. M. Abdel-Basset, M. Gunasekaran, M. Mohamed, F. Smarandache, A novel method for solving the fully neutrosophic linear programming problems. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3404-6.
  2. K.T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20 (1986) pp. 87–96.
  3. K.T. Atanassov, G. Gargov, Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Sys. 31 (1989) pp. 343–349.
  4. H. Garg, A novel accuracy function under interval-valued pythagorean fuzzy environment for solving multicriteria decision making problem. J. Intell. Fuzzy Syst. 31 (1) (2016) pp. 529–540.
  5. H. Garg, A novel improved accuracy function for interval-valued Pythagorean fuzzy sets and its applications in the decision-making process. Int. J. Intell. Syst. 32 (12) (2017) pp. 1247–1260.
  6. H. Garg, A new improved score function of an interval-valued Pythagorean fuzzy set based TOPSIS method. Int. J. Uncertainty Quantification. 7 (5) (2017) pp. 463-474.
  7. H. Garg, A linear programming method based on an improved score function for interval-valued Pythagorean fuzzy numbers and its application to decision-making. Int. J. Uncertain. Fuzziness. Knowl.-Based Syst. 26 (1) (2018) pp. 67-80.
  8. D.-F. Li, Multiattribute decision making models and methods using intuitionistic fuzzy sets. J. Comput. Syst. Sci. 70 (2005) pp. 73–85.
  9. L. Lin, X.-H. Yuan, Z.-Q. Xia, Multicriteria decision-making methods based on intuitionistic fuzzy sets. J. Comput. Syst. Sci. 73 (2007) pp. 84–88.
  10. Nancy, H. Garg, An improved score function for ranking neutrosophic sets and its application to decision-making process. Int. J. Uncertainty Quantification. 6 (5) (2016) pp. 377-385.
  11. X. Peng, Y. Yang, Some results for Pythagorean fuzzy sets. Int. J. Intell. Syst. 30 (11) (2015) pp. 1133– 1160.
  12. X. Peng, Y. Yang, Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators. Int. J. Intell. Syst. 31 (5) (2015) pp. 444-487.
  13. R. Sahin, Multi-criteria neutrosophic decision making method based on score and accuracy functions under neutrosophic environment, (Dec 17, 2014). http://arxiv.org/abs/1412.5202.
  14. A. Singh, A. Kumar, S. S. Appadoo, Modified approach for optimization of real life transportation problem in neutrosophic environment. Math. Probl. Eng. 2017 Article ID 2139791 (2017) 9 pages.
  15. A. Singh, A. Kumar, S. S. Appadoo, A novel method for solving the fully neutrosophic linear programming problems: Suggested modifications. J. Intell. Fuzzy Syst. 37 (2019) pp. 885–895.
  16. A. Singh, N. Singh, A note on “A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multi-criteria decision-making problem”. Int. J Resea Engi Sci Mg. 3 (5) (May 2020) pp. 1235-1237. https://www.ijresm.com/volume-3-issue-5-may-2020/
  17. A. Singh, N. Singh, A note on “A novel improved accuracy function for interval-valued Pythagorean fuzzy sets and its applications in decision-making process”. Int J Emerging Tech. Inno. Resea.7 (6), pp. 900-902, ISSN:2349-5162, 2020. DOI:http://doi.one/10.1729/Journal.23774.
  18. F. Smarandache, A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic, Rehoboth, American Research Press, 1999.
  19. F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Multi-Valued Logic, 8 (2002) pp. 385-438.
  20. F. Smarandache, Neutrosophic set, a generalization of the intuitionistic fuzzy set. Int. J. Pure Appl. Math. 24 (2005) pp. 287–297.
  21. A. Thamaraiselvi, R. Santhi, A new approach for optimization of real life transportation problem in neutrosophic environment. Math. Probl. Eng. 2016, Article ID 5950747 (2016) 9 pages.
  22. H. Wang, F. Smarandache, Y.Q. Zhang, R. Sunderraman, Interval Neutrosophic Sets and Logic: Theory and Applications in Computing, Phoenix, AZ: Hexis, 2005.
  23. H. Wang, F. Smarandache, Y.Q. Zhang, R. Sunderraman, Single valued neutrosophic sets, Multispace Multistruct. 4 (2010) pp. 410–413.
  24. R.R. Yager, Pythagorean fuzzy subsets. In Proc.: Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS) 2013 June 24,Edmonton, Canada, pp. 57–61, IEEE 2013.
  25. R.R. Yager, Pythagorean membership grades in multicriteria decision making. IEEE Transa. Fuzzy Syst. 22 ( 2014) pp. 958–965.
  26. R.R. Yager, A.M. Abbasov, Pythagorean membership grades, complex numbers and decision making. Int. J. Intell. Sys. 28 (2013) pp. 436–452.
  27. L.A. Zadeh, Fuzzy sets. Inf. Control. 8 (1965) pp. 338–353.
  28. L.A. Zadeh, Fuzzy sets and systems. Int. J. Gen. Syst. 17 (1965) pp. 129-138.
  29. L.A. Zadeh, Is there a need for fuzzy logic? Inf. Sci. 178 (2008) pp. 2751–2779.
  30. F. Zhang, Y. Ge, H. Garg, L. Luo, Commentary on “A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems” [Appl. Soft Comput., 2016 (38) 988-999]. Appl. Soft Comput. 52 (2017) pp. 48–52.
  31. X.L. Zhang, Z.S. Xu, Extension of TOPSIS to multi-criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 29 (2014) pp. 1061–1078.
  32. X. Zhang, Multi-criteria Pythagorean fuzzy decision analysis: A hierarchical QULAIFLEX approach with the closeness index based ranking. Inf. Sci. 330 (2016) pp. 104-124.