References
Amann, R., & Fuchs, B. M. (2008). Single-cell identification in
microbial communities by improved fluorescence in situhybridization techniques. Nature Reviews Microbiology, 6(5), 339-348.
Barnes, M. A. & Turner, C. R. (2016). The ecology of environmental DNA
and implications for conservation genetics. Conservation Genetics,
17(1), 1-17.
Bylemans, J., Furlan, E. M., Gleeson, D. M., Hardy, C. M., & Duncan, R.
P. (2018). Does size matter? An experimental evaluation of the relative
abundance and decay rates of aquatic environmental DNA. Environmental
Science & Technology, 52(11), 6408-6416.
Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E., & Rinaldo, A.
(2018). Estimating species distribution and abundance in river networks
using environmental DNA. Proceedings of the National Academy of
Sciences, 115(46), 11724-11729.
Del Re, A. C. & Hoyt, W. T. (2018). MAc: Meta-Analysis with
Correlations. R package version 1.1.1.
https://CRAN.R-project.org/package=Mac
Eichmiller, J. J., Miller, L. M., & Sorensen, P. W. (2016). Optimizing
techniques to capture and extract environmental DNA for detection and
quantification of fish. Molecular Ecology Resources, 16(1), 56-68.
Ellison, S. L., English, C. A., Burns, M. J., & Keer, J. T. (2006).
Routes to improving the reliability of low level DNA analysis using
real-time PCR. BMC Biotechnology, 6(1), 1-11.
Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008).
Species detection using environmental DNA from water samples. Biology
Letters, 4(4), 423-425.
Fukaya, K., Murakami, H., Yoon, S., Minami, K., Osada, Y., Yamamoto, S.,
… & Kondoh, M. (2021). Estimating fish population abundance by
integrating quantitative data on environmental DNA and hydrodynamic
modelling. Molecular Ecology, 30(13), 3057-3067.
Furlan, E. M., Gleeson, D., Hardy, C. M., & Duncan, R. P. (2016). A
framework for estimating the sensitivity of eDNA surveys. Molecular
Ecology Resources, 16(3), 641-654.
Hänfling, B., Lawson Handley, L., Read, D. S., Hahn, C., Li, J.,
Nichols, P., … & Winfield, I. J. (2016). Environmental DNA
metabarcoding of lake fish communities reflects long‐term data from
established survey methods. Molecular Ecology, 25(13), 3101-3119.
Hansen, B. K., Bekkevold, D., Clausen, L. W., & Nielsen, E. E. (2018).
The sceptical optimist: challenges and perspectives for the application
of environmental DNA in marine fisheries. Fish and Fisheries, 19(5),
751-768.
Harper, L. R., Buxton, A. S., Rees, H. C., Bruce, K., Brys, R.,
Halfmaerten, D., … & Hänfling, B. (2019). Prospects and challenges of
environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia,
826(1), 25-41.
Harrison, J. B., Sunday, J. M., & Rogers, S. M. (2019). Predicting the
fate of eDNA in the environment and implications for studying
biodiversity. Proceedings of the Royal Society B, 286(1915), 20191409.
Hirohara, T., Tsuri, K., Miyagawa, K., Paine, R. T., & Yamanaka, H.
(2021). The Application of PMA (Propidium Monoazide) to Different Target
Sequence Lengths of Zebrafish eDNA: A New Approach Aimed Toward
Improving Environmental DNA Ecology and Biological Surveillance.
Frontiers in Ecology and Evolution, 9, 277.
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2019).
Particle size distribution of environmental DNA from the nuclei of
marine fish. Environmental Science & Technology, 53(16), 9947-9956.
Jo, T., Fukuoka, A., Uchida, K., Ushimaru, A., & Minamoto, T. (2020a).
Multiplex real-time PCR enables the simultaneous detection of
environmental DNA from freshwater fishes: a case study of three exotic
and three threatened native fishes in Japan. Biological Invasions,
22(2), 455-471.
Jo, T., & Minamoto, T. (2021). Complex interactions between
environmental DNA (eDNA) state and water chemistries on eDNA persistence
suggested by meta‐analyses. Molecular Ecology Resources, 21(5),
1490-1503.
Jo, T., Murakami, H., Masuda, R., & Minamoto, T. (2020b). Selective
collection of long fragments of environmental DNA using larger pore size
filter. Science of the Total Environment, 735, 139462.
Jo, T., Murakami, H., Masuda, R., Sakata, M. K., Yamamoto, S., &
Minamoto, T. (2017). Rapid degradation of longer DNA fragments enables
the improved estimation of distribution and biomass using environmental
DNA. Molecular Ecology Resources, 17(6), e25-e33.
Jo, T., Sakata, M. K., Murakami, H., Masuda, R., & Minamoto, T.
(2021b). Universal performance of benzalkonium chloride for the
preservation of environmental DNA in seawater samples. Limnology and
Oceanography: Methods, 19(11), 758-768.
Jo, T., Takao, K., & Minamoto, T. (2021a). Linking the state of
environmental DNA to its application for biomonitoring and stock
assessment: Targeting mitochondrial/nuclear genes, and different DNA
fragment lengths and particle sizes. Environmental DNA, in press.
https://doi.org/10.1002/edn3.253
Kogure, T., Karasawa, S., Araki, T., Saito, K., Kinjo, M., & Miyawaki,
A. (2006). A fluorescent variant of a protein from the stony coral
Montipora facilitates dual-color single-laser fluorescence
cross-correlation spectroscopy. Nature Biotechnology, 24(5), 577-581.
Kumar, G., Farrell, E., Reaume, A. M., Eble, J. A., & Gaither, M. R.
(2021). One size does not fit all: Tuning eDNA protocols for high‐and
low‐turbidity water sampling. Environmental DNA, in press.
https://doi.org/10.1002/edn3.235
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017).
lmerTest Package: Tests in Linear Mixed Effects Models. Journal of
Statistical Software, 82(13), 1-26.
Levi, T., Allen, J. M., Bell, D., Joyce, J., Russell, J. R., Tallmon, D.
A., … & Yu, D. W. (2019). Environmental DNA for the enumeration and
management of Pacific salmon. Molecular Ecology Resources, 19(3),
597-608.
Levy-Booth, D. J., Campbell, R. G., Gulden, R. H., Hart, M. M., Powell,
J. R., Klironomos, J. N., … & Dunfield, K. E. (2007). Cycling of
extracellular DNA in the soil environment. Soil Biology and
Biochemistry, 39(12), 2977-2991.
Lopes, C. M., Baêta, D., Valentini, A., Lyra, M. L., Sabbag, A. F.,
Gasparini, J. L., … & Zamudio, K. R. (2021). Lost and found: Frogs in
a biodiversity hotspot rediscovered with environmental DNA. Molecular
Ecology, 30(13), 3289-3298.
Minamoto, T., Hayami, K., Sakata, M. K., & Imamura, A. (2019).
Real‐time polymerase chain reaction assays for environmental DNA
detection of three salmonid fish in Hokkaido, Japan: Application to
winter surveys. Ecological Research, 34(1), 237-242.
Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K.,
… & Iwasaki, W. (2015). MiFish, a set of universal PCR primers for
metabarcoding environmental DNA from fishes: detection of more than 230
subtropical marine species. Royal Society Open Science, 2(7), 150088.
Pawlowski, J., Apothéloz‐Perret‐Gentil, L., & Altermatt, F. (2020).
Environmental DNA: What’s behind the term? Clarifying the terminology
and recommendations for its future use in biomonitoring. Molecular
Ecology, 29(22), 4258-4264.
Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2013).
Estimating occupancy and abundance of stream amphibians using
environmental DNA from filtered water samples. Canadian Journal of
Fisheries and Aquatic Sciences, 70(8), 1123-1130.
Ponce, J. J., Arismendi, I., & Thomas, A. (2021). Using in-situ
environmental DNA sampling to detect the invasive New Zealand Mud Snail
(Potamopyrgus antipodarum ) in freshwaters. PeerJ, 9, e11835.
R Core Team. (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/.
Rodriguez‐Ezpeleta, N., Morissette, O., Bean, C. W., Manu, S., Banerjee,
P., Lacoursière‐Roussel, A., … & Deiner, K. (2021). Trade‐offs
between reducing complex terminology and producing accurate
interpretations from environmental DNA: Comment on “Environmental DNA:
What’s behind the term?” by Pawlowski et al., (2020). Molecular
Ecology, 30(19), 4601-4605.
Roussel, J. M., Paillisson, J. M., Treguier, A., & Petit, E. (2015).
The downside of eDNA as a survey tool in water bodies. Journal of
Applied Ecology, 52(4), 823-826.
Shogren, A. J., Tank, J. L., Andruszkiewicz, E. A., Olds, B., Jerde, C.,
& Bolster, D. (2016). Modelling the transport of environmental DNA
through a porous substrate using continuous flow-through column
experiments. Journal of the Royal Society Interface, 13(119), 20160290.
Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z.
(2012). Estimation of fish biomass using environmental DNA. PLoS ONE,
7(4), e35868.
Takasaki, K., Aihara, H., Imanaka, T., Matsudaira, T., Tsukahara, K.,
Usui, A., … & Doi, H. (2021). Water pre-filtration methods to improve
environmental DNA detection by real-time PCR and metabarcoding. PLos
ONE, 16(5), e0250162.
Thomsen, P. F., Kielgast, J., Iversen, L. L., Møller, P. R., Rasmussen,
M., & Willerslev, E. (2012). Detection of a diverse marine fish fauna
using environmental DNA from seawater samples. PLoS ONE, 7(8), e41732.
Torti, A., Lever, M. A., & Jørgensen, B. B. (2015). Origin, dynamics,
and implications of extracellular DNA pools in marine sediments. Marine
Genomics, 24, 185-196.
Tsuri, K., Ikeda, S., Hirohara, T., Shimada, Y., Minamoto, T., &
Yamanaka, H. (2021). Messenger RNA typing of environmental RNA (eRNA): A
case study on zebrafish tank water with perspectives for the future
development of eRNA analysis on aquatic vertebrates. Environmental DNA,
3(1), 14-21.
Turner, C. R., Barnes, M. A., Xu, C. C., Jones, S. E., Jerde, C. L., &
Lodge, D. M. (2014). Particle size distribution and optimal capture of
aqueous macrobial eDNA. Methods in Ecology and Evolution, 5(7), 676-684.
Ushio, M., Murata, K., Sado, T., Nishiumi, I., Takeshita, M., Iwasaki,
W., & Miya, M. (2018). Demonstration of the potential of environmental
DNA as a tool for the detection of avian species. Scientific reports, 8,
4493.
Uthicke, S., Lamare, M., & Doyle, J. R. (2018). eDNA detection of
corallivorous seastar (Acanthaster cf. solaris ) outbreaks on the
Great Barrier Reef using digital droplet PCR. Coral Reefs, 37(4),
1229-1239.
Valentin, R. E., Fonseca, D. M., Gable, S., Kyle, K. E., Hamilton, G.
C., Nielsen, A. L., & Lockwood, J. L. (2020). Moving eDNA surveys onto
land: Strategies for active eDNA aggregation to detect invasive forest
insects. Molecular Ecology Resources, 20(3), 746-755.
Wu, Q., Kawano, K., Uehara, Y., Okuda, N., Hongo, M., Tsuji, S., … &
Minamoto, T. (2018). Environmental DNA reveals nonmigratory individuals
of Palaemon paucidens overwintering in Lake Biwa shallow waters.
Freshwater Science, 37(2), 307-314.
Yamanaka, H. & Minamoto, T. (2016). The use of environmental DNA of
fishes as an efficient method of determining habitat connectivity.
Ecological Indicators, 62, 147-153.
Yamanaka, H., Minamoto, T., Matsuura, J., Sakurai, S., Tsuji, S.,
Motozawa, H., … & Kondo, A. (2017). A simple method for preserving
environmental DNA in water samples at ambient temperature by addition of
cationic surfactant. Limnology, 18(2), 233-241.
Yates, M. C., Cristescu, M. E., & Derry, A. M. (2021). Integrating
physiology and environmental dynamics to operationalize environmental
DNA (eDNA) as a means to monitor freshwater macro‐organism abundance.
Molecular Ecology, 30(24), 6531-6550.
Yates, M. C., Fraser, D. J., & Derry, A. M. (2019). Meta‐analysis
supports further refinement of eDNA for monitoring aquatic
species‐specific abundance in nature. Environmental DNA, 1(1), 5-13.
Zhao, B., van Bodegom, P. M., & Trimbos, K. (2021). The particle size
distribution of environmental DNA varies with species and degradation.
Science of the Total Environment, 797, 149175.