REFERENCES
Abascal, F., Zardoya, R., & Posada, D. (2005). ProtTest:
selection of best-fit models of protein evolution.
Bioinformatics , 21 : 2104–2105.
Abe, I., Naito, K., Takagi, Y, & Noguchi, H. (2001). Molecular
cloning, expression, and site-directed mutations of oxidosqualene
cyclase from Cephalosporium caerulens. Biochimica et Biophysica
Acta (BBA) - Gene Structure and Expression , 1522 :
67–73.
Adelin, E., Servy, C., Martin, M.T., Arcile, G., Iorga, B.I.,
Retailleau, P. … Ouazzani, J. (2014). Bicyclic and tetracyclic
diterpenes from a Trichoderma symbiont of Taxus baccata.
Phytochemistry , 97 : 55–61.
Bansal, R., & Mukherjee, P. K. (2016). The terpenoid
biosynthesis toolkit of Trichoderma. Natural Product
Communications , 11 : 1934578X1601100.
Baroncelli, R., Piaggeschi, G., Fiorini, L., Bertolini, E.,
Zapparata, A., Pè, M.E., … Vannacci, G. (2015). Draft
Whole-Genome Sequence of the biocontrol agent Trichoderma
harzianum T6776. Genome Announcements , 3 : e00647-15.
Baroncelli, R., Zapparata, A., Piaggeschi, G., Sarrocco, S., &
Vannacci, G. (2016). Draft Whole-genome sequence of Trichoderma
gamsii T6085 , a promising biocontrol agent of Fusarium Head Blight on
wheat. Genome Announcements , 4 : e01747-15.
Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee,
S.Y., …Weber, T. (2019). antiSMASH 5.0: updates to the secondary
metabolite genome mining pipeline. Nucleic Acids Research ,
47 : W81–W87.
Bomke, C., Rojas, M.C., Gong, F., Hedden, P., & Tudzynski, B.
(2008). Isolation and characterization of the gibberellin biosynthetic
gene cluster in Sphaceloma manihoticola. Applied and Environmental
Microbiology , 74 : 5325–5339.
Bualem, B., Mohamed, B., & Moulay, B. (2015). Salinity
influence upon activity of Trichoderma harzianum againstBotrytis cinérea . Asian Journal of Plant Pathology ,
9 : 158–166.
Calvert, M.J., Ashton, P.R., & Allemann, R.K. (2002).Germacrene A is a product of the Aristolochene Synthase-mediated
conversion of farnesylpyrophosphate to aristolochene. Journal of
the American Chemical Society, 124 : 11636–11641.
Calvo, A.M., Wilson, R.A., Bok, J.W., & Keller, N.P.
(2002). Relationship between secondary metabolism and fungal
development. Microbiology and Molecular Biology
Reviews, 66 : 447-459.
Cane, D.E., Xue, Q., & Fitzsimons, B.C. (1996). Trichodiene
synthase. Probing the role of the highly conserved aspartate-rich region
by site-directed mutagenesis. Biochemistry , 35 :
12369–12376.
Cardoza, R.E., Malmierca, M.G., Hermosa, M.R., Alexander, N.J.,
McCormick, S.P., Proctor, R.H., … Gutiérrez, S. (2011).Identification of loci and functional characterization of trichothecene
biosynthesis genes in filamentous fungi of the genus Trichoderma.
Applied and Environmental Microbiology , 77 : 4867–4877.
Chen, S., Li, H., Chen, Y., Li, S., Xu, J., Guo, H., …
Zhang, W. (2019). Three new diterpenes and two new sesquiterpenoids
from the endophytic fungus Trichoderma koningiopsis A729.Bioorganic Chemistry , 86 : 368–374.
Chiba, R., Minami, A., Gomi, K., & Oikawa, H. (2013) .
Identification of ophiobolin F synthase by a genome mining approach: a
sesterterpene synthase from Aspergillus clavatus . Organic
Letters , 15 : 594–597.
Contreras-Cornejo, H.A., Macías-Rodríguez, L., del-Val, E., &
Larsen, J. (2016). Ecological functions of Trichoderma spp. and
their secondary metabolites in the rhizosphere: interactions with
plants. FEMS Microbiology Ecology , 92 : fiw036.
Contreras-Cornejo, H.A., Del-Val, E., Macías-Rodríguez, L.,
Alarcón, A., González-Esquivel, C.E., & Larsen, J. (2018).Trichoderma atroviride , a maize root associated fungus, increases
the parasitism rate of the fall armyworm Spodoptera frugiperda by
its natural enemy Campoletis sonorensis. Soil Biology and
Biochemistry , 122 : 196–202.
Crutcher, F.K., Parich, A., Schuhmacher, R., Mukherjee, P.K.,
Zeilinger, S., & Kenerley, C.M. (2013). A putative terpene cyclase,vir4 , is responsible for the biosynthesis of volatile terpene
compounds in the biocontrol fungus Trichoderma virens. Fungal
Genetics and Biology , 56 : 67–77.
De Vries, R.P., Riley, R., Wiebenga, A., Aguilar-Osorio, G.,
Amillis, S., Uchima, C.A., … Grigoriev, I.V. (2017). Comparative
genomics reveals high biological diversity and specific adaptations in
the industrially and medically important fungal genus Aspergillus.
Genome Biology , 18 : 28.
Druzhinina, I.S., Chenthamara, K., Zhang, J., Atanasova, L.,
Yang, D., Miao, Y., … Kubicek, C.P. (2018). Massive lateral
transfer of genes encoding plant cell wall-degrading enzymes to the
mycoparasitic fungus Trichoderma from its plant-associated
hosts. PLOS Genetics , 14 : e1007322.
Fanelli, F., Liuzzi, V.C., Logrieco, A.F., & Altomare, C.
(2018). Genomic characterization of Trichoderma atrobrunneum(T. harzianum species complex) ITEM 908: insight into the genetic
endowment of a multi-target biocontrol strain. BMC Genomics ,
19 : 662.
Fiorini, L.,Guglielminetti, L., Mariotti, L., Curadi, M.,
Picciarelli, P., Scartazza, A., … Vannacci, G. (2016).Trichoderma harzianum T6776 modulates a complex metabolic network
to stimulate tomato cv. Micro-Tom growth. Plant Soil ,
400 : 351–366.
Fountain, J.C., Bajaj, P., Nayak, S.N., Yang, L., Pandey, M.K.,
Kumar, V., … Guo, B. (2016). Responses of Aspergillus
flavus to oxidative stress are related to fungal development regulator,
antioxidant enzyme, and secondary metabolite biosynthetic gene
expression. Frontiers in Microbiology , 7: 2048.
Gallo, A., Mulè, G., Favilla, M., & Altomare, C. (2004).Isolation and characterisation of a trichodiene synthase homologous gene
in Trichoderma harzianum. Physiological and Molecular Plant
Pathology , 65 : 11–20.
Gao, Y., Honzatko, R.B., & Peters, R.J. (2012). Terpenoid
synthase structures: a so far incomplete view of complex catalysis.Natural Product Reports , 29 : 1153.
Ghisalberti, E.L. (1993). Detection and isolation of bioactive
natural products. In: Colegate SM, Molyneux RJ, eds. Bioactive
natural products: detection, isolation and structure elucidation. CRC
Press, Boca Raton, 15–18.
Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk,
W., & Gascuel O. (2010). New algorithms and methods to estimate
Maximum-Likelihood phylogenies: Assessing the performance of PhyML
3.0. Systematic Biology , 59 : 307–321.
Guzmán-Chávez, F., Zwahlen, R.D., Bovenberg, R.A.L., &
Driessen, A.J.M. (2018). Engineering of the filamentous fungusPenicillium chrysogenum as cell factory for natural
products. Frontiers in Microbiology, 9 : 2768.
Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., & Lorito, M.
(2004). Trichoderma species opportunistic, avirulent plant
symbionts. Nature Reviews Microbiology 84 :
377–393.
Hautbergue, T., Jamin, E.L., Debrauwer, L., Puel, O., & Oswald,
I.P. (2018). From genomics to metabolomics, moving toward an integrated
strategy for the discovery of fungal secondary metabolites.
Natural Product Reports , 35 : 147–173.
Hermosa, R., Cardoza, R.E., Rubio, M.B., Gutiérrez, S., &
Monte, E. (2014). Secondary metabolism and antimicrobial metabolites ofTrichoderma. In: Vijai GP, Schmoll M, Herrera-Estrella A,
Upadhyay RS, Druzhinina I, Tuohy MG, eds. Biotechnology and
Biology of Trichoderma , Elsevier, 125–137.
Hidangmayum, A., & Dwivedi, P. (2018). Plant responses toTrichoderma spp. and their tollerance to abiotic stresses: a
review. Journal of Pharmacognosy and Phytochemistry E-ISSN:
2278–4136.
Hon, T.M., & Desjardins, A.E. (1992). Isolation and gene
disruption of the Tox5 gene encoding trichodiene synthase inGibberella pulicaris . Molecular Plant-Microbe Interactions,5 : 249–256.
Hong, S.Y., Roze, L., & Linz, J. (2013). Oxidative
stress-related transcription factors in the regulation of secondary
metabolism. Toxins , 5 : 683–702.
Inayati, A., Sulistyowati, L., Aini, L.Q., & Yusnawan, E.
(2019). Antifungal activity of volatile organic compounds fromTrichoderma virens. International conference on biology and
applied science (ICOBAS) .
Izquierdo-Bueno, I., Moraga, J., Cardoza, R.E., Lindo, L.,
Hanson, J.R., Gutiérrez, S., & Collado, I.G. (2018). Relevance of the
deletion of the Tatri4 gene in the secondary metabolome ofTrichoderma arundinaceum. Organic & Biomolecular Chemistry ,
16 : 2955–2965.
Jiao, F., Kawakami, A., & Nakajima, T. (2008). Effects of
different carbon sources on trichothecene production and Tri gene
expression by Fusarium graminearum in liquid culture. FEMS
Microbiology Letters , 285 : 212–219.
Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla,
C., … Hunter, S. (2014). InterProScan 5: genome-scale protein
function classification. Bioinformatics , 30 :
1236–1240.
Jourdier, E., Baudry, L., Poggi-Parodi, D., Vicq, Y., Koszul,
R., Margeot, A., … Bidard, F. (2017). Proximity ligation
scaffolding and comparison of two Trichoderma reesei strains
genomes. Biotechnology for Biofuels , 10 : 151.
Katoh, K., & Standley, D.M. (2013). MAFFT Multiple Sequence
Alignment Software Version 7: Improvements in performance and usability.Molecular Biology and Evolution, 30 : 772–780.
Kim, S., Cheong, J.H., & Yoo, J. (1998). Radical cyclization
of N-Aziridinylimines 4. Highly efficient synthesis of dl-pentalenene
via consecutive carbon-carbon bond formation approach. Synlett ,
1998 : 981–982.
Kubicek, C.P., Herrera-Estrella, A., Seidl-Seiboth, V.,
Martinez, D.A., Druzhinina, I.S., Thon, M., … Grigoriev, I.G.
(2011). Comparative genome sequence analysis underscores mycoparasitism
as the ancestral life style of Trichoderma . Genome
Biology , 12 : R40.
Kubicek, C.P., Steindorff, A.S., Chenthamara, K., Manganiello,
G., Henrissat, B., Zhang, J., … Druzhinina, I.S. (2019).Evolution and comparative genomics of the most common Trichodermaspecies. BMC Genomics , 20 : 485.
Kushiro, T., Shibuya, M., Masuda, K., & Ebizuka, Y. (2000).Mutational studies on triterpene synthases: engineering lupeol synthase
into β-amyrin synthase. Journal of the American Chemical Society ,
122 : 6816–6824.
Li, W.C., Huang, C.H., Chen, C.L., Chuan,g Y.C., Tung, S.Y., &
Wang, T.F. (2017). Trichoderma reesei complete genome
sequence, repeat-induced point mutation, and partitioning of CAZyme gene
clusters. Biotechnology for Biofuels , 10 : 170.
Linnemannstöns, P., Prado, M., Fernández-Martín, R., Tudzynski,
B., & Avalos, J. (2002). A carotenoid biosynthesis gene cluster inFusarium fujikuroi : the genes carB and carRA.
Molecular Genetics and Genomics , 267 : 593–602.
Linscott, K.B., Niehaus, T.D., Zhuang, X., Bell, S.A., &
Chappell, J. (2016). Mapping a kingdom-specific functional domain of
squalene synthase. Biochimica et Biophysica Acta (BBA) - Molecular
and Cell Biology of Lipids , 1861 : 1049–1057.
Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative
gene expression data using real-time quantitative PCR and the
2−ΔΔCT method. Methods , 25 :
402–408.
Lodeiro, S., Xiong, Q., Wilson, W.K., Ivanova, Y., Smith, M.L.,
May, G.S., & Matsuda, S.P.T. (2009). Protostadienol biosynthesis and
metabolism in the pathogenic fungus Aspergillus fumigatus .Organic Letters , 11 : 1241–1244.
Logemann, J., Schell, J., & Willmitzer, L. (1987). Improved
method for the isolation of RNA from plant tissues. Analytical
Biochemistry , 163 : 16–20.
Lopez-Gallego, F., Agger, S.A., Abate-Pella, D., Distefano,
M.D., & Schmidt-Dannert, C. (2010). Sesquiterpene synthases Cop4 and
Cop6 from Coprinus cinereus : Catalytic promiscuity and
cyclization of farnesyl pyrophosphate geometric isomers.
ChemBioChem , 11 : 1093–1106.
Lorito, M., Farkas, V., Rebuffat, S., Bodo, B., & Kubicek, C.P.
(1996). Cell wall synthesis is a major target of mycoparasitic
antagonism by Trichoderma harzianum. Journal of Bacteriology ,
178 : 6382–6385.
Malmierca, M.G., Barua, J., McCormick, S.P., Izquierdo-Bueno,
I., Cardoza, R.E., Alexander, N.J., … Gutiérrez, S. (2015).N ovel aspinolide production by Trichoderma arundinaceumwith a potential role in Botrytis cinerea antagonistic activity
and plant defence priming. Environmental Microbiology ,
17 : 1103–1118.
Malmierca, M.G., Cardoza, R.E., Alexander, N.J., McCormick,
S.P., Collado, I.G., Hermosa, R., … Gutiérrez, S. (2013).Relevance of trichothecenes in fungal physiology: Disruption oftri5 in Trichoderma arundinaceum. Fungal Genetics and
Biology , 53 : 22–33.
Malmierca, M.G., McCormick, S.P., Cardoza, R.E., Alexander,
N.J., Monte, E., & Gutiérrez, S. (2014). Production of trichodiene byTrichoderma harzianum alters the perception of this biocontrol
strain by plants and antagonized fungi. Environmental
Microbiology , 17 : 2628–2646.
Marik, T., Urbán, P., Tyagi, C., Szekeres, A., Leitgeb, B.,
Vágvölgyi, M., … Kredics, L. (2017). Diversity profile and
dynamics of peptaibols produced by green mould Trichodermaspecies in interactions with their hosts Agaricus bisporus andPleurotus ostreatus. Chemistry & Biodiversity ,
14 : e1700033.
Matarese, F. (2010). Biocontrol of Fusarium Head Bligth:
molecular interactions between Trichoderma and mycotoxigenicFusarium . PhD Thesis, University of Pisa, Pisa, Italy.
Matarese, F., Sarrocco, S., Gruber, S., Seidl-Seiboth, V., &
Vannacci, G. (2012). Biocontrol of Fusarium head blight:
interactions between Trichoderma and mycotoxigenic Fusarium.
Microbiology , 158 : 98–106.
Matsuda, Y., Mitsuhashi, T., Lee, S., Hoshino, M., Mori, T.,
Okada, M., … Abe, I. (2016). Astellifadiene: structure
determination by NMR spectroscopy and crystalline sponge method, and
elucidation of its biosynthesis. Angewandte Chemie, 128 :
5879–5882.
McCormick, S.P., Alexander, N.J., & Harris, L.J. (2009).CLM1 of Fusarium graminearum encodes a longiborneol
synthase required for culmorin production. Applied and
Environmental Microbiology , 76 : 136–141.
Miao, F.P., Liang, X.R., Yin, X.L., Wang, G., & Ji, N.Y.
(2012). Absolute configurations of unique harziane diterpenes fromTrichoderma species. Organic Letters , 14 :
3815–3817.
Mitsuhashi, T., Rinkel, J., Okada, M., Abe, I., & Dickschat,
J.S. (2017). Mechanistic characterization of two chimeric sesterterpene
synthases from Penicillium. Chemistry - A European Journal ,
23 : 10053–10057.
Mukherjee, P.K., Horwitz, B.A., Herrera-Estrella, A., Schmoll,
M., & Kenerley, C.M. (2013). Trichoderma Research in the Genome
Era. Annual Review of Phytopathology , 51 :
105–129.
Nakano, C., & Hoshino, T. (2009). Characterization of theRv3377c gene product, a type-B diterpene cyclase, from theMycobacterium tuberculosis H37 genome. ChemBioChem,10 : 2060–2071.
Nakano, C., Okamura, T., Sato, T., Dairi, T., & Hoshino, T.
(2005). Mycobacterium tuberculosis H37Rv3377c encodes the
diterpene cyclase for producing the halimane skeleton.Chemical Communications , 8 : 1016–1018.
Nicholson, M.J., Koulman, A., Monahan, B.J., Pritchard, B.L.,
Payne, G.A., & Scott, B. (2009). Identification of two aflatrem
biosynthesis gene loci in Aspergillus flavus and metabolic
engineering of Penicillium paxilli to elucidate their
function. Applied and Environmental Microbiology ,
75 : 7469–7481.
Nierman, W.C., Yu, J., Fedorova-Abrams, N.D., Losada, L.,
Cleveland, T.E., Bhatnagar, D., … Payne, G.A. (2015). Genome
sequence of Aspergillus flavus NRRL 3357, a strain that causes
aflatoxin contamination of food and feed. Genome Announcements ,
3 : e00168-15.
Oikawa, H., Toyomasu, T., Toshima, H., Ohashi, S., Kawaide, H.,
Kamiya, Y., … Sassa, T. (2001). Cloning and functional
expression of cDNA encoding aphidicolan-16β-ol synthase: a key enzyme
responsible for formation of an unusual diterpene skeleton in
biosynthesis of aphidicolin. Journal of the American Chemical
Society , 123 : 5154–5155.
Okada, M., Matsuda, Y., Mitsuhashi, T., Hoshino, S., Mori, T.,
Nakagawa, K., … Abe, I. (2016). Genome-based discovery of an
unprecedented cyclization mode in fungal sesterterpenoid biosynthesis.Journal of the American Chemical Society , 138 :
10011–10018.
Pachauri, S., Sherkhane, P.D., & Mukherjee, P. (2019).Secondary metabolism in Trichoderma : chemo- and geno- diversity.
In: Satyanarayana T, Das SK, Johri BN, eds. Microbial Diversity in
Ecosystem Sustainability , Singapore, Springer, 441-456.
Parker, E.J., & Scott, B. (2004). Indole-diterpene
biosynthesis in ascomycetous fungi. In: An Z (ed), Handbook of
Industrial Mycology. Marcel Dekker, New York, 405–426.
Patil, A.S., Patil, S.R., & Paikrao, H.M. (2016).Trichoderma secondary metabolites: Their biochemistry and
possible role in disease management. In: Choudhary DK, Varma A, eds.Microbial-Mediated Induced Systemic Resistance in Plants ,
Singapore Springer, 69–102.
Piłsyk, S., Perlińska-Lenart, U., Górka-Nieć, W., Graczyk, S.,
Antosiewicz, B., Zembek, P., … Kruszewska, J.S. (2014).Overexpression of erg20 gene encoding farnesyl pyrophosphate
synthase has contrasting effects on activity of enzymes of the dolichyl
and sterol branches of mevalonate pathway in Trichoderma reesei.
Gene , 544 : 114–122.
Pinedo, C., Wang, C.M., Pradier, J.M., Dalmais, B., Choquer, M.,
Le Pêcheur, P., … Viaud, M. (2008). Sesquiterpene synthase from
the botrydial biosynthetic gene cluster of the phytopathogenBotrytis cinerea. ACS Chemical Biology , 3 :
791–801.
Price, M.N., Dehal, P.S., & Arkin, A.P. (2010). FastTree 2 –
Approximately Maximum-Likelihood trees for large alignments. PLoS
ONE , 5 : e9490.
Proctor, R.H., McCormick, S.P., Kim, H.S., Cardoza, R.E.,
Stanley, A.M., Lindo, L … Gutiérrez, S. (2018). Evolution of
structural diversity of trichothecenes, a family of toxins produced by
plant pathogenic and entomopathogenic fungi. PLOS Pathogens ,
14 : e1006946.
Qin, B., Matsuda, Y., Mori, T., Okada, M., Quan, Z., Mitsuhashi,
T., Wakimoto, T., & Abe, I. (2015). An unusual chimeric diterpene
synthase from Emericella variecolor and its functional conversion
into a sesterterpene synthase by domain swapping. Angewandte
Chemie , 128 : 1690–1693.
Quin, M.B., Flynn, C.M., & Schmidt-Dannert, C.
(2014). Traversing the fungal terpenome. Natural Products
Report , 31 : 1449–1473.
Rai, S., Solanki, M.K., Solanki, A.C., & Surapathrudu, K.
(2019). Biocontrol potential of Trichoderma spp.: Current
understandings and future outlooks on molecular techniques. In Ansari
RA, Mahmood I, eds. Plant Health Under Biotic Stress , Springer,
Singapore, 129–160.
Reino, J.L., Guerrero, R.F., Hernandez-Galan, R., & Collado,
I.G. (2008). Secondary metabolites from species of the biocontrol agentTrichoderma. Phytochemistry Reviews , 7 :
89–123.
Ronquist, F., & Huelsenbeck, J.P. (2003). MrBayes 3: Bayesian
phylogenetic inference under mixed models. Bioinformatics,19 : 1572–1574.
Rynkiewicz, M.J., Cane, D.E., & Christianson, D.W. (2001).Structure of trichodiene synthase from Fusarium sporotrichioidesprovides mechanistic inferences on the terpene cyclization cascade.Proceedings of the National Academy of Sciences ,
98 : 13543–13548.
Saikia, S., Nicholson, M.J., Young, C., Parker, E.J., & Scott,
B. (2008). The genetic basis for indole-diterpene chemical diversity in
filamentous fungi. Mycological Research , 112 :
184–199.
Salwan, R., Rialch, N., & Sharma, V. (2019). Bioactive
volatile metabolites of Trichoderma : An overview. In: Singh HB,
Keswani C, Reddy MS, Sansinenea E, García-Estrada C, eds.Secondary
Metabolites of Plant Growth Promoting Rhizomicroorganisms , Singapore,
Springer, 87–111.
Sarrocco, S., Matarese, F., Moncini, L., Pachetti, G., Ritieni,
A., Moretti, A., & Vannacci, G. (2013b). Biocontrol of Fusarium head
blight by spike application of Trichoderma gamsii. Journal of
Plant Pathology . S1 : 19–27
Sarrocco, S., Mauro, A., Battilani, P. (2019). Use of
competitive filamentous fungi as an alternative approach for mycotoxin
risk reduction in staple cereals: State of art and future perspectives.Toxins, 11 : 701.
Sarrocco, S., Esteban, P., Vicente, I., Bernardi, R.,
Plainchamp, T., Domenichini, S., … Dufresne, M. 2020. Straw
competition and wheat root endophytism of Trichoderma gamsii
T6085 as useful traits in the biocontrol of Fusarium Head Blight.Phytopathology (submitted)
Sarrocco, S., Moncini, L., Pachetti, G., Moretti, A., Ritieni,
A., & Vannacci, G. (2013a). Biological control of Fusarium Head Blight
under field conditions. Biocontrol of Plant Pathogens in
Sustainable Agriculture , 86 : 95–100.
Schmidhauser, T.J., Lauter, F.R., Schumacher, M., Zhou, W.,
Russo, V.E.A., & Yanofsky, C. (1994). Characterization of al-2 ,
the phytoene synthase gene of Neurospora crassa. The Journal of
Biological Chemistry , 269 : 12060–12066.
Schmidt-Dannert, C. (2014). Biosynthesis of terpenoid natural
products in fungi. In: Schrader J, Bohlmann J, eds. Biotechnology
of Isoprenoids. Advances in Biochemical
Engineering/Biotechnology, Singapore Springer, 19–61.
Shaw, J.J., Berbasova, T., Sasaki, T., Jefferson-George, K.,
Spakowicz, D.J., Dunican, B.F., … Strobel, S.A.
(2015). Identification of a fungal 1,8-cineole synthase fromHypoxylon sp. with specificity determinants in common with the
plant synthases. Journal of Biological Chemistry ,
290 : 8511–8526.
Shinohara, Y., Takahashi, S., Osada, H., & Koyama, Y. (2016).Identification of a novel sesquiterpene biosynthetic machinery involved
in astellolide biosynthesis. Scientific Reports ,
6 : 32865.
Shoresh, M., Harman, G.E., Mastouri, F. (2010). Induced
systemic resistance and plant responses to fungal biocontrol agents.Annual Review of Phytopathology , 48 : 21–43.
Sishova, E.Y., Di Costanzo, L., Cane, D.E., & Christianson,
D.W. (2007). X -ray crystal structure of Aristolochene Synthase
from Aspergillus terreus and evolution of templates for the
cyclization of farnesyl diphosphate. Biochemistry,46 : 1941–1951.
Song, Y.P., Fang, S.T., Miao, F.P., Yin, X.L., & Ji, N.Y.
(2018). Diterpenes and sesquiterpenes from the marine algicolous fungusTrichoderma harzianum X-5. Journal of Natural Products ,
81 : 2553–2559.
Starks, C.M. (1997). Structural basis for cyclic terpene
biosynthesis by tobacco 5-Epi-aristolochene synthase. Science ,
277 : 1815–1820.
Studholme, D.J., Harris, B., Le Cocq, K., Winsbury, R., Perera,
V., Ryder, L., … Grant, M. (2013). Investigating the beneficial
traits of Trichoderma hamatum GD12 for sustainable agriculture -
insights from genomics. Frontiers in Plant Science ,
4 : 258.
Tian, G., Deng, X., & Hong, K. (2017). The biological
activities of sesterterpenoid-type ophiobolins. Marine Drugs15 : 229.
Tijerino, A., Cardoza, R.E., Moraga, J., Malmierca, M.G.,
Vicente, F., Aleu, J., … Hermosa, R. (2011a). Overexpression of
the trichodiene synthase gene tri5 increases trichodermin
production and antimicrobial activity in Trichoderma
brevicompactum. Fungal Genetics and Biology , 48 :
285–296.
Tijerino, A., Hermosa, R., Cardoza, R.E., Moraga, J., Malmierca,
M.G., Aleu, J., … Gutierrez, S. (2011b). Overexpression of theTrichoderma brevicompactum tri5 gene: Effect on the expression of
the trichodermin biosynthetic genes and on tomato seedlings.
Toxins , 3 : 1220–1232.
Toyomasu, T., Tsukahara, M., Kaneko, A., Niida, R., Mitsuhashi,
W., Dairi, T., … Sassa, T. (2007). Fusicoccins are
biosynthesized by an unusual chimera diterpene synthase in fungi.
Proceedings of the National Academy of Sciences , 104 :
3084–3088.
Tudzynski, B., Kawaide, H., & Kamiya, Y. (1998). Gibberellin
biosynthesis in Gibberella fujikuroi: cloning and
characterization of the copalyl diphosphate synthase gene. Current
Genetics , 34 : 234–240.
Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R.,
Barbetti, M.J., Li, H., … Lorito, M. (2008). A novel role forTrichoderma secondary metabolites in the interactions with
plants. Physiological and Molecular Plant Pathology ,
72 : 80–86.
Viterbo, A., Wiest, A., Brotman, Y., Chiet, I., & Kenerley, C.
(2007). The 18mer peptaibols from Trichoderma virens elicit
plant defence responses. Molecular Plant Pathology, 8 :
737–746.
Wendt, K.U., & Schulz, G.E. (1998). Isoprenoid
biosynthesis: manifold chemistry catalyzed by similar enzymes.Structure , 6 :127-133.
Whelan, S., & Goldman, N. (2001). A general empirical model of
protein evolution derived from multiple protein families using a
Maximum-Likelihood approach. Molecular Biology and Evolution ,
18 : 691–699.
Wiemann, P., Sieber, C.M.K., von Bargen, K.W., Studt, L.,
Niehaus, E.M., Espino, J.J., … Tudzynski, B. (2013). Deciphering
the cryptic genome: genome-wide analyses of the rice pathogenFusarium fujikuroi reveal complex regulation of secondary
metabolism and novel metabolites. PLOS Pathogens ,
9 : e1003475.
Xiao, G., Ying, S.H., Zheng, P., Wang, Z.L., Zhang, S., Xie,
X.Q., … Feng, M.G. (2012). Genomic perspectives on the evolution
of fungal entomopathogenicity in Beauveria bassiana. Scientific
Reports , 2 : 483.
Yang, D., Pomraning, K., Kopchinskiy, A., Aghcheh, R.K.,
Atanasova, L., Chenthamara, K., … Druzhinina, I.S. (2015).Genome sequence and annotation of Trichoderma parareesei , the
ancestor of the cellulase producer Trichoderma reesei. Genome
Announcements , 3 : e00885-15.
Young, C.A., Felitti, S., Shields, K., Spangenberg, G., Johnson,
R.D., Bryan, G.T., … Scott, B. (2006). A complex gene cluster
for indole-diterpene biosynthesis in the grass endophyteNeotyphodium lolii. Fungal Genetics and Biology ,
43 : 679–693.
Young, C., McMillan, L., Telfer, E., & Scott, B. (2001).Molecular cloning and genetic analysis of an indole-diterpene gene
cluster from Penicillium paxilli. Molecular Microbiology ,
39 : 754–764.
Yu, J.H., & Keller, N. (2005). Regulation of secondary
metabolism in filamentous fungi. Annual Review of Phytopathology,43 : 437–458.
Zapparata, A., Da Lio, D., Somma, S., Vicente Muñoz, I.,
Malfatti, L., Vannacci, G., … Sarrocco, S. (2017). Genome
sequence of Fusarium graminearum ITEM 124 (ATCC 56091), a
mycotoxigenic plant pathogen. Genome Announcements ,
5 : e01209-17.
Zeilinger, S., Gruber, S., Bansal, R., & Mukherjee, P.K.
(2016). Secondary metabolism in Trichoderma – Chemistry
meets genomics. Fungal Biology Reviews , 30 :
74–90.
Zhao, D., Yang, L., Shi, T., Wang, C., Shao, C., & Wang, C.
(2019). Potent phytotoxic harziane diterpenes from a soft
coral-derived strain of the fungus Trichoderma
harzianum XS-20090075. Scientific Reports ,
9 : 13345.
Zhao, L., & Zhang, Y. (2015). Effects of phosphate
solubilization and phytohormone production of Trichoderma
asperellum Q1 on promoting cucumber growth under salt stress.
Journal of Integrative Agriculture , 14 : 1588–1597.
Zhou, J.S., Ji, S.L., Ren, M.F., He, Y.L., Jing, X.R., & Xu,
J.W. (2014). Enhanced accumulation of individual ganoderic acids in a
submerged culture of Ganoderma lucidum by the overexpression of
squalene synthase gene. Biochemical Engineering Journal ,
90 : 178–183.