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Abstract

The main ambition proposed in this article is to provide new fixed point
results for triangular α−orbital admissible contractions via some auxiliary
and simulation functions in the frame of extended b−metric-like spaces. As
an application, we prove the existence of a unique solution for a nonlinear
fractional differential equation with exponential weighted integral boundary
conditions via the generalized proportional fractional derivative of Caputo
type with order β ∈ (n− 1, n]. Further, we demonstrate the usability of our
results through several examples.
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1. Introduction

During the last decades, many researchers have focused on joining fixed point theory
with fractional calculus that deals with integrals and derivatives of arbitrary orders. Frac-
tional differential equations help model real-life problems into mathematical models more
accurately than the traditional ones, and fixed point theorems can provide unique solutions
for these equations.

Since, the outstanding fixed point result of Banach has been extended by using different
forms of contractive conditions in various generalized metric spaces. Some of the most
important generalizations of metric space are b−metric space in [9, 12], partial metric space
in [28], partial b−metric space in [36], metric-like space in [6], b−metric-like space in [4, 16].

Recently, a concept which is an extension of b−metric was presented by Parvaneh and
Ghoncheh [30, 31] under the name extended b−metric or p−metric. In consequence, the
authors in [32] proposed the concept of partial p−metric. Further, they generalized all of
the above mentioned spaces by introducing the notion of p−metric-like in [33] and presented
some basic properties of such spaces with some fixed point results for JSHR-contractions
in the setup of such spaces. Khojasteh et al. [25] introduced the notion of a simulation
function and consider a new class of contractions called Z−contractions with a view to
unify several existing fixed point results in the literature. In 2019, Karapinar et al. [18]
considered different families of auxiliary functions in order to prove some fixed point results
for a variety of triangular α−orbital admissible contractions defined on complete metric
spaces. Further, they applied their results on the existence of solutions of both ordinary
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and fractional boundary value problems.

On the other hand, it turned out that the methods used in the fractional calculus
are splendid when modeling long-memory processes and many phenomena that appear in
physics, chemistry, electricity, mechanics and many other disciplines [13, 14, 21, 26, 27, 29].
In recent years, several researchers in the field of fractional calculus felt the need for other
types of fractional operators to be more suitable for more complex systems. In [1, 20], the
authors proposed the conformable derivative which lacks the essential property that the
zero-order derivative for a function must be yield the function itself. In order to circumvent
this deficit, the authors in [7] redefined the conformable derivative. Following this way, in
[5, 17] the fractional version of the modified conformable derivative was suggested.

Following this tendency, fixed point results presented in [18] were extended to be con-
sidered on p−metric-like spaces. The concept of extension was based on using simulation
function and relaxing some conditions imposed on the considered auxiliary functions. Then
we apply the obtained fixed point results to provide sufficient conditions for the existence
of a unique solution for the following nonlinear fractional differential equation.

c
0D

β,ρx(t) = f
(
t, x(t)

)
, t ∈ J = [0, T ], n− 1 < β ≤ n, ρ ∈ (0, 1],

x(i)(t)|t=0 = 0, x(1) =

∫ r

0
eλsx(s)ds, 0 ≤ i ≤ n− 2, r ∈ (0, 1), λ =

1− ρ
ρ

,
(1.1)

where x : J → R, f : J×R→ R are continuous functions and c
0D

β,ρ denotes the generalized
proportional fractional derivative of Caputo type of order β > 0.

2. Basic Concepts

We begin with giving some notations and preliminaries related with p−metric, partial
p−metric, p−metric-like spaces, simulation function and some auxiliary functions needed
to state our results. Let R+ (N0) be the set of nonnegative reals (integers) and Υ be given
as:{

Ω : R+ → R+ : Ω is a strictly increasing continuous function satisfying Ω−1(t) ≤ t ≤ Ω(t)
}
.

Definition 2.1. [31] Let X be a nonempty set and Ω ∈ Υ. A function dp : X ×X → R+

is a p−metric if it satisfies the following conditions for all x, y, z ∈ X:

(dp1) dp(x, y) = 0 ⇔ x = y,
(dp2) dp(x, y) = dp(y, x),
(dp3) dp(x, y) ≤ Ω

(
dp(x, z) + dp(z, y)

)
.

The pair (X, dp) is called a p−metric space.

Remark 2.1. Every metric is a p−metric with Ω(t) = t and every b−metric with parameter
s ≥ 1 is a p−metric with Ω(t) = st but not vice versa (see the next example).

Example 2.1. Let (X, d) be any metric space and ρ(x, y) = d(x, y) cosh d(x, y), ∀ x, y ∈ X,
then (X, ρ) is a p−metric space with Ω(t) = t cosh t. For x, y, z ∈ X, we have
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ρ(x, y) = 0⇔ d(x, y) = 0⇔ x = y,

ρ(x, y) = ρ(y, x).

Using the fact that cosh t ≥ 1, ∀ t ∈ R+, implies

ρ(x, y) ≤ [d(x, z) + d(z, y)] cosh[d(x, z) + d(z, y)]

≤ [ρ(x, z) + ρ(z, y)] cosh[ρ(x, z) + ρ(z, y)]

≤ Ω
(
ρ(x, z) + ρ(z, y)

)
.

Further, if we define X = [0, 1] and d(x, y) = |x− y|, then (X, ρ) is not a metric space for

ρ(0, 1) = 1.5 ≥ 2× 0.56 = ρ(0, 0.5) + ρ(0.5, 1).

Definition 2.2. [32] Let X be a nonempty set and Ω ∈ Υ. A function pp : X ×X → R+

is a partial p−metric if for any x, y, z ∈ X, the following conditions are satisfied:

(pp1) pp(x, y) = pp(x, x) = pp(y, y) ⇔ x = y,
(pp2) pp(x, x) ≤ pp(x, y),
(pp2) pp(x, y) = pp(y, x),
(pp3) pp(x, y)− pp(x, x) ≤ Ω

(
pp(x, z) + pp(z, y)− pp(z, z)− pp(x, x)

)
.

The pair (X, pp) is called a partial p−metric space.

Remark 2.2. If we define Ω(t) = t, then a partial p−metric becomes partial metric and If
Ω(t) = st for s ≥ 1, then a partial p−metric becomes partial b−metric with parameter s.

Definition 2.3. [33] Let X be a nonempty set and Ω ∈ Υ. A function σp : X ×X → R+

is a p−metric-like if for any x, y, z ∈ X, the following conditions hold:

(σp1) σp(x, y) = 0 ⇒ x = y,
(σp2) σp(x, y) = σp(y, x),
(σp3) σp(x, y) ≤ Ω

(
σp(x, z) + σp(z, y)

)
.

The pair (X,σp) is called a p−metric-like space.

Remark 2.3. Since, every partial metric is a metric-like and every metric-like is a p−metric-
like with Ω(t) = t. Every b−metric-like with parameter s ≥ 1 is a p−metric like with
Ω(t) = st. Also, every partial p−metric is a p−metric-like with a super additive function
Ω ∈ Υ. However, the reverse implications do not hold in general.

Proposition 2.1. Let (X,σb) be a b−metric-like space with coefficient s ≥ 1 and ρ(x, y) =
ξ
(
σb(x, y)

)
where ξ :→ R+ is a strictly increasing function with t ≤ ξ(t), ∀ t and 0 = ξ(0).

Then (X, ρ) is a p−metric-like space with Ω(t) = ξ(st).

Proof. For each x, y, z ∈ X, we have

ρ(x, y) = 0⇒ σb(x, y) = 0⇒ x = y,

ρ(x, y) = ρ(y, x)
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and

ρ(x, y) = ξ
(
σb(x, y)

)
≤ ξ
(
s[σb(x, z) + σb(z, y)]

)
≤ ξ
(
s[ξ(σb(x, z)) + ξ(σb(z, y))]

)
≤ ξ
(
s[ρ(x, z) + ρ(z, y)]

)
≤ Ω

(
ρ(x, z) + ρ(z, y)

)
.

Hence, ρ is a p−metric-like on X. �

The aforesaid proposition provides several examples on a p−metric-like space.

Example 2.2. Let (X,σb) be a b−metric-like space with coefficient s ≥ 1, then

1. ρ(x, y) = eσb(x,y) − 1 is a p−metric-like with Ω(t) = est − 1.
2. ρ(x, y) = σb(x, y) + ln

(
1 + σb(x, y)

)
is a p−metric-like with Ω(t) = st+ ln(1 + st).

3. ρ(x, y) = σb(x, y) cosh
(
σb(x, y)

)
is a p−metric-like with Ω(t) = st cosh(st).

4. ρ(x, y) =
(
σb(x, y)

)q
+ σb(x, y) is a p−metric-like with Ω(t) = (st)q + st, q ∈ N.

5. ρ(x, y) = eσb(x,y) ln
(
1 + σb(x, y)

)
is a p−metric-like with Ω(t) = est ln(1 + st).

6. ρ(x, y) = eσb(x,y) sinh−1(eσb(x,y)) is a p−metric-like with Ω(t) = est sinh−1(est).

7. ρ(x, y) = eσb(x,y) sec−1(eσb(x,y)) is a p−metric-like with Ω(t) = est sec−1(est).

8. ρ(x, y) = eσb(x,y) tan−1(eσb(x,y)−1) is a p−metric-like with Ω(t) = est tan−1(est−1).

Every p−metric-like σp on a nonempty set X generates a topology τσp on X whose base
is the set of all open balls B(x, ε), ∀ x ∈ X and ε > 0, where

B(x, ε) = {y ∈ X : |σp(x, y)− σp(x, x)| < ε}.

Definition 2.4. [33] Let (X,σp) be a p−metric-like space, x ∈ X and {xn} be a sequence
in X. Then,

(i) {xn} is said to converge to x with respect to τσp (we may write, xn −→ x), if

lim
n→∞

σp(xn, x) = σp(x, x).

(ii) {xn} is said to be Cauchy in (X,σp), if

lim
n,m→∞

σp(xn, xm)

exists and is finite.
(iii) (X,σp) is said to be complete, if for every Cauchy sequence {xn} in X, there exists

x ∈ X such that

lim
n,m→∞

σp(xn, xm) = lim
n→∞

σp(xn, x) = σp(x, x).

Lemma 2.1. Let (X,σp) be a p−metric-like space with parameter s ≥ 1 and {xn} be a
convergent sequence in X such that

lim
n,m→∞

σp(xn, xm) = lim
n→∞

σb(xn, x) = σb(x, x) = 0, x ∈ X. (2.1)

Then, every subsequence {xnk} with nk ≥ k ∈ N converges to the same limit x ∈ X.
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Proof. Since, xn → x and limn→∞ σp(xn, x) = 0, then for a given ε > 0

∃ n0 ∈ N : n > n0 ⇒ σp(xn, x) < ε.

From (σp3) and (2.1), we have

σp(xnk , x) < Ω
[
σp(xnk , xk) + σp(xk, x)

]
→ 0 as nk ≥ k →∞.

Therefore,
lim
k→∞

σp(xnk , x) = 0 = σp(x, x). (2.2)

�

Lemma 2.2. [33] Let (X,σp) be a p−metric-like space and {xn} be a convergent sequence
to a point x in X. Then, for any y ∈ X, we have

Ω−1
[
σp(x, y)

]
− σp(x, x) ≤ lim inf

n→∞
σp(xn, y)

≤ lim sup
n→∞

σp(xn, y) ≤ Ω
[
σp(x, y) + σp(x, x)

]
.

The notions of (triangular) α−admissible mappings were defined at the first time in
[19, 35] and then these notions were modified in [34].

Definition 2.5. [34] Let (X,σp) be a p−metric-like space, T be a self-mapping on X and
α : X ×X → R+ be a function, then

(1) T is called α−orbital admissible [34], if

x ∈ X, α(x, Tx) ≥ 1 ⇒ α(Tx, T 2x) ≥ 1.

(2) T is called triangular α−orbital admissible [34], if T is α−orbital admissible and

x, y ∈ X, α(x, y) ≥ 1 and α(y, Ty) ≥ 1 ⇒ α(x, Ty) ≥ 1.

(3) (X,σp) is called α−complete [15] if every Cauchy sequence {xn} in X with α(xn, xn+1) ≥
1, ∀ n ∈ N, converges in the same manner shown in Definition 2.4.

(4) (X,σp) is called α−regular [11], if for a point x and a sequence {xn} in X

xn −→ x and α(xn, xn+1) ≥ 1⇒ α(xn, x) ≥ 1, ∀ n ∈ N.

Definition 2.6. [18] Let (X, d) be a metric space and A be the family of auxiliary functions
h : X ×X → R+ such that

lim
n→∞

h(xn, yn) = 1 ⇒ lim
n→∞

d(xn, yn) = 0. (2.3)

Definition 2.7. [24] Let Ψ be the set of all altering distance functions ψ : R+ → R+ that
satisfy:

(1) ψ is continuous and strictly increasing,
(2) ψ(t) = 0 ⇔ t = 0.

Definition 2.8. [25] Let Z be the set of all simulation functions ζ : R+ × R+ → R that
satisfy:

(ζ1) ζ(t, s) < s− t, ∀ t, s > 0,
(ζ2) If {tn} and {sn} are sequences in (0,∞), then

lim
n→∞

tn = lim
n→∞

sn > 0⇒ lim sup
n→∞

ζ(tn, sn) < 0.
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Definition 2.9. Consider 0 < ρ ≤ 1, β ∈ C and n = [Re(β)] + 1.

1. The proportional derivative of order ρ is defined by

Dρf(t) = (1− ρ)f(t) + ρf́(t). (2.4)

It is easy to figure out that

lim
ρ→0+

Dρf(t) = f(t) and lim
ρ→1−

Dρf(t) = f́(t).

Thus, the derivative given in (??) is somehow considered to be more general than
the conformable derivative which evidently does not tend to the original function as
ρ tends to 0. Furthermore, Dn,ρ can be defined by

Dn,ρf(t) =
(
Dρ . . . Dρ

)︸ ︷︷ ︸
n−times

f(t)

= (
(
1− ρ) + ρ

d

dt

)n
f(t).

2. The generalized proportional fractional (GPF) integral of order β (Re(β) > 0) start-
ing from a has the from

aI
β,ρf(t) =

1

ρβΓ(β)

∫ t

a
e
ρ−1
ρ

(t−s)
(t− s)β−1f(s)ds

= ρ−βe
ρ−1
ρ
t(
aI
β
(
e

1−ρ
ρ
t
f(t)

))
.

If we let ρ = 1, then one can obtain the definition of Riemann-Liouville fractional
derivative aI

β.
3. The GPF derivative of order β (Re(β) ≥ 0) is given as

aD
β,ρf(t) = Dn,ρ

aI
n−β,ρf(t)

=
Dn,ρ

ρn−βΓ(n− β)

∫ t

a
e
ρ−1
ρ

(t−s)
(t− s)n−β−1f(s)ds.

It is obvious that

lim
β→0

aD
β,ρf(t) = f(t) and lim

β→1
aD

β,ρf(t) = Dρ(t).

4. The GPF derivative of Caputo type of order β (Re(β) ≥ 0) becomes

C
aD

β,ρf(t) =
(
aI
n−β,ρDn,ρf

)
(t)

=
1

ρn−βΓ(n− β)

∫ t

a
e
ρ−1
ρ

(t−s)
(t− s)n−β−1

(
Dn,ρf

)
(s)ds.

Lemma 2.3. For ρ ∈ (0, 1] and n = [Re(β)] + 1, we have

aI
β,ρ c

aD
β,ρf(t) = f(t)−

n−1∑
k=0

(Dk,ρf)(a)

ρkΓ(k + 1)
(t− a)ke

ρ−1
ρ

(t−a)
.

Lemma 2.4. Let f be integrable on t > a and Re(β) > 0, ρ > 0, n = [Re(β)] + 1. Then
we have

c
aD

β,ρ
aI
β,ρf(t) = f(t).
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Proposition 2.2. Let α, β ∈ C be such that Re(β) ≥ 0. Then, for any ρ > 0, we have

(1)
(
aI
α,ρe

ρ−1
ρ
t
(t− a)β−1

)
(x) = Γ(β)

Γ(β+α)ρα e
ρ−1
ρ
x
(x− a)α+β−1, Re(α) > 0.

(2)
(
aD

α,ρe
ρ−1
ρ
t
(t− a)β−1

)
(x) = ραΓ(β)

Γ(β−α)e
ρ−1
ρ
x
(x− a)β−1−α, Re(α) ≥ 0.

Proposition 2.3. For β ∈ C with Re(β) > 0 and ρ ∈ (0, 1], n = [Re(β)] + 1, we have

c
aD

β,ρf(t) = aD
β,ρf(t)−

n−1∑
k=0

ρβ−k(Dk,ρf)(a)

Γ(k + 1− β)
(t− a)k−βe

ρ−1
ρ

(t−a)
.

3. Fixed Point Results

Theorem 3.1. Let (X,σp) be a p−metric-like space and T : X → X be a triangular
α−orbital admissible mapping. Suppose that for all x, y ∈ X with α(x, y) ≥ 1,

ζ
(
α(x, y)ψ(Ω(σp(Tx, Ty))), h(x, y)ψ(σp(x, y))

)
≥ 0, ζ ∈ Z, ψ ∈ Ψ, (3.1)

where

R(x, y) = max

{
σp(x, Tx)σp(y, Ty)

σp(x, y)
, σp(x, y), σp(x, Tx),

σp(y, Ty),
Ω−1

2

[
σp(x, Ty) + σp(y, Tx)

2

]}
.

Consider that the following properties hold true:

(a) (X,σp) is α−complete and α−regular.
(b) For all x, y ∈ Fix(T ), we have α(x, y) ≥ 1, where Fix(T ) denotes the set of fixed

points of T .

Moreover, if there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a unique fixed point.

Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1 and define a sequence {xn} ⊂ X as

xn+1 = Txn, ∀ n ∈ N0. (3.2)

Regarding that T is α− orbital admissible, we deduce by induction that

α(xn, xn+1) ≥ 1, ∀ n. (3.3)

If σb(xn, xn+1) = 0 for some n, then xn = xn+1 and hence xn is a fixed point of T . So, we
assume that

σb(xn, xn+1) > 0, ∀ n. (3.4)

From (3.2) - (3.4), we apply (3.1) at x = xn−1 and y = xn to get

0 ≤ ζ
(
α(xn−1, xn)ψ(Ω(σp(xn, xn+1))), h(xn−1, xn)ψ(R(xn−1, xn))

)
< h(xn−1, xn)ψ(R(xn−1, xn))− α(xn−1, xn)ψ(Ω(σp(xn, xn+1))),

(3.5)

where

R(xn−1, xn) = max

{
σp(xn−1, xn)σp(xn, xn+1)

σp(xn−1, xn)
, σp(xn−1, xn), σp(xn−1, xn),

σp(xn, xn+1),
Ω−1

2

[
σp(xn−1, xn+1) + σp(xn, xn)

2

]}
.
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If σp(xn−1, xn) ≤ σp(xn, xn+1) for some n, then

Ω−1

2

[
σp(xn−1, xn+1) + σp(xn, xn)

2

]
≤ Ω−1

2

[
Ω
(
σp(xn−1, xn) + σp(xn, xn+1)

)
+ Ω

(
σp(xn, xn+1) + σp(xn+1, xn)

)
2

]
≤ σp(xn, xn+1),

=⇒ R(xn−1, xn) = σp(xn, xn+1).

From (3.5), we get

ψ(σp(xn, xn+1)) ≤ α(xn−1, xn)ψ(Ω(σp(xn, xn+1)))

< h(xn−1, xn)ψ(σp(xn, xn+1)) ≤ ψ(σp(xn, xn+1)),

which is a contradiction. Hence,

σp(xn, xn+1) ≤ σp(xn−1, xn), ∀ n. (3.6)

Now, σb(xn, xn+1) is monotone decreasing sequence of positive reals. Therefore, there exists
r ≥ 0 such that

lim
n→∞

σp(xn, xn+1) = r. (3.7)

We show that r = 0. Suppose, to the contrary, that r > 0. Using (3.5) - (3.7) and the
properties on ψ, we obtain

ψ(r)←ψ(σp(xn, xn+1)) ≤ α(xn−1, xn)ψ(Ω(σp(xn, xn+1)))

< h(xn−1, xn)ψ(σp(xn−1, xn)) ≤ ψ(σp(xn−1, xn)) −→ ψ(r) > 0 as n→∞.
Therefore,

lim
n→∞

α(xn−1, xn)ψ(Ω(σp(xn, xn+1))) = lim
n→∞

h(xn−1, xn)ψ(σp(xn−1, xn)) = ψ(r) > 0.

Now, we can apply (ζ2) to obtain a contradiction, hence r = 0.

lim
n→∞

σp(xn, xn+1) = 0. (3.8)

Now, we show that
lim

n,m→∞
σp(xn, xm) = 0. (3.9)

Consider the sequence

Rk = sup
{
σp(xn, xm) : m ≥ n ≥ k

}
, ∀ k ∈ N. (3.10)

Moreover, one can figure out that

lim
k→∞

Rk = 0 ⇒ lim
n,m→∞

σp(xn, xm) = 0

and
0 ≤ . . . ≤ Rk+1 ≤ Rk ≤ . . . ≤ R1.

Hence, the sequence {Rk} is decreasing and bounded below by zero. Consequently, there
exists r ≥ 0 such that

lim
k→∞

Rk = r. (3.11)
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In view of (3.10), we conclude that

∀ k ∈ N (
1

k
> 0), ∃ mk ≥ nk ≥ k : Rk −

1

k
< σp(xnk , xmk) < Rk.

Indeed, we use the nonzero terms of the sequence {σp(xnk , xmk)}k∈N to prove that r = 0
(we assume, on the contrary, that r > 0). Letting k →∞ in the above inequality, together
with (3.11) imply

lim
k→∞

σb(xnk , xmk) = r. (3.12)

Applying (3.1) with x = xnk−1, y = xmk−1 and using the facts that

Ω−1

2

[
σp(xnk−1, xmk) + σp(xmk−1, xnk)

2

]
≤ Ω−1

2

[
Ω
(
σp(xnk−1, xmk−1) + σp(xnk , xmk)

)]
≤ σp(xnk−1, xmk−1) + σp(xnk , xmk)

2
≤ max{σp(xnk−1, xmk−1), σp(xnk , xmk)}

and

σp(xnk−1, xnk) ≥ σp(xmk−1, xmk), (for, nk ≤ mk),

together with the properties on ζ, ψ, α, h and T , we reach

0 ≤ ζ
(
α(xnk−1, xmk−1)ψ(Ω(σp(xnk , xmk))), h(xnk−1, xmk−1)ψ(R(xnk−1, xmk−1))

)
< h(xnk−1, xmk−1)ψ(R(xnk−1, xmk−1))− α(xnk−1, xmk−1)ψ(Ω(σp(xnk , xmk))),

(3.13)

where

R(xnk−1, xmk−1) = max

{
σp(xnk−1, xnk)σp(xmk−1, xmk)

σp(xnk−1, xmk−1)
, σp(xnk−1, xmk−1), σp(xnk−1, xnk),

σp(xmk−1, xmk),
Ω−1

2

[
σp(xnk−1, xmk) + σp(xmk−1, xnk)

2

]}
≤ max

{
σp(xnk−1, xnk)σp(xmk−1, xmk)

σp(xnk−1, xmk−1)
, σp(xnk−1, xnk),

σp(xnk−1, xmk−1), σp(xnk , xmk)

}
.

We should consider the following cases:

(case 1.) If R(xnk−1, xmk−1) =
σp(xnk−1,xnk )σp(xmk−1,xmk )

σp(xnk−1,xmk−1) (or, = σp(xnk−1, xnk)). Then, (3.13)

becomes

0 < ψ(r)←ψ(σp(xnk , xmk)) ≤ α(xnk−1, xmk−1)ψ(σp(xnk , xmk))

< h(xnk−1, xmk−1)ψ(R(xnk−1, xmk−1))

≤ ψ(R(xnk−1, xmk−1)) −→ ψ(0) as k →∞ ⇒ contradiction.

(case 2.) If R(xnk−1, xmk−1) = σp(xnk , xmk). Then, (3.13) becomes

ψ(σp(xnk , xmk)) ≤ α(xnk−1, xmk−1)ψ(σp(xnk , xmk))

< h(xnk−1, xmk−1)ψ(R(xnk−1, xmk−1)) ≤ ψ(σp(xnk , xmk)) ⇒ contradiction.
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Therefore, R(xnk−1, xmk−1) must equal σp(xnk−1, xmk−1) and then

σp(xnk , xmk) ≤ σp(xnk−1, xmk−1) ≤ Rk(or, Rk − 1).

Thus,

lim
k→∞

σb(xnk−1, xmk−1) = r. (3.14)

On account of the above observations, we use (3.13) and then (ζ3) to obtain

ψ(r)← ψ(σp(xnk , xmk)) ≤ α(xnk−1, xmk−1)ψ(Ω(σp(xnk , xmk)))

< h(xnk−1, xmk−1)ψ(σp(xnk−1, xmk−1)) ≤ ψ(σp(xnk−1, xmk−1)) −→ ψ(r) as k →∞.
Hence,

0 ≤ lim sup
n→∞

ζ
(
α(xnk−1, xmk−1)ψ(σp(xnk , xmk)), h(xnk−1, xmk−1)ψ(σp(xnk−1, xmk−1))

)
< 0,

which gives a contradiction, then r = 0. Thus, (3.9) holds true and the sequence {xn} is
σp−Cauchy. By the completeness of (X,σp), there exists x ∈ X such that

lim
n→∞

σp(xn, x) = σb(x, x) = lim
n,m→∞

σb(xn, xm) = 0. (3.15)

Now, consider the subsequence {xnk} of the sequence {xn} such that

σp(xnk , x) > 0 and σp(xnk+1, Tx) > 0, ∀ nk ≥ k ∈ N.

Lemma 2.1, together with (3.15) imply that

lim
k→∞

σp(xnk , x) = 0. (3.16)

To prove that x = Tx, we have to distinguish two cases:

(case 1.) If σp(xnk+1, Tx) ≤ σp(xnk , x).
In this case, we reach our desired result as follows:

σp(x, Tx) ≤ Ω
[
σp(x, xnk+1) + σp(xnk+1, Tx)

]
→ 0 as n→∞. (3.17)

Hence, σp(x, Tx) = 0⇒ x = Tx.
(case 2.) If σp(xnk+1, Tx) > σp(xnk , x). In this case, we have

Ω−1

2

[
σp(xnk , Tx) + σp(x, xnk+1)

2

]
≤ Ω−1

2

[
Ω
(
σp(xnk+1, Tx) + σp(x, Tx)

)]
≤ max{σp(xnk+1, Tx), σp(x, Tx)}.

Since X is α−regular and xnk → x in X, then α(xnk , x) ≥ 1 and then apply (3.1)
to obtain

0 ≤ ζ
(
α(xnk , x)ψ(Ω(σp(xnk+1, Tx))), h(xnk , x)ψ(R(xnk , x))

)
< h(xnk , x)ψ(R(xnk , x))− α(xnk , x)ψ(Ω(σp(xnk+1, Tx))),

(3.18)

where

R(xnk , x) ≤ max

{
σp(xnk , xnk+1)σp(x, Tx)

1 + σp(xnk , x)
, σp(xnk , xnk+1), σp(x, Tx), σp(xnk+1, Tx)

}
.

We have three subcases:
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1. If R(xnk , x) =
σp(xnk ,xnk+1)σp(x,Tx)

1+σp(xnk ,x)

(
or, σp(xnk , xnk+1)

)
, then equation (3.18) implies

ψ(σp(xnk+1, Tx)) ≤ α(xnk , x)ψ(Ω(σp(xnk+1, Tx)))

< h(xnk , x)ψ(R(xnk , x)) ≤ ψ(R(xnk , x))→ ψ(0) = 0 as k →∞,
⇒ lim

k→∞
σp(xnk+1, Tx) = 0,

⇒ σp(x, Tx) ≤ Ω
[
σp(x, xnk+1) + σp(xnk+1, Tx)

]
→ 0

⇒ x = Tx.

2. If R(xnk , x) ≤ σp(x, Tx). Then, Lemma 2.2 and Eq. (3.18) yield that

ψ(σp(x, Tx)) ≤ ψ(Ω(σp(xnk+1, Tx))) ≤ α(xnk , x)ψ(Ω(σp(xnk+1, Tx)))

< h(xnk , x)ψ(R(xnk , x)) ≤ ψ(σp(x, Tx)) ⇒ contradiction.

3. If R(xnk , x) ≤ σp(xnk+1, Tx). Then, Eq. (3.18) implies

ψ(σp(xnk+1, Tx)) ≤ α(xnk , x)ψ(Ω(σp(xnk+1, Tx)))

< h(xnk , x)ψ(σp(xnk+1, Tx)) ≤ ψ(σp(xnk+1, Tx)) ⇒ contradiction.

Therefor, in all cases we get that x is a fixed point of T . To show that this fixed point in
unique, suppose that y ∈ X is another fixed point of T and apply (3.1) to get the opposite.

0 ≤ ζ
(
α(x, y)ψ(Ω(σp(Tx, Ty))), h(x, y)ψ(R(x, y))

)
< h(x, y)ψ(R(x, y))− α(x, y)ψ(Ω(σp(x, y))).

Further arguments such as that above we can arrive at x = y. Hence, we end up with the
uniqueness of the fixed point of T . �

Example 3.1. Let X = [0, 1] and σp : X → X be given as

σp(x, y) = e(x+y)3 − 1, : ∀ x, y ∈ X.

Then, (X,σp) is a p−metric-like space with Ω(t) = e4t − 1 (see, Example 2.2). Define
α : X ×X → R+, h : X ×X → (0, 1], T : X → X, ψ ∈ Ψ and ζ ∈ Z by

α(x, y) = ex−y, h(x, y) = 1, Tx =
x

10
∀ x, y ∈ X,

ψ(t) = ln
(
1 +

1

4
ln(1 + t)

)
, ζ(t, s) =

s

2
− t.

Since the only Cauchy sequence in X is { 1
n}n∈N which satisfies α(xn, xn+1) ≥ 1, ∀ n.

This sequence converges to 0 ∈ X and α(xn, 0) ≥ 1, ∀ n. Then (X,σp) is α−complete and
α−regular p−metric-like space. Also, we have

α(x, Tx) ≥ 1⇒ x ≥ Tx⇒ Tx ≥ T 2x⇒ α(Tx, T 2x) ≥ 1,

α(x, Tx) ≥ 1 and α(x, Tx) ≥ 1⇒ x ≥ y and y ≥ Ty ⇒ x ≥ Ty ⇒ α(x, Ty) ≥ 1.
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Therefore, T is a triangular α−orbital admissible mapping. Now, we show that T also
satisfy the contractive condition (3.1).

α(x, y)ψ
(
Ω(σp(Tx, Ty))

)
≤ ex−yψ

(
e4[e(

x
10 +

y
10 )3−1] − 1

)
≤ ex−y ln

(
1 +

1

4
ln(e4[e(

x
10 +

y
10 )3−1])

)
≤ ex−y( x

10
+

y

10
)3

≤ ex−y

103
(x+ y)3

≤ ex−y

103
100 ln

(
1 +

1

4
(x+ y)3

)
≤ ex−y

103
100 ln

(
1 +

1

4
ln[1 + e(x+y)3 − 1]

)
≤ ex−y

103
100 ln

(
1 +

1

4
ln[1 + σp(x, y)]

)
≤ ex−y

103
100 ln

(
1 +

1

4
ln[1 +R(x, y)]

)
≤ h(x, y)

2
ψ
(
R(x, y)

)
,

⇒ 0 ≤ ζ
(
α(x, y)ψ

(
Ω(σp(Tx, Ty)), h(x, y)ψ

(
R(x, y)

))
.

Hence, all conditions of Theorem 3.1 are satisfied and T has one fixed point 0 ∈ X.

Example 3.2. Let X = [1, 3] and σp : X → X be given as

σp(x, y) = e(x+y)2
sec−1 e(x+y)2

, : ∀ x, y ∈ X.

Then, (X,σp) is a p−metric-like space with Ω(t) = e2t sec−1 e2t (see, Example 2.2). Define
α : X ×X → R+, h : X ×X → (0, 1], T : X → X, ψ ∈ Ψ and ζ ∈ Z by

α(x, y) = ex−y, h(x, y) = 1, Tx =
x

10
∀ x, y ∈ X,

ψ(t) = ln
( 1

π
ln(

2

π
t)
)
, ζ(t, s) =

s

2
− t.

Indeed, (X,σp) is α−complete and α−regular p−metric-like space and T is a triangular
α−orbital admissible mapping. By using the fact that sec−1 x ≤ π

2 , ∀x ≥ 1, we show that
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T also satisfy the contractive condition (3.1).

α(x, y)ψ
(
Ω(σp(Tx, Ty))

)
≤ ex−yψ

(
Ω[e( x

10
+ y

10
)2

sec−1 e( x
10

+ y
10

)2
]
)

≤ ex−yψ
(
e2[e(

x
10 +

y
10 )2 sec−1 e(

x
10 +

y
10 )2 ] sec−1 e2[e(

x
10 +

y
10 )2 sec−1 e(

x
10 +

y
10 )2 ]

)
≤ ex−y ln

( 1

π
ln(

2

π
e2[e(

x
10 +

y
10 )2 sec−1 e(

x
10 +

y
10 )2 ]π

2
)
)

≤ ex−y ln
( 1

π

(
2[e( x

10
+ y

10
)2

sec−1 e( x
10

+ y
10

)2
]
))

≤ ex−y ln
( 1

π

(
2[e( x

10
+ y

10
)2 π

2
]
))

≤ ex−y

102
(x+ y)2

≤ ex−y

102
18 ln

( 1

π
ln(

2

π
e(x+y)2

sec−1 e(x+y)2)
≤ ex−y

102
18 ln

( 1

π
ln(

2

π
σp(x, y))

)
≤ h(x, y)

2
ψ
(
R(x, y)

)
,

⇒ 0 ≤ ζ
(
α(x, y)ψ

(
Ω(σp(Tx, Ty))

)
, h(x, y)ψ

(
R(x, y)

))
.

Hence, all conditions of Theorem 3.1 are satisfied and T has one fixed point 0 ∈ X.

Remark 3.1. In Theorem 3.1, we did not use the property (2.3) of the mapping h defined
in [18]. Moreover, we can use this property instead of ζ2 to obtain the same result. Also,
we can replace the α−regular property of X by the continuity of T .

Taking ζ(t, s) = λs − t, λ ∈ [0, 1), we obtain the following corollary which extends
Theorem 2.2 in [18].

Corollary 3.1. Let (X,σp) be a p−metric-like space and T : X → X be a triangular
α−orbital admissible mapping. Suppose that for all x, y ∈ X with α(x, y) ≥ 1,

α(x, y)ψ(Ω(σp(Tx, Ty))) ≤ λh(x, y)ψ(σp(x, y)), (3.19)

where ψ ∈ Ψ, h : X ×X → [0, 1) and

R(x, y) = max

{
σp(x, Tx)σp(y, Ty)

σp(x, y)
, σp(x, y), σp(x, Tx),

σp(y, Ty),
Ω−1

2

[
σp(x, Ty) + σp(y, Tx)

2

]}
.

Consider that the following properties hold true:

(a) (X,σp) is α−complete and α−regular.
(b) For all x, y ∈ Fix(T ), we have α(x, y) ≥ 1, where Fix(T ) denotes the set of fixed

points of T .

Moreover, if there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a unique fixed point.



14 Shimaa I. Moustafa

In fact, considering new examples of p−metric-like such as those ones given in Example
2.2 yields some new results which generalize an extend many recent results in b−metric-like
spaces and other metric type spaces.

Corollary 3.2. Let (X,σb) be a b−metric-like space with parameter s ≥ 1 and T : X → X
be a triangular α−orbital admissible mapping. Suppose that for all x, y ∈ X with α(x, y) ≥
1,

ζ
(
α(x, y)ψ(sinh(s sinh(σb(Tx, Ty)))), h(x, y)ψ(sinh(σb(x, y)))

)
≥ 0, (3.20)

where ζ ∈ Z, ψ ∈ Ψ, h : X ×X → [0, 1) and

R(x, y) = max

{
sinh(σb(x, Tx)) sinh(σb(y, Ty))

sinh(σb(x, y))
, sinh(σb(x, y)), sinh(σb(x, Tx)),

sinh(σb(y, Ty)),
sinh−1

2s

[
sinh(σb(x, Ty)) + sinh(σb(y, Tx))

2

]}
.

Consider that the following properties hold true:

(a) (X,σp) is α−complete and α−regular.
(b) For all x, y ∈ Fix(T ), we have α(x, y) ≥ 1, where Fix(T ) denotes the set of fixed

points of T .

Moreover, if there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a unique fixed point.

Let (X,�, σb) be a partially ordered p−metric-like space and α : X ×X → R+ be given
as:

α(x, y) =

{
1, x � y;
0, otherwise.

Therefore, we can derive the following important result in the framework of partially ordered
p−metric-like spaces.

Corollary 3.3. Let (X,σp) be a complete p−metric-like space and T : X → X be a nonde-
creasing mapping such that for all x, y ∈ X with x � y, it follows that

ζ
(
α(x, y)ψ(Ω(σp(Tx, Ty))), h(x, y)ψ(σp(x, y))

)
≥ 0, (3.21)

where ζ ∈ Z, ψ ∈ Ψ, h : X ×X → [0, 1) and

R(x, y) = max

{
σp(x, Tx)σp(y, Ty)

σp(x, y)
, σp(x, y), σp(x, Tx),

σp(y, Ty),
Ω−1

2

[
σp(x, Ty) + σp(y, Tx)

2

]}
.

Consider that the following properties hold true:

(a) X satisfy the following property

If a nondecreasing sequence {xn} → x ∈ X, then xn � x, ∀ n. (3.22)

(b) For every two fixed points x and y of T , x � y.

Moreover, if there exists x0 ∈ X such that x0 � Tx0, then T has a unique fixed point.

Taking ψ(t) = t, ζ(t, s) = λs−t, ∀ t, s ∈ R+, λ ∈ [0, 1), α(x, y) = h(x, y) = 1, ∀ x, y ∈ X,
we obtain an extension of Banach contraction principle in a p−metric-like space.
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Corollary 3.4. Let (X,σp) be a complete p−metric-like space and T : X → X be such that

σp(Tx, Ty) ≤ λσp(x, y), ∀ x, y ∈ X. (3.23)

Then T has a unique fixed point.

4. Fractional Differential Equations

By virtue of the results obtained in the previous section, we give an existence theorem
for a solution of problem (1.1) that belongs to X = C(J,R). A thing that we must admit
is that the considered problem is inspired in [18] but under different conditions.

Let X = C(J,R) be the set of continuous real functions defined on J = [0, τ ], τ > 0 and
σp : X ×X → R+ be given as

σp(x, y) = σ(x, y) coshσ(x, y), ∀ x, y ∈ X,

where

σ(x, y) = max
t∈J

(
∣∣x(t)|+ |y(t)|

)
, ∀ x, y ∈ X, t ∈ J.

Further, we endow (X,σp) with an order

x � y ⇔ x(t) ≥ y(t), ∀ t ∈ J

and then define α : X ×X → R as

α(x, y) =

{ 1
Kρ
, x � y;

0, otherwise,

where

Kρ =
nτn−1

ρβ
∣∣nτn−1e−λτ − rn

∣∣[E1,β+2(λ, r) + E1,β+1(λ, τ)
]

+
1

ρβ
E1,β+1(λ, τ).

Here, Eα,β(λ, z) is the modified version of the Mittag-Leffler function defined by

Eα,β(λ, z) =

∞∑
k=0

λk
zαk+β−1

Γ(αk + β)
, (0 6= λ ∈ R, z, α, β ∈ C, Re(α) > 0).

Obviously, (X,σp) is α−regular and α−complete p−metric-like space with

Ω(t) = t cosh t.

In what follows, we provide an integral representation for the solution of our considered
problem that will be needed in the sequel.

Lemma 4.1. The function x ∈ X is a solution of problem (1.1) if and only if,

x(t) =
ntn−1e−λt

ρβΓ(β)
[
nτn−1e−λτ − rn

][ ∫ r

0

∫ s

0
eλz(s− z)β−1f(z, x(z))dzds−

∫ τ

0
e−λ(τ−s)(τ − s)β−1f(s, x(s))ds

]
+

1

ρβΓ(β)

∫ t

0
e−λ(t−s)(t− s)β−1f(s, x(s))ds.

(4.1)
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Proof. We may reduce (1.1) to the equivalent integral form given in (4.1) by applying the
operator 0I

β,ρ on both sides of equation (1.1) and making use of Lemma 2.3.

x(t) =
n−1∑
k=0

(Dk,ρx)(0)

ρkΓ(k + 1)
tke

ρ−1
ρ
t
+ 0I

β,ρf
(
t, x(t)

)
. (4.2)

Moreover, the condition x(i)(t)|t=0 = 0 implies (Di,ρx)(0) = 0, ∀ 0 ≤ i ≤ n− 2. Hence,

x(t) =
(Dn−1,ρx)(0)

ρn−1Γ(n)
tn−1e

ρ−1
ρ
t
+ 0I

β,ρf
(
t, x(t)

)
= cn−1t

n−1e−λt + 0I
β,ρf

(
t, x(t)

)
.

(4.3)

Now, we compute the value of cn−1. From (4.3), we get

x(τ) = cn−1τ
n−1e−λτ + 0I

β,ρf
(
τ, x(τ)

)
(4.4)∫ r

0
eλsx(s)ds = cn−1

∫ r

0
sn−1ds+

∫ r

0
eλs0I

β,ρf
(
s, x(s)

)
ds

= cn−1
rn

n
+

1

ρβΓ(β)

∫ r

0

∫ s

0
eλz(s− z)β−1f(z, x(z))dzds.

(4.5)

By x(τ) =
∫ r

0 e
λsx(s)ds, combining with (4.4) and (4.5), we deduce

cn−1 =
n

ρβΓ(β)
[
nτn−1e−λτ − rn

][ ∫ r

0

∫ s

0
eλz(s− z)β−1f(z, x(z))dzds−

∫ τ

0
e−λ(τ−s)(τ − s)β−1f(s, x(s))ds

]
.

Substituting cn−1 in equation (4.2), we gain (4.1). Conversely, we apply the operator 0D
β,ρ

on both sides of equation (4.2) with Lemma 2.4, Propositions 2.2 and 2.3 to obtain

0D
β,ρx(t) =

n−1∑
k=0

ρβ−k(Dk,ρx)(0)

Γ(k + 1− β)
tk−βe

ρ−1
ρ
t
+ 0D

β,ρ
0I
β,ρf

(
t, x(t)

)
C
0 D

β,ρx(t) = f
(
t, x(t)

)
.

Furthermore, we have X(i)(0) = 0, ∀ 0 ≤ i ≤ n− 2 and∫ r

0
eλsx(s)ds =

[
rn

ρβΓ(β)
[
nτn−1e−λτ − rn

] +
1

ρβΓ(β)

] ∫ r

0

∫ s

0
eλz(s− z)β−1f(z, x(z))dzds

− rn

ρβΓ(β)
[
nτn−1e−λτ − rn

] ∫ τ

0
e−λ(τ−s)(τ − s)β−1f(s, x(s))ds

=
nτn−1e−λτ

ρβΓ(β)
[
nτn−1e−λτ − rn

] ∫ r

0

∫ s

0
eλz(s− z)β−1f(z, x(z))dzds

− rn

ρβΓ(β)
[
nτn−1e−λτ − rn

] ∫ τ

0
e−λ(τ−s)(τ − s)β−1f(s, x(s))ds

= x(τ).
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This finishes the proof. �

Define the operator T : X → X as follows:

Tx(t) =
ntn−1e−λt

ρβΓ(β)
[
nτn−1e−λτ − rn

][ ∫ r

0

∫ s

0
eλz(s− z)β−1f(z, x(z))dzds−

∫ τ

0
e−λ(τ−s)(τ − s)β−1f(s, x(s))ds

]
+

1

ρβΓ(β)

∫ t

0
e−λ(t−s)(t− s)β−1f(s, x(s))ds.

(4.6)

In view of Lemma 4.1, if x ∈ X is a fixed point of T then it is a solution of (1.1).

Theorem 4.1. Assume that:

(A) If x, y ∈ X with x � y, then

f(t, x(t)) ≥ f(t, y(t))

and

|f(t, x(t))|+ |f(t, y(t))| ≤ 1

4
sinh−1

(
sinh−1 2(|x(s)|+ |y(s)|)

)
, ∀ t ∈ J.

(B) There exists x0 ∈ X such that x0 � Tx0.
(C) Kρ ≤ 1.

Then the problem (1.1) has a solution in x ∈ X.

Proof. Consider the mapping T : X → X defined by (4.6). It follows from (A) that the
mapping T is increasing w. r. t. �, hence it is triangular α−orbital admissible. Now, from
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(B) and (C), we have for all x, y ∈ X with x � y

σ(Tx, Ty) = max
t∈J

(
|Tx(t)|+ |Ty(t)|

)
≤ max

t∈J

(
ntn−1e−λt

ρβΓ(β)
∣∣nτn−1e−λτ − rn

∣∣
[ ∫ r

0

∫ s

0
eλz(s− z)β−1

[
|f(z, x(z))|+ |f(z, y(z))|

]
dzds

+

∫ τ

0
e−λ(τ−s)(τ − s)β−1

[
|f(s, x(s))|+ |f(s, y(s))|

]
ds

]
+

1

ρβΓ(β)

∫ t

0
e−λ(t−s)(t− s)β−1

[
|f(s, x(s))|+ |f(s, y(s))|

]
ds

)
≤ 1

4
sinh−1 sinh−1(2σ(x, y))×max

t∈J

(
ntn−1e−λt

ρβΓ(β)
∣∣nτn−1e−λτ − rn

∣∣
[ ∫ r

0

∫ s

0
eλz(s− z)β−1dzds

+

∫ τ

0
e−λ(τ−s)(τ − s)β−1ds

]
+

1

ρβΓ(β)

∫ t

0
e−λ(t−s)(t− s)β−1ds

)
≤ 1

4
sinh−1 sinh−1(2σ(x, y))×max

t∈J

(
ntn−1e−λt

ρβΓ(β)
∣∣nτn−1e−λτ − rn

∣∣
[
Γ(β)

∞∑
k=0

λk
rk+β+1

Γ(k + β + 2)

+ e−λτΓ(β)
∞∑
k=0

λk
τk+β

Γ(k + β + 1)

]
+

1

ρβΓ(β)
e−λtΓ(β)

∞∑
k=0

λk
tk+β

Γ(k + β + 1)

)
≤ 1

4
sinh−1 sinh−1(2σ(x, y))(

nτn−1

ρβ
∣∣nτn−1e−λτ − rn

∣∣[E1,β+2(λ, r) + E1,β+1(λ, τ)
]

+
1

ρβ
E1,β+1(λ, τ)

)
≤ Kρ

1

4
sinh−1 sinh−1(2σ(x, y)).

Taking ψ(r1) = sinh−1 sinh−1(2r1), h(r1, r2) = 1 and ζ(r1, r2) = r2
2 − r1, ∀ r1, r2 ∈ R+,

we deduce that

α(x, y)ψ
(
Ω(σp(Tx, Ty))

)
≤ 1

Kρ
ψ
(
σ(Tx, Ty) cosh(σ(Tx, Ty)) cosh(σ(Tx, Ty) cosh(σ(Tx, Ty)))

)
≤ 1

Kρ
sinh−1 sinh−1

(
2σ(Tx, Ty) cosh(σ(Tx, Ty)) cosh(σ(Tx, Ty) cosh(σ(Tx, Ty)))

)
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≤ 1

Kρ
sinh−1

(
2σ(Tx, Ty) cosh(σ(Tx, Ty))

)
≤ 1

Kρ
2σ(Tx, Ty)

≤ 1

2
sinh−1 sinh−1(2σ(x, y))

≤ h(x, y)ψ(σ(x, y)),

⇒ 0 ≤ ζ
(
α(x, y)ψ

(
Ω(σp(Tx, Ty))

)
, h(x, y)ψ(σ(x, y))

)
.

All obtained results in this section yield to the fact that all the hypotheses of Theorem 3.1
are satisfied and hence the mapping T has one fixed point in X which is a solution of the
integral equation (4.1) that is equivalent to our considered problem (1.1). �

5. Concluding Remarks and Observations

We have applied our fixed point results on the existence and uniqueness of fractional
differential equations that include different types of fractional operators named as gener-
alized proportional factional derivatives and with exponential weighted integral boundary
conditions.

Due to the singularities found in the traditional fractional operators which are thought to
make some difficulties in the modeling process. In future works, we look forward to deal with
new types of non-singular fractional operators such as those mentioned in [2, 3, 8, 10, 22, 23].
Some of these operators contain exponential kernels and some of them involve the Mittag-
Leffler functions.
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[25] F. Khojasteh, S. Shukla and S. Radenović: A new approach to the study of fixed point theory for
simulation functions. Filomat, 29(6) (2015), 1189-1194.

[26] R. L. Magin: Fractional Calculus in Bioengineering. Begell House, Redding, 2006.
[27] F. Mainardi : Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical

Models. World Scientific, Singapore, 2010.
[28] S. G. Matthews: Partial metric topology. Ann. New York Acad. Sci., 728 (1994), 183-197.
[29] K. M. Owolabi, A. Atangana and A. Akgul: Modelling and analysis of fractal-fractional par-

tial differential equations: Application to reaction-diffusion model. Alex. Eng. J., (2020, in press).
https://doi.org/10.1016/j.aej.2020.03.022

[30] V. Parvaneh, A. Dinmohammadi and Z. Kadelburg: Coincidence point results for weakly α−admissible
pairs in extended b−metric spaces. J. Math. Anal., 8(6) (2017), 74–89.

[31] V. Parvaneh, S. J. H. Ghoncheh: Fixed Points of (ψ,ϕ)Ω−Contractive Mappings in Ordered P−Metric
Spaces. Global Anal. Discrete Math., 4(1) (2020), 15–29.

[32] V. Parvaneh and Z. Kadelburg: Extended partial b−metric spaces and some fixed point results. Filomat,
32(8) (2018), 2837-2850.

[33] V. Parvaneh and Z. Kadelburg: Fixed points of JSHR−contractive type mappings in extended
b−metric-like spaces. Vietnam J. Math., 47 (2019), 387–401.

[34] O. Popescu: Some new fixed point theorems for α−Geraghty contraction type maps in metric spaces.
Fixed Point Theory Appl., 2014, 2014:190.

[35] B. Samet, C. Vetro and P. Vetro: Fixed point theorems for α−ψ−contractive type mappings. Nonlinear
Anal., 75(4) (2012), 2154–2165.

[36] S. Shukla: Partial b−metric spaces and fixed point theorems. Mediterr. J. Math., 11 (2014), 703-711.


