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Abstract

Non-random mating among individuals can lead to spatial clustering of genetically simi-

lar individuals and population stratification. This deviation from panmixia is commonly

observed in natural populations. Consequently, individuals can have parentage in single

populations or involving hybridization between differentiated populations. Accounting for

this mixture and structure is important when mapping the genetics of traits and learning

about the formative evolutionary processes that shape genetic variation among individuals

and populations. Stratified genetic relatedness among individuals is commonly quantified

using estimates of ancestry that are derived from a statistical model. Development of these

models for polyploid and mixed-ploidy individuals and populations has lagged behind those

for diploids. Here, we extend and test a hierarchical Bayesian model, called entropy, which

can utilize low-depth sequence data to estimate genotype and ancestry parameters in au-

topolyploid and mixed-ploidy individuals (including sex chromosomes and autosomes within

individuals). Our analysis of simulated data illustrated the trade-off between sequencing

depth and genome coverage and found lower error associated with low depth sequencing

across a larger fraction of the genome than with high depth sequencing across a smaller

fraction of the genome. The model has high accuracy and sensitivity as verified with simu-

lated data and through analysis of admixture among populations of diploid and tetraploid

Arabidopsis arenosa.

Introduction1

Species are distributed across geographic ranges and potentially heterogeneous environments,2

and experience barriers to dispersal. Thus, a species rarely corresponds to a single, geneti-3

cally homogeneous, panmictic population. This differentiation across the geographic range4

can consist of clinal variation, genetic subdivisions into local populations or ‘demes’, or some5

combination of both (Endler, 1977; Bradburd et al., 2013; Gompert & Buerkle, 2016). Even6
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species with high rates of dispersal can have geographic ranges that are large relative to7

dispersal distances (e.g., Novembre et al., 2008; Phifer-Rixey et al., 2018), such that the8

distribution of traits and alleles is commonly heterogeneous and stratified among geographic9

locations.10

Quantifying population heterogeneity and stratification is a fundamental component of11

empirical population genetics, both to provide a context for the study of evolutionary dynam-12

ics and as a component of learning about trait genetics in natural populations. Information13

about population structure and mixtures can reveal aspects of the underlying evolutionary14

processes and has played a significant role in shaping our understanding of the nature of15

hybridization, speciation, and adaptation. This includes knowledge of the prevalence of gene16

flow and introgression, as well as variability in introgression among geographic sites and17

genomic regions (e.g., Nadeau et al., 2012; Abbott et al., 2013; Gompert et al., 2014b; Man-18

deville et al., 2017; Meier et al., 2017). For example, structure-like models are commonly19

used to quantify the proportion of an individual’s genome inherited from each of K hypo-20

thetical source populations, which corresponds to their ancestry or admixture composition21

(Pritchard et al., 2000; Falush et al., 2003; Gompert et al., 2014b). Comparisons of param-22

eter estimates from models with different numbers (K) of source populations can guide an23

understanding of hierarchy and spatial genetic structure and admixture among the sampled24

individuals. Beyond structure-like models, there is considerable interest in estimates of25

locus-specific ancestry and introgression, with a corresponding wealth of existing and con-26

tinuously developing methods in computational statistics (e.g., Sankararaman et al., 2008;27

Gompert & Buerkle, 2013; Gompert, 2016; Rosenzweig et al., 2016; Ottenburghs et al., 2016;28

Schumer et al., 2019, for a review, see Gompert et al. 2017). These include parametric meth-29

ods for detecting loci with ancestry that is concordant with the remainder of the genome30

(e.g., Szymura & Barton, 1986; Gompert & Buerkle, 2011a), or for detecting breakpoints31

and tracts of ancestry among chromosomal blocks or haplotypes (e.g., Wegmann et al., 2011;32

Lawson et al., 2012; Sohn et al., 2012; Gompert, 2016). Similarly, researchers have contrasted33
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ancestry and introgression of sex chromosomes relative to ancestry of autosomes in hybrid34

zones (Harrison & Larson, 2016; Chaturvedi et al., 2020).35

Accounting for population stratification and mixtures is typically a critical component36

of trait mapping in natural populations. Accounting for population stratification can reduce37

the number of false positive associations between loci and trait variation (e.g., Pritchard &38

Donnelly, 2001; Haworth et al., 2019). Admixture coefficients or genetic kinship matrices39

can quantify diffuse genetic effects that are attributable to the genetic background of indi-40

viduals (overall ancestry), rather than the effects of individual genetic loci (Zhou et al., 2013;41

Hellwege et al., 2017).42

Despite the abundance of non-parametric statistical methods (e.g., EIGENSTRAT, Price43

et al. 2006 and DAPC, Jombart et al. 2010) and parametric models for population structure,44

methods for quantifying admixture in autopolyploid or mixed-ploidy individuals (combina-45

tion of autosomes and sex chromosomes within individuals, or a mixture of ploidal levels46

among individuals in a population) are not fully developed. This is true even though 16% of47

all plant species contain some ploidal variation (Rice et al., 2015). The dynamics of mixed-48

ploidy species can reveal processes governing polyploid evolution and the role of ploidal49

variation in adaptation and speciation (Kolář et al., 2017). Autopolyploids harbour multi-50

ple complete haploid subgenomes with sets of homologous chromosomes that share recent51

common ancestry and that aggregate and then segregate randomly in meiosis, leading to52

polysomic inheritance. Hence, methods for autopolyploid genetics should contain the ability53

to treat each allele copy at a locus as being independent. In contrast, in allotetraploids with54

disomic inheritance, loci can be modeled as having diploid genotype values (and use the55

methods previously developed for diploids), instead of modeling complete tetraploid geno-56

types as with autotetraploids (even with minimal information on the origin of reads from57

the two different subgenomes using the model presented in Blischak et al., 2017). structure58

can be used with autopolyploid and mixed-ploidy individuals, but lacks the ability to utilize59

genotype likelihoods as input data and thereby account for uncertainty in genotype calls,60
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and requires a model misspecification to accommodate variable ploidy (i.e., by assuming a61

single ploidal level for input genotype data across all individuals, Meirmans et al., 2018;62

Stift et al., 2019). Differences in genotyping errors could occur across ploidal levels and63

cause potential artefacts if structure were applied to a mixed-ploidy data set, though the64

magnitude of such effects in estimation have not been well studied (Ferretti et al., 2018).65

As a result, structure cannot make full use of low-depth sequencing, or be used as a pop-66

ulation model for estimating genotypes (including imputation of missing genotypes). Other67

methods that utilize genotype likelihoods and low depth sequences have not been extended68

to polyploids (Skotte et al., 2013; Meisner & Albrechtsen, 2018). The use of the full dis-69

tribution of genotype likelihoods (from GATK, McKenna et al. 2010, SAMtools, Li 2011, or70

FreeBayes, Garrison & Marth 2012), rather than point estimates of genotypes, is particu-71

larly appropriate for polyploids in which a heterozygous genotype can arise from multiple72

dosages of alternative alleles (e.g., 1:3, 2:2, and 3:1 in a tetraploid) that will be difficult73

to distinguish, particularly with low sequencing depth. More generally, methods that uti-74

lize genotype likelihoods from all appropriately filtered loci will make more complete and75

better use of the available genomic data to estimate ancestry and genotypes (Gompert &76

Buerkle, 2011b; Nielsen et al., 2012; Buerkle & Gompert, 2013; Vieira et al., 2013), including77

for estimating genotypes to map phenotypes to the genomes of polyploids (Grandke et al.,78

2016). In addition to the class of structure-like models for population allele frequencies79

and individual ancestry, methods have been developed to estimate genotypes from polyploid80

sequence data, without considering population structure and admixture (EBG, Blischak et al.81

2017; updog, Gerard et al. 2018; polyRAD, Clark et al. 2019).82

A recent simulation study (Stift et al., 2019) showed that model-based approaches like83

structure outperform other ancestry-estimation methods for the analysis of mixed-ploidy84

populations. Likewise, using an evolutionary model for allele frequencies in populations,85

including a structure-like model, improves estimates of genotypes from sequence data rel-86

ative to methods that do not use population models (Gompert et al., 2014b; Clark et al.,87
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2019). At the same time, the assumption of structure-like models of admixture among88

ancestral demes should be tested, so as to avoid model misspecification and being misled89

for some populations and instances of gene flow (e.g., when there is additional substructure90

within the assumed ancestral populations, or inference is based on discrete samples along a91

continuous, isolation by distance gradient, etc., see Lawson et al., 2018). Whereas the model92

can apply well to cases of contemporary hybridization and population mixtures, model mis-93

specification can lead to incorrect inferences. Hence, the importance of model choice and94

fit has spurred further development of methods to gauge the appropriateness of the model95

for individual studies (Gompert et al., 2014b; Garcia-Erill & Albrechtsen, 2019; Chaturvedi96

et al., 2020).97

With these motivations, we extend and thoroughly test the performance of a model simi-98

lar to the admixture model implemented in structure (a version for diploids was presented99

previously as part of analyses in Gompert et al., 2014b) to detect and quantify contemporary100

population structure in mixed-ploidy populations. In our entropy software, we specifically101

model mixed-ploidy by allowing for variable ploidal level across individuals (ranging from102

haploid to hexaploid). We have implemented methods for autopolyploids, since allopoly-103

ploids can be modelled as a lower ploidy, given sufficient knowledge of genome organization104

and chromosome pairing, including which loci occur on the pairs of homoeologous chromo-105

somes (Bourke et al., 2018). Herein we also restate a novel ancestry-estimation method106

(ancestry complement model for diploids, previously presented in the Supplementary Mate-107

rial of Gompert et al., 2014b) that considers the ancestry of allele combinations in diploid108

genotypes, rather than allele copies independently, which provides additional information109

about the composition of early generation hybrids. We quantify the ability of the entropy110

model to recover true parameters from polyploid and mixed-ploidy sequencing data in simu-111

lations (with varying sequence depth, population differentiation, and percent of missingness)112

and through reanalysis of previously published data for population structure and admix-113

ture of mixed-ploidy Arabidopsis arenosa in Monnahan et al. (2019). From our testing, we114



7

conclude that the entropy model has high accuracy rate in recovering true genotype and115

ancestry estimates from a variety of simulations, and further resolves population mixtures116

in empirical data from a diploid-tetraploid hybrid zone.117

Methods118

Model specification119

Our hierarchical Bayesian model describes the probability of parameters of interest (geno-120

type, population allele frequency, admixture proportion, etc.) given the data (genotype121

likelihoods for individual SNPs), and is similar to the admixture model implemented in the122

software structure (Pritchard et al., 2000; Falush et al., 2003). This model has multiple123

hierarchical levels, such that the joint product across the hierarchy does not have a closed124

form, analytical solution. Instead, we rely on Markov chain Monte-Carlo (MCMC) methods125

to obtain samples from the posterior probability distributions of these parameters. Sev-126

eral related models have been implemented over the years that use a similar idea to obtain127

parameter estimates through various computational techniques, the most commonly used128

being Bayesian MCMC (e.g., Pritchard et al., 2000) and Expectation-Maximization (EM) of129

a likelihood (e.g., Tang et al., 2005), and more recently, variational inference of a posterior130

(e.g., Raj et al., 2014). We chose to use Bayesian MCMC so as to obtain measures of uncer-131

tainty associated with the estimates of our parameters, especially since we wanted the model132

to be usable with uneven and low depth DNA sequence data. The measures of uncertainty133

are useful in interpretation of point estimates and can be carried forward into subsequent134

analyses.135

We deviate from several previous models by using genotype likelihoods as input instead136

of fixed genotypes, as a way of propagating this uncertainty from the data to the inference137

of parameters. One can think of entropy as a data generative model that tries to match the138
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genotype likelihoods (or genotypes) that are observed to an evolutionary process (parame-139

terized by the allele frequency p, ancestry z and so on) that could have generated the data140

(Figure 1).141

The evolutionary process we assume here starts with an ancestral population (charac-142

terized by allele frequency, π) that evolves through drift (parameterized by F using the143

Balding-Nichols model, Balding & Nichols, 1995) to give rise to the K ‘parental’ popula-144

tions (each characterized by allele frequency, p) from which potentially admixed individuals145

are drawn, with admixture quantified by proportion q. We then use the observed genotype146

likelihoods (obtained from sequencing individuals) to match this evolutionary process and147

estimate our parameters through a hierarchical Bayesian model. In the following subsections,148

we explain what each parameter is and how it fits into the assumed evolutionary model.149

The process of sampling and estimating these parameters of interest in code follows150

common methods for MCMC. After initialization, we begin by updating parameters at the151

lowest level of the model hierarchy (parameter γ and α), followed by updates of parameters152

in conditional probability functions in the next higher level of the hierarchy (here, q or Q, π153

and F ). We continue this type of sampling at each level, updating parameters individually154

by either Gibbs or Metropolis updates (depending on whether we have a conjugate prior for155

our conditional likelihood), until we reach the top level of the hierarchy, the probability of156

the data conditional on the model parameters. At this step, the estimates for the parameter157

are informed by the data (in this case, genotype likelihoods X) and the parameter’s prior158

probability given the current values of other parameters in the model. This type of one-at-159

a-time sampling and updating of parameters takes place at each step in a run of the model,160

and steps are iterated sufficiently in an MCMC run (a chain) to converge to stationary161

distributions for all the parameters in the hierarchy. In the sections that follow, we describe162

each of the conditional probabilities, moving from the base of the model hierarchy to the163

likelihood (Figure 1). A more detailed description of conditional distributions of parameters164

and MCMC sampling techniques is provided in the Supplementary Material.165
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Admixture proportion (q and Q)166

In this model, admixture proportion or ancestry in an individual is the proportion of an167

individual’s genome that is derived from one of K source populations. The admixture168

proportions are estimates of the average genome-wide or global ancestry for an individual169

and, with information on the individuals descended solely from parental populations, can170

be used to describe hybridization among the demes represented in the sample (as shown in171

Gompert et al., 2017). As a result, this quantity is a vector of length K that sums to one for172

each individual. By modeling potential admixture in individuals, the model applies to both173

individuals coming entirely from a single deme, and also to individuals that are the progeny174

of crosses between demes (such as F1, F2, F3, and backcrosses). Conditional on a certain K175

number of demes and their allele frequencies, the model accounts for the genotypes that may176

be present in an individual and the individual’s fractional ancestry in each deme (Pritchard177

et al., 2000).178

The entropy model includes two different models for the estimation of admixture pro-179

portion of individuals. The first is the q-model, is similar to the structure admixture model180

with correlated allele frequencies (Falush et al., 2003). Here, we specify a vector of admixture181

proportions, denoted q = [q1, q2, . . . , qk] to indicate the proportion of an individual’s genome182

that was inherited from each source population. These parameters are the probability of183

sampling a particular ancestry for an individual allele copy at the locus, independent of184

other alleles, which is equivalent to Hardy-Weinberg expectations that arise from random185

mating.186

The second model in entropy is the ancestry complement model and considers the com-187

bination of ancestry for pairs of alleles across all loci in diploid individuals (the model is188

specified for diploids only). In early generation hybrids, interspecific (or inter-demic) combi-189

nations of alleles are expected to be common. Parameterization of the ancestry combination190

of the pair of allele copies in the ancestry complement model allows for deviations from191
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independence, which is assumed among allele copies in the simpler q-model. The ancestry192

combinations are represented in a k × k dimension matrix, Q. For example, with K = 2193

demes the ancestry complement matrix Q is 2× 2 in dimension. Q11 denotes the proportion194

of the individual’s genome in which both allele copies are descended from source population195

1. Similarly, Q22 denotes the proportion of the individual’s genome in which both copies are196

descended from source population 2, and Q12 = Q21 denotes the proportion of the genome197

in which one allele copy is from source population 1 and the other allele copy is descended198

from source population 2 (since the order of the allele copy does not matter, Q12 is equal199

to Q21). In the ancestry complement model, the admixture proportion vector q is a de-200

rived quantity from the admixture complement matrix Q. For instance, with K = 2 demes,201

qi = Qii +
∑2

k′=1
k′ 6=i

Qik′
2

for i = {1, 2}.202

As noted above, the benefit to the admixture complement parameterization is that it203

explicitly models the the combination of ancestry states at a locus, which is particularly204

beneficial in distinguishing among early generations of hybrid individuals (i.e., F1, F2, F3,205

and BC1). For first generation hybrids between parental taxa (F1) and between hybrids206

that have no parentage involving backcrossing (F2, F3, etc.) the expected value for q1 is 0.5,207

with some variance in observed individuals. This means that with the q vector alone, we208

can distinguish recent hybrids from the parentals and maybe backcrosses but not distinguish209

F1s from later generation hybrids. Likewise, distinguishing backcrosses from the parentals210

for later generations of hybrids is difficult with the admixture proportion vector q alone,211

given chance deviations from the expected values (Lindtke et al., 2014). Particularly for212

early generations of hybridization between a pair of taxa, the combination of information213

in the admixture complement matrix Q (particularly Q12) and q can support assignment214

of individuals to hybrid generations (Figure 2). Use of the admixture complement model215

will typically be restricted to low levels of K, because interpretation becomes increasingly216

complex for K > 2, requiring multi-dimensional plots for combinations of higher K values217

in the Q matrix (see Figure 2). In empirical study of systems for which K = 2 was well218
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supported, the ancestry complement model has been used to learn about patterns of hybrid219

matings among Lycaeides butterflies (Gompert et al., 2014b; Chaturvedi et al., 2020), and220

Catostomus fish (Mandeville et al., 2017, 2019), and in a related model used to study assor-221

tative mating among Populus species and their hybrids (Lindtke et al., 2014). The ancestry222

complement model for diploids is not found in structure, or other structure-like models.223

As noted previously, the implementation of the ancestry complement model only was made224

in software for diploids, because the number of dimensions required to represent this matrix225

for higher ploidal levels was unwieldy and difficult to summarize into interpretable statistics.226

Locus-specific, local ancestry (z)227

The local ancestry parameter (z) is a marker for the population of origin of each allele copy228

at a given locus (for the q model; see below for the ancestry complement model) for an229

individual in a data set. It follows that the ancestry at a locus in an individual is informed230

by the genome-wide admixture proportions of that individual, reflecting different source231

populations, with z indicating the appropriate source population. So the prior probability232

for local ancestry of an individual i at locus j is given by the admixture proportion for that233

individual, qi: P (zija = k) = qik for allele copy a ∈ {1, 2, . . . , n} in autopolyploid individuals234

(since we model each allele copy to be independently derived). This allows for each allele235

copy at a locus to be derived from a different source population. This number is a single236

draw from a multinomial distribution conditioned on the admixture proportions in q.237

The z vector for diploid individuals in the ancestry complement model functions similarly,238

in that we assume the conditional probability for local ancestry to be P (zij = kk′|Q) = Qkk′ .239

This means that the probability that both allele copies at a locus were inherited from source240

population k is equal to the proportion of the individual’s genome in which both allele copies241

are inherited from population k, and so on. This allows for the combinations of interspecific242

ancestry to be modeled explicitly as it considers the possibility of separate ancestry states243

at a locus.244
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Allele frequency (p)245

The allele frequency in inferred demes is an important parameter that allows sharing of infor-246

mation among loci by quantifying their shared evolutionary divergence from allele frequencies247

in an idealized ancestral population (parameterized by F and π). The allele frequency in248

entropy for a locus j in population k, pjk is modeled with an F-model prior as in Nicholson249

et al. (2002); Falush et al. (2003); Gaggiotti & Foll (2010)250

P (pjk|πj, Fk) ∼ beta(πj
1− Fk
Fk

, (1− πj)
1− Fk
Fk

)

where πj denotes the allele frequency at locus j in the hypothetical population that was an-251

cestral to the K source populations. Fk denotes the extent to which the kth source population252

has diverged from the ancestral population. This is analogous to Wright’s FST under some253

conditions, and can be thought of as being directly proportional to the amount of genetic254

divergence between the ancestral and the derived populations. The prior on πj is beta(α, α)255

and the prior on Fk is uniform(0,1), where α is inversely proportional to genetic variation in256

the ancestor and is estimated from the data. This formulation does not change for polyploid257

populations as is shown in the Implementation section of Nicholson et al. (2002).258

Since the allele frequency in the ancestral population π is drawn from a beta(α, α), we259

obtain a symmetric distribution that could take various shapes for different values of α, but260

the distribution is constrained to a mean ancestral allele frequency of 0.5.261

Genotype (g)262

In the entropy model the genotypes are treated as parameters and are estimated from the263

element-wise product of the genotype likelihood (the input data) and the prior probability264

for the genotypes, GL× P (gij|pj, zij). With contemporary DNA sequencers, genotypes are265
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not observed directly, but instead information about genotype likelihoods (GL) is obtained266

through bioinformatic steps and a model for the observed sequences. The genotype likelihood267

is calculated based on the observed sequence data (incorporating read counts, base quality268

scores, mapping quality scores, etc.) for each of the possible genotypes at a locus. Because269

these likelihoods are for discrete genotypes, they can be readily rescaled so that they sum to270

one and can be used as a discrete probability distribution. Often, during the analysis of DNA271

sequencing data, software is used to call a genotype, for each locus and individual, to be the272

most likely genotype given the sequence data at the locus (i.e., the mode of the genotype273

likelihood). The use of genotype likelihoods rather than point estimates of genotype allows274

uncertainty stemming from sequencing depth and mapping quality to be incorporated into a275

probability distribution, while maximizing the use of information in sequence data. Genotype276

likelihoods can be obtained from most variant-calling softwares (e.g., GATK McKenna et al.277

2010, FreeBayes Garrison & Marth 2012, or SAMtools Li 2011), which can take into account278

the base and mapping qualities, haplotypic information, along with read counts to estimate279

a likelihood for the genotype.280

The prior probability of each genotype is calculated from the allele frequencies in the

corresponding source population, as determined by the ancestry of the allele copy or the

ancestry combination of a pair of alleles in the ancestry complement model. This assumes

genotypes arise from random draws of alleles. The genotype prior probabilities for a n-ploid

individual i at locus j is given as

P (gij|pj, zij) =
∏
k

n∏
a=1


p
gija
jk (1− pjk)n−gija when k = zija

1 otherwise

Here, zij = [k1, k2, . . . , kn] denotes the local ancestry of the n allele copies for individual281

i, and zija denotes the local ancestry of the specific allele copy, a in the individual. The282

term pjk denotes the corresponding allele frequency in the kth source population. The above283
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expression yields a discrete posterior probability distribution of length n+1 for each genotype284

(g) in a n-ploid individual ({0, 1, . . . , n}) i.e., number of possible alternate alleles at a locus,285

of the same size as the vector GL.286

Model initialization and comparison287

Given the potentially large number of loci and individuals in a contemporary study, the288

model will include large numbers of parameters, including loci× individuals genotypes, loci×289

ploidy(n) × individuals × populations locus specific ancestries (z), loci × populations allele290

frequencies (p), and individuals × populations admixture proportions (q). Given the large291

number of parameters and Bayesian MCMC estimation, the efficiency of the estimation292

(faster convergence in this highly dimensional space) benefits from starting the chains as close293

to the stationary distributions as possible. Also due to the arbitrary nature of the model’s294

indexing of population or demes, estimation could include label switching among MCMC295

chains (i.e., the possibility of having ancestry or deme categories have different label indexes296

across chains, because the arbitrary indexing does not result in a change in the likelihood of297

the parameters given the data; see Stephens 2000). To speed convergence and avoid label298

switching, in practice one can initialize values based on a statistical procedure or taxonomic299

categories. We have used K-means clustering on the output of a linear discriminant analysis300

of the first five principal components (as specified in Jombart et al. 2010) to obtain estimates301

of the assignment probabilities to the K clusters for all the individuals. This analysis is run302

on point estimates of the genotypes from the genotype likelihoods. This statistical approach303

yields a probability of assignment of individuals to demes (the K-means clusters), without304

admixture. We have used the estimated assignment probabilities as mean initialization305

values (with some variance) for q in the entropy model and software (e.g., Gompert et al.,306

2014b; Mandeville et al., 2015; Haselhorst et al., 2019). Additionally, starting values for the307

admixture proportions could come from taxonomic labels or justified strata in the sampling.308

The software implementation uses the initial q values to compute the initial population allele309
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frequency in each of the K populations. This is calculated by finding the number of alleles310

with ancestry in a certain population (given by the initial q) and then dividing this number311

by the total number of allele copies in the population. This step initializes the population312

allele frequencies consistently among chains and limits the possibility of a label switch among313

chains.314

The fit of an entropy model for a given K (i.e., the set of parameters) to the observed315

sequence data can be quantified by using a measure of ‘deviance’ or the likelihood of the data316

given the parameters. The entropy model provides values of deviance (i.e., the negative log317

probability of the data given the parameters) and this can be used to calculate the Watanabe-318

Akaike Information Criterion (Watanabe, 2010). This WAIC value is a combination of the319

log predictive pointwise density (lppd), similar to the model likelihood output by structure,320

with a penalization term for the number of parameters in the model (since models with more321

parameters fit the data better). Consequently, for the WAIC and the negative log-likelihood,322

a lower value signifies a better fit. This WAIC value differs from the Deviance Information323

Criterion (DIC, Spiegelhalter et al. 2002) in that the log-likelihood value is averaged across324

all posterior samples instead of being calculated on a single average value of the posterior325

samples. Similarly, the effective number of parameters, which is the penalization term, is326

also computed using the variance of the log-likelihood (i.e. ‘deviance’) across all samples.327

This measure is suggested to work well with a hierarchical model in which the parameters328

increase in number with the dimensions of the data (Gelman et al., 2014), which is the case329

in our model.330

The summary of model fit from WAIC, in combination with graphical analyses of q es-331

timates, can contribute to an understanding of the number of potential demes (K) involved332

in admixture, particularly for taxa with contemporary hybridization and in the context of333

other information about the evolutionary history of the groups. However, this measure of334

model fit only allows contrasts among models for different choices of the number of demes335

(K). As such, structure-like models cannot themselves provide evidence for demic popula-336
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tion structure (as noted in Pritchard et al. 2000), but instead must rely on complementary337

analyses and knowledge of the system. If the true population histories differ significantly338

from the underlying demic model, contrasts of the WAIC for different K can indicate which339

model best approximates the system. However, all of the demic models could fit poorly if340

genetic differences among individuals include substantial isolation by distance, additional341

substructure within the ancestral populations, rather than, or in addition to differences in342

the actual number of demes (K). Additionally, inference of the number of demes using343

structure-like models (or ordinations) can be misled by uneven sampling of individuals344

from putative demes, since very uneven sampling can introduce spurious substructure and345

lead to an underestimation of ‘true’ number of subpopulations (Puechmaille, 2016). Finally,346

aside from the difficulty of inferring the number of demes that are consistent with the data,347

the choice of K does not affect the estimation of genotypes. Instead, genotype estimates can348

be averaged over the posterior distributions of genotypes across all K runs to obtain a point349

estimate at a given locus for an individual (e.g., Gompert et al., 2014b).350

Model performance351

Our measures of model performance build on previous testing of the model and software for352

diploids (Gompert et al., 2014b) and emphasize tests of the model extensions to data from353

polyploid and mixed-ploidy samples. As noted above, the diploid portion of the model has354

been used previously for several empirical analyses (e.g., Gompert et al., 2014b; Mandeville355

et al., 2015; Chaturvedi et al., 2020). We do not explicitly test the performance of the356

ancestry complement model as it has been done previously in Gompert et al. (2014b) and357

has been used subsequently in several studies (e.g., Mandeville et al., 2017; Chaturvedi358

et al., 2020), to better distinguish among different classes of early generation hybrids and to359

distinguish recent from more advanced generation hybrids in diploid individuals (Figure 2).360
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Simulated data361

We used simulations to quantify the performance of the model using three different metrics:362

accuracy in genotype and ancestry estimates under various simulation parameters (for each363

2n, 3n, 4n, 6n, and 2n-4n data set), ability to impute missing data under varying missingness364

percentages (for each 2n, 3n, 4n, and 6n data set), and accuracy in ancestry estimates for a365

trade-off between coverage and sequence depth (4n data set).366

The genotypic data for 2,000 loci and 100 individuals were simulated using the following367

evolutionary history. Individuals were assumed to be descended (either completely or par-368

tially) from one of K = 3 demes. The demes were a result of evolution with drift relative369

to an ancestral population, with the ancestral allele frequency at each locus drawn from a370

beta(0.5, 0.75) distribution to simulate the allele frequency spectrum expected in a real pop-371

ulation with a skew towards low-frequency alleles. Separate simulations considered different372

amounts of evolution relative to the ancestral population, using an F-model for derived allele373

frequencies and F ∈ {0.05, 0.1, 0.2, 0.4} (ranging from low to high evolutionary divergence),374

and the differentiation this induced among demes. Based on the allele frequencies in demes,375

genotypes were simulated from a binomial distribution given the individual’s ploidy and376

their local ancestry across different populations. For instance, in a tetraploid individual, the377

genotype at a locus was drawn from binomial distribution with four draws (number of allele378

copies) and the success probability being the frequency of the alternate allele, weighted by379

its proportional ancestry in the source population. An individual could either be a parental,380

F1, back-cross between an F1 and a parental (BC1), F2, or F3. The genotypes were then381

converted to genotype likelihoods based on a range of sequence depths (drawn from a Poisson382

distribution with means: 1×, 2×, 4×, 6×, and 12×) following the GATK HaplotypeCaller383

model, assuming a constant sequencing and mapping quality so as to isolate any bias in384

these numbers on estimating our parameters.385

Similarly, to explicitly validate the mixed-ploidy portion of our model, we simulated386
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genotypic data for a hundred individuals, with fifty tetraploids and fifty diploids. Here, the387

genotypic data for the loci were drawn from the same evolutionary process as stated above388

with a change in the binomial sampling to yield the correct number of allele copies. The389

simulations were run for F ∈ {0.05, 0.1} and for an average sequence depth of 2× for diploid390

individuals and 4× for tetraploid individuals. As input, we also provided the ploidy of each391

individual along with the genotype likelihoods to entropy. The goal here was to primarily392

test the ability of our software to handle mixed-ploidy input and secondarily, to test the393

minimal ability of our model to recover the simulated parameters. From these simulations,394

model performance was quantified by calculating the accuracy in estimation of genotype and395

ancestry across all individuals and loci.396

One measure of model performance would be the extent to which the model could cor-397

rectly impute missing (i.e., left-out) data from a simulation. To quantify the ability of398

the model to impute left-out data, subsets of the genotypic data from above were ran-399

domly excluded from a complete data set to achieve varying proportions of missingness400

(10%, 20%, 30%, 40%) over loci and individuals. This metric was important to test the per-401

formance of the model, not only for assessing the accuracy in imputing missing values, but402

also to mimic real empirical sequencing in which regions of the genome are not sampled at all403

for a number of individuals. This form of testing is akin to conducting a posterior predictive404

check in a Bayesian modeling framework (first introduced in Rubin, 1984) by quantifying405

the ability of our model to recover simulated parameters, especially from held-out (in our406

case, missing) data. Secondarily, this test of performance gives an indication of how data407

missingness would affect inferences of genotype and admixture proportions with empirical408

data, and we considered a range of missingness that one might encounter in empirical studies.409

The missing data in our simulations refers to a case when there is no sequence information410

(i.e., no reads) at a certain locus in an individual (for instance in a vcf file for diploids, ./.411

would indicate that we have no information to make a genotype call at that locus, equivalent412

to having missing data). For instance, in the simulated data set where we have an average413
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10% missingness in the data, we only have sequence data or genotype likelihood information414

for 1,800 of our total 2,000 loci. The rest of the genotypes have no likelihood information,415

and the genotype will be directly estimated from the population prior that has been built up416

in the hierarchy. To simulate this missing data, we randomly selected loci to have equally417

probable genotype likelihoods (i.e., every dosage/genotype is equally likely given no other418

information) to mimic the absence of sequence information at this locus. This setup is similar419

to encountering a 0× read depth from a Poisson distribution, however more useful, since this420

framework allows us to systematically test the idea of having a fixed proportion of missing421

data, instead of it being an artefact of the sampling process for which we have no control on422

the proportion of missing data that could be obtained.423

To test the hypothesis that it is better to estimate average genome-wide ancestry by424

capturing more of the genome (i.e., loci, via greater genome coverage, defined here to mean425

extent of the genome covered by the sequence data) at a lower sequencing depth than it426

is to sequence a smaller region of the genome (i.e., lower coverage) at a higher depth (i.e.,427

more reads), we ran a simulation for 100 tetraploid individuals across three pairs of values428

for coverage and corresponding sequence depth. The assumed evolutionary process was the429

same as the one used before, in which we simulated the tetraploid individuals as being430

descended from one of 3 possible demes (differentiated by F = 0.05) sequenced at: 4× and431

1,000 loci (‘low’ coverage), 2× and 2,000 loci (‘medium’ coverage), and 1× and 4,000 loci432

(‘high’ coverage). Our testing here focuses on the “middle” tetraploid case, since we expect433

a similar mechanism to be operating at lower and higher ploidal levels (Buerkle & Gompert,434

2013).435

In total, 1,210 simulations were run to quantify accuracy in estimation, ability to impute436

missing data, and a trade-off between coverage and sequence depth across different levels437

of ploidy (2n, 3n, 4n, 6n, and 2n-4n), range of missingness percentages, varying levels of438

sequence depth, and admixture from three ancestral populations (at varying levels of evo-439

lutionary divergence). For simulations that contained missing data, we used the correlation440
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metric between the point estimate of our parameter (the average of posterior distributions441

across chains) and the simulated truth to measure how well we could recapture this simu-442

lated parameter given a certain percentage of missing data. For the rest of the simulations,443

we calculated the root mean squared error (RMSE) between the inferred values for the geno-444

type and admixture proportions and the known true values that were simulated, as a way445

of measuring our ability to recover the truth.446

Empirical data447

As a further test of the performance of the model and software, we reanalyzed an empir-448

ical mixed-ploidy data set that includes DNA sequences of individuals from diploid and449

autotetraploid populations of Arabidopsis arenosa across Europe (Monnahan et al., 2019).450

We compared estimates of admixture proportions from this mixed-ploidy sample from both451

entropy and structure softwares. We used, as input, sequence data obtained from the vcf452

files for eight scaffolds, which were shared by the authors of Monnahan et al. (2019). From453

these, we sampled single variable loci randomly in 50,000 base pair windows (within each454

scaffold) to retain loci that were more likely to vary independently due to recombination455

and independent evolution. This left us with a set of 5655 loci across 287 individuals (105456

diploids in 15 populations and 182 tetraploids in 24 populations) with 22.4% missing data.457

The previous analysis in Monnahan et al. (2019) used 9543 loci across 287 individuals with458

2.4% missing data. The different number of loci and missingness for the two analyses is459

because we randomly thinned variants over windows of 50 kb to reduce the effect of linkage.460

So, the percentage of missing data (no call in vcf file) in our thinned set of loci reflected461

the average among variants in the original vcf file. We note that this process of random462

thinning only affects the credible intervals, and not the point estimates of the admixture463

proportions from the model. By including more loci in our analysis, we would get a more464

accurate point estimate for our genome-wide admixture proportion with a tighter credible465

interval. However, we also note that there is a diminishing return to including more loci in466
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the analysis if the goal is to simply obtain point estimates for admixture proportion. The467

input to structure (version 2.3.4) was a file with the called values of genotypes (GT field in468

the vcf file) of selected loci and individuals, called using GATK HaplotypeCaller (version469

3.5, McKenna et al., 2010). Given that the maximum ploidy included four allele copies, the470

loci for the diploid individuals were encoded with four allele copies and the extra two allele471

copies as missing data (since the structure manual indicates that all individuals in the472

sample should have a single ploidal level, Meirmans et al., 2018). The input to entropy was473

a file with the genotype likelihoods (PL field in the vcf file) of the selected loci, rather that474

the point estimates of the genotypes. The entropy model was initialized using the discrim-475

inant function method described previously, to reduce the chance of label switching among476

chains and speed MCMC convergence. We compared admixture proportion estimates from477

structure and entropy primarily for K = 6, which was regarded by Monnahan et al. (2019)478

as the most likely model given other knowledge of the evolutionary history of A. arenosa.479

The structure admixture model was run three times for 600,000 iterations and 100,000480

burn-in, which took approximately 102 hours each. This number of iterations was chosen481

based on multiple runs of different lengths and picking the shortest run that arrived at ap-482

proximately the same estimates as the longer runs. Since structure stores every sample483

after burn-in as a draw from the posterior distribution, the admixture proportions were484

estimated based on 500,000 draws. On the other hand, the entropy model was run with485

three chains simultaneously for 30,000 total iterations with 10,000 burn-in each, which took486

approximately 24 hours in total. The number of steps was chosen based on the convergence487

of previous data sets of similar size. The quicker convergence times were likely a result of488

starting our chains with plausible initial admixture proportions (as mentioned in the Model489

initialization and comparison section). Researchers could typically use fastStructure (Raj490

et al., 2014) in this case, but this software only allows for diploid samples, which requires a491

downsampling at each tetraploid locus to fit the requirements for the input data (Monna-492

han et al., 2019). The samples collected were thinned to retain every 10th step to remove493
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autocorrelation within the chain. We were finally left with 6,000 (2,000 ×3) samples from494

the posterior distribution for admixture proportion. The chains were tested for convergence495

by looking at the trace plots (to check for sufficient exploration of parameter space) and496

the average R̂ statistic (≈ 1.01) across parameters (Gelman & Rubin, 1992). To validate497

the number of clusters statistically, we ran the entire A. arenosa data set for values of K498

ranging from 4 through 10 to obtain WAIC estimates, and compared them to estimates from499

Monnahan et al. (2019).500

Results501

Simulated data502

We present the effect of sequence depth, F , number of ancestral demes, and ploidy on the503

ability of our model to accurately predict estimates of genotype and ancestry from simulated504

data (Figures 3 and 4). Based on the different axes of variation in our simulation parame-505

ters, we found that sequence depth had the strongest effect on our ability to estimate both506

genotypes and admixture proportions accurately, followed by the degree of differentiation F507

between our simulated demes. From our simulations containing missing data, as expected,508

the model performed better at recapturing the missing genotypes when we had lower per-509

centages of missing data (Figures S2 and S3). Holding all else constant, we also found that510

we did better at accurately estimating admixture proportions of tetraploid individuals when511

we had higher coverage (number of loci across the genome) over higher sequencing depth512

(read depth at a locus; Figure 5).513

With regard to the estimation of genotypes, we better distinguished discrete genotype514

classes at higher sequence depth and higher F values. The reason we obtained larger values515

of RMSE for higher ploidy is a consequence of a wider range of genotypes that are possible.516

So as a consequence of the RMSE statistic, we are bound to get higher error values for higher517
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number of genotype classes (i.e., higher ploidy) in our data. But, based on the approximately518

constant correlation between simulated and estimated genotypes in our missing data sets, we519

show that higher ploidal levels do not translate to a higher error rate in estimation (Figure520

S2). However, the spread around the RMSE across each ploidal level suggests that the521

degree of differentiation (F ) and number of ancestral demes did not play a major role in our522

accuracy of prediction, as shown by the inset plot in Figure 3 and Figure S5.523

Similarly, in the estimation of admixture proportions we found that the sequence depth524

had the biggest effect on our ability to recover the truth, followed by the degree of differen-525

tiation between the simulated demes (Figures 4(a), S1 and S4). With a sequence depth of526

1×, we only observed one allele in a tetraploid and, as a result, our genome-wide ancestry527

estimates were solely guided by a single allele at each locus. However, the model performed528

much better once we observed, on average, two alleles (2×) at a given site and hit dimin-529

ishing returns in sequencing beyond 4× (as seen in the estimates from Figure 4). Based on530

a comparison study between the teraploid and hexaploid data sets, we found that we did531

better at recovering the true number of clusters K from the simulated data with a higher532

ploidy level (Tables S3 and S4). However, the differences in WAIC values between the two533

tables indicate the erratic nature of using information criteria in making a choice about the534

K value in empirical studies. For the mixed-ploidy portion of the simulations, we found that535

we did equally well in recovering genotype estimates as the fully diploid and fully tetraploid536

simulations, regardless of F and the number of ancestral demes (Table S1). However, we537

found that WAIC recovered the correct number of simulated clusters K given the simulated538

mixed-ploidy data set in most cases, except for when F = 0.05 (which is equivalent to a539

highly differentiated cluster in a K = 1 model).540

For the simulations involving missing genotype likelihood data, we found that the cor-541

relation (r) between the estimated genotypes at the missing sites and the simulated truth542

was between 0.76 and 0.88 across ploidal levels, indicating an increasing correlation with a543

decrease in missing percentage (Figure S6). This correlation translates to the fact that, on544
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average across all simulation parameters, we could predict approximately 70% of our miss-545

ing genotypes accurately (coefficient of determination, expressed as a percentage, is equal546

to r2). We also found that we have a higher correlation of estimated and true genotypes547

for higher ploidy levels, given the same missingness percentage and degree of differentiation548

(Figure S2). We believe the higher correlation between estimated and true genotypes for549

higher ploidal levels is due to the ability of our model to better recapture the number of true550

clusters K from a higher ploidy data set in our simulations (as shown with WAIC values in551

Tables S3 and S4). Similarly, for admixture proportion estimation, we found a correlation552

between 0.96 and 1 for 296 out of 320 simulations. The set of outlier simulations were for553

low F = 0.05 and a high missingness (40%) value across all ploidal levels, for which the554

correlation was only 0.83 (Figure S3). For more than 80 percent of simulations, we predicted555

approximately 95% of our missing admixture proportions accurately (Figure S7).556

Based on the RMSE metric, we found that the model estimated genome-wide ancestry557

for tetraploid individuals more accurately with higher coverage across the genome and a558

lower sequencing depth (4,000 loci at 1×) than with lower coverage and a higher sequencing559

depth (1,000 loci at 4×) (Figure 5).560

Empirical data561

Overall, the admixture estimates from entropy closely match the estimates from structure562

(Figure 6). Similarly, the entropy and structure admixture estimates largely match563

those presented in Monnahan et al. (2019), which used a combination of analyses from564

fastStructure (Raj et al., 2014) and a non-parametric K-means clustering technique (with565

a confirmatory analysis in structure for K = 6). Below we note some of the differences566

that were found between the ancestry estimates from entropy and structure (and shown567

in Figure 6).568

Firstly, the admixture proportion estimates for the diploid individuals in populations569
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from the Pannonian region were calculated to be different by entropy and structure. The570

entropy model assigned these individuals to a separate cluster, but the structure model571

found these same individuals to be genetically intermediate between the Dinaric ( orange )572

and E. Alps ( yellow ) regional ancestries. Based on the evolutionary history of the plant, the573

Pannonian populations are the most divergent and should separate out as their own cluster574

(as shown in Figure 1 of Monnahan et al., 2019). This hypothesis was further supported575

when both entropy and structure placed the Pannonian population into a distinct cluster576

when run for a K = 5 model on only the diploid individuals and a K = 7 model on all the577

A. arenosa individuals (as shown in Figures S8 and S10 for entropy and Figure S5 of Mon-578

nahan et al. 2019 for structure), as expected when running the analysis with a higher K in579

structure-like models. Secondly, the tetraploid individuals in the S. Carpathians are esti-580

mated to share some ancestry (between ∼ 20% and 50%) with their W. Carpathian ( green )581

counterparts in entropy but this was not found to be the case with the estimates from582

structure. This shared, intermediate or hybrid ancestry in the S. Carpathian populations583

is to be expected from the single origin of tetraploidy in the populations of the Carpathian584

mountain range, as confirmed through coalescent simulations of this mixed-ploidy hybrid585

zone (as presented in Figure 4 and Figure S9 of Monnahan et al., 2019).586

From our range of runs for K = 4 to 10, we found the lowest WAIC value for K = 9, as587

opposed to K = 6 that was found by Monnahan et al. (2019). The authors of the original588

study used a combination of the Bayesian Information Criterion (BIC, Schwarz et al. 1978),589

and the similarity index proposed by Nordborg et al. (2005) to inform their choice of K.590

However, the range of BIC values for K = 5 to 10 were found to be within five points of591

each other, indicating similar support for the given cases of K, highlighting the potential592

challenge of choosing K in empirical studies.593
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Discussion594

In the context of recent hybridization or admixture among divergent lineages, estimates of595

admixture proportions are a fundamental component of analyses of evolutionary processes or596

of learning the effects of population stratification in genome-wide association studies (Gom-597

pert & Buerkle, 2013; Harrison & Larson, 2016; Gompert et al., 2017). Hybrids commonly598

occur between taxa that have sex chromosomes (and mixed-ploidy within genomes of the599

heterogametic sex) and sex chromosomes may contribute disproportionately to their repro-600

ductive isolation (Payseur et al., 2004; Sæther et al., 2007; Presgraves, 2008; Macholán et al.,601

2011; Chaturvedi et al., 2020). Additionally, many species complexes involve interactions602

and potential hybridization between individuals of different ploidy, including autopolyploids603

(e.g., Otto & Whitton, 2000; Kolář et al., 2017; Van de Peer et al., 2017). Population ge-604

netic analyses of polyploids would benefit from models that correctly specify the number605

of allele copies at a locus, rather than misspecified models that do not fully use the avail-606

able data (e.g., encoding diploids as tetraploids with missing data so that structure can607

be used to analyze mixed ploidy individuals). Additionally, given genotype uncertainty in608

contemporary low-depth sequencing data from populations, we make better use of the data609

with models that formally incorporate uncertainty through the use of genotype likelihoods610

as input (Buerkle & Gompert, 2013; Fumagalli et al., 2013). Here, we address these needs611

and present additional benefits, with improvements in running time, and ability to assess612

convergence of chains using appropriate metrics, in the form of a population model for al-613

lele frequencies and admixture of individuals that follows the precedent of the structure614

model (Pritchard et al., 2000; Falush et al., 2003) and its several derivatives. We present and615

analyze the performance of entropy, a hierarchical Bayesian model that can use genotype616

likelihoods to estimate genotype and ancestry for polyploid and mixed-ploidy individuals.617

We found that the entropy model performed well to capture the truth from simulated618

mixed-ploidy data sets. We used estimates from the model for simulated autopolyploid data619
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and quantified similarity of our estimates to the known values using RMSE and correlation620

statistics. The entropy software implements a population model and information sharing621

among individuals and loci that provides stronger evidence for low-depth, or missing geno-622

types (especially with polyploids and low-depth sequencing) than methods that do not model623

populations (consistent with Clark et al., 2019). With the extension of the model and soft-624

ware to mixed-ploidy, we can also model haploid loci or hemizygous regions of the genome.625

Thus, given knowledge of the genomic position of loci, the model will support contrasts of626

ancestry between sex chromosomes and autosomes (e.g., Hamilton et al., 2013; Parchman627

et al., 2013; Harrison & Larson, 2016). For the analysis of diploid hybrids, as shown previ-628

ously in Gompert et al. (2014b), the ancestry complement model considers the combination629

of ancestry in diploid genotypes and allows genotypic data to more readily distinguish among630

different classes of early generation hybrids (Figure 2) and to distinguish recent from more631

advanced generation hybrids (e.g., Gompert et al., 2014b; Mandeville et al., 2017; Chaturvedi632

et al., 2020).633

In our simulations, we found that sequence depth had the largest effect on accurately634

estimating the genotype and ancestry of an individual, similar to findings in Gerard et al.635

(2018). The degree of differentiation among demes (driven by F divergence from the ancestral636

population) had the second largest effect on the accuracy of our estimates. For admixture637

proportion q, we found no difference in our ability to estimate ancestry across the different638

ancestry classes (F1, F2, BC, etc.), but do markedly better with increasing sequence depth,639

as seen in Figure 4. Across our simulations, we also found that the percent of missingness640

did not affect how well we could estimate true parameters. For example, when going from641

40% to 10% missingness in sequence data there was only a 2% gain in accuracy of prediction642

for tetraploid genotypes. In summary, from the different combinations of the simulation643

parameters, it was the hardest to recover parameters accurately when we had low sequence644

depth (for higher ploidy) and minimal differentiation between populations (F < 0.05), as645

was expected. Based on the ability to recover the truth in various simulations, for analyses646



28

of admixture proportions with this model we recommend choosing a median sequence depth647

of n
2
× (i.e., 2× for tetraploids) and sampling more individuals and populations rather than648

sequencing deeply (consistent with findings from our simulations in Figures 4(a) and (c)649

and Buerkle & Gompert, 2013; Fumagalli et al., 2013). The structure of the hierarchical650

model is such that enough information is shared across loci to accurately estimate admixture651

proportions even without full information about genotypes. However, if the goal of an652

analysis is highly accurate genotype estimates, as expected, sequencing to 6× or greater653

depth might be warranted (Figure S4).654

Our direct comparison of entropy estimates to estimates from structure for an empiri-655

cal mixed-ploidy data set (diploid and tetraploid) of Arabidopsis arenosa (Monnahan et al.,656

2019) validated the software implementation of the model and revealed some differences of657

admixture proportions and inferred ancestry for a few populations. The data used with658

entropy and structure contained fewer loci (5655 loci versus 9543 loci) and a higher per-659

centage of missing data that is typical in a RADseq or similar dataset (22.4% versus 2.4%),660

compared to the original analysis in Monnahan et al. (2019). Nevertheless, the two models661

were still able to capture the previously inferred population structure. The estimates from662

the entropy model for a cluster of admixed tetraploid individuals indicated a portion of663

their ancestry belonged to a previously undetected neighboring cluster, a finding that was664

supported by coalescent simulations in Monnahan et al. (2019), but was not captured by665

the structure model. Additionally, the entropy model distinguished and assigned some666

exceptional individuals to a distinct cluster instead of classifying them as belonging to an667

admixed group, as done by structure.668

Limitations and further directions669

Whereas the model specified in entropy will be useful in many contexts, we recognize some of670

its limitations, including ones that pertain generally to inferring ancestry using a structure-671

like model and other forms of model misspecification. Population genetic variation among672
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natural populations arises due to clinal isolation by distance, more abrupt barriers to dis-673

persal that result in actual ‘demic’ substructure within species, or some combination of both674

(Bradburd et al., 2013; Gompert & Buerkle, 2016). Analyses with structure-like models do675

not incorporate clinal isolation by distance variation. Thus, inferences regarding the number676

of demes (K) or admixture proportions could be based on a false inference of subdivision677

and be very misleading (Lawson et al., 2018; Garcia-Erill & Albrechtsen, 2019). In particu-678

lar, discrete geographic sampling of widely spaced populations along a spatial gradient can679

give the misimpression of discrete population differences (Witherspoon et al., 2006; Gom-680

pert & Buerkle, 2016). The model in entropy and other structure-like models do not681

address these directly. Linear models for population genetic differences can test for evidence682

of demic structure beyond what could be predicted from geographic distance alone (e.g.,683

Gompert et al., 2014a; Parchman et al., 2016; Crow et al., 2020). Additionally, alterna-684

tive models can explicitly parameterize continuous clinal variation and guide understanding685

of the contribution of demic and clinal variation to population structure (Bradburd et al.,686

2013, 2016; Battey et al., 2020). When feasible, structured and planned geographic sampling687

can assist in quantifying the contributions of isolation by distance and demes to population688

variation. Deviation from the assumed evolutionary model (model misspecification) can be689

quantified through the correlated differences in a population between predicted and observed690

genotypes (i.e., correlated residual error), which can guide model choice and interpretation691

(Garcia-Erill & Albrechtsen, 2019). This limitation of inferring population structure along692

a cline may be reduced for mixed-ploidy systems, where we expect some level of genetic693

differentiation across ploidal levels (even with cross-ploidy gene flow), and structure-like694

models would likely correctly partition individuals of different ploidal levels into different695

demes.696

The q model in entropy also does not formally include deviations from Hardy-Weinberg697

equilibrium due to inbreeding (or due to potential double reduction in autopolyploids, see698

Luo et al. 2006 and Bourke et al. 2015) and the resulting excess homozygosity of individuals699
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(FIS) in the prior probabilities for genotype. With sufficient sequencing depth, genotype700

estimates will strongly reflect the data rather than the prior probabilities and inbreeding701

(FIS) could be estimated in a separate model. Alternatively, the entropy model could702

readily be extended to formally model excess homozygosity.703

Even though the entropy model does not explicitly account for allopolyploids, we note704

that the model can still provide estimates of admixture proportion for loci within separate705

subgenomes or chromosomes in a higher ploidy individual by treating them as coming from706

a lower ploidal level. For instance, in allotetraploid individuals with disomic inheritance, we707

can run a diploid entropy analysis on a set of loci coming from one pair of homoeologous708

chromosomes and a similar analysis on the set of loci coming from the other pair of homoe-709

ologous chromosomes, and compare the admixture estimates of the individuals from these710

two separate analyses as independent realizations of their shared evolutionary history. The711

pipeline presented in Blischak et al. (2017) can be used to obtain vcf files with appropriate712

genotype likelihoods for SNPs in allopolyploid individuals that can then be used as input713

to entropy, by specifying the appropriate ploidal level. The model should probably not be714

applied to polyploids for which the mode of inheritance is not known, given the potential for715

spurious clustering due to model misspecification.716

The genetic composition of individuals could be the result of a combination of ancient717

and more recent (i.e., contemporary) hybridization (Gompert et al., 2017; Chaturvedi et al.,718

2020). Analysis of recent hybridization can benefit from the study of population structure719

through ancestry-estimation methods such as entropy. However, recent hybridization can720

obfuscate signals of more ancient gene flow (Eriksson & Manica, 2012). Regardless of the721

extent of contemporary hybridization, alternative models are beneficial to evaluate evidence722

for more ancient introgression (e.g., Sankararaman et al., 2014; Gompert, 2016; Schumer723

et al., 2016).724

The software for the model is written in C++ using the GNU Scientific Library (Galassi725

et al., 2009) and the output being written to a Hierarchical Data Format (The HDF5 Group,726
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2010) file. However, even though the program is written in a low-level language with op-727

timized libraries, given the large size of the estimation problem with typical data sets, the728

process of converging to a stationary distribution using the Gibbs and Metropolis sampling729

scheme for MCMC can be time intensive. In future versions of the software, this runtime730

could be shortened by using techniques like variational inference (as in Raj et al., 2014;731

Gopalan et al., 2016) and non-negative matrix factorization (as in Engelhardt & Stephens,732

2010; Meisner & Albrechtsen, 2018) to arrive at the posterior parameter estimates without733

using MCMC sampling. However, dealing with the heterogeneity in parameter dimensions734

that comes with a mixed-ploidy data set will be an algorithmic challenge. For now, in prac-735

tice we reduce the dimensions of a model run by treating different chromosomes (or other736

large genome scaffolds) as independent sampling units. This allows one to run separate, par-737

allel analyses of loci on different chromosomes (or scaffolds) that can be distributed across738

multiple computing cores or nodes.739

With these limitations and potential extensions in mind, we find that the entropy model740

can contribute to our understanding of contemporary hybridization and population struc-741

ture. In particular, the entropy model provides a rigorous and beneficial framework for742

genotype and ancestry estimation from economical, low-depth sequencing data. The model743

also supports analysis of a wide range of ploidy (from haploid to hexaploid) and mixed-ploidy744

individuals within a single analysis, which will facilitate a diversity of studies.745

Data Accessibility746

All simulation and analysis code is available as part of the Bitbucket repository that hosts the747

source code. The program can be installed via the bioconda channel (https://anaconda.748

org/bioconda/popgen-entropy) or from source by cloning the Bitbucket repository (https:749

//bitbucket.org/buerklelab/mixedploidy-entropy/), which also houses the on-going750

developmental code base. A software vignette is part of the Supplementary Material and751

https://anaconda.org/bioconda/popgen-entropy
https://anaconda.org/bioconda/popgen-entropy
https://anaconda.org/bioconda/popgen-entropy
https://bitbucket.org/buerklelab/mixedploidy-entropy/
https://bitbucket.org/buerklelab/mixedploidy-entropy/
https://bitbucket.org/buerklelab/mixedploidy-entropy/
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is also found in the Bitbucket repository. Raw sequence data for Arabidopsis arenosa are752

available at https://www.ncbi.nlm.nih.gov/bioproject/484107.753
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Figure 1: The graphical representation of the entropy model illustrates the information
sharing in the model. Parameters that are being estimated are represented inside circles and
the input sequence data are represented inside the square. The probability functions that
generate these quantities are presented below each parameter. Typically, in a hierarchical
framework we start at the bottom with new estimates of random values following a prior
probability distribution. Then, conditional on these parameters, in the next highest level
in the hierarchy we obtain estimates, and so forth, until the top level (the likelihood, here
GL = P (X|g)) where estimates are constrained and estimated according to information in
the data and prior probabilities. The parameter q is replaced by Q when using the ancestry
complement model.
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Figure 2: The diploid ancestry complement model in entropy with F1 hybrids (along the
q = 0.5 line) between two parental populations (K = 2, at q = 0.0 and 1.0) reveals param-
eter differences between different early hybrid generations. The combination of admixture
proportion q and ancestry complement Q distinguishes among F1, F2, and F3 hybrids. The
admixture proportion (q) values for these three classes of ancestry are all 0.5 with some vari-
ance, but Q12 declines from 1 in the F1 with each generation of hybridization. Additionally,
BC hybrids have maximal Q12 for a given q. The solid lines for the triangle indicate individ-
uals with maximal possible Q12 values, corresponding to having at least one non-admixed
parent.
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Figure 3: Error in genotype estimation across a range of ploidy decreased with greater
sequence depth. The outer plot depicts change in RMSE for different ploidal levels versus
sequence depth, across F = {0.05, 0.1, 0.2, 0.4} and number of source populations K =
{1, 2, 3}. Error increased with the number of allele copies in polyploids, because the range
of variation and possible error in genotype is greater for polyploids than diploids. We found
consistently higher error for lower sequence depth (across all ploidal levels). The inner plot
depicts the change in RMSE for different ploidy and population differentiation (F ) across a
sequence depth of n× (with n ploidy and K = 2). Error in genotype estimation increased
with ploidal level, but was affected very little by the extent of population differentiation.
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admixture proportion, and at 4× average sequence depth estimates are very close to the
truth. The subset plot contains a visual summary of the diminishing returns with higher
depth, averaged across all ancestry groups. This plot contains comparisons of estimated and
true admixture proportions for varying sequence depths across K = 3 source populations
and 100 tetraploid individuals.
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Figure 5: Admixture proportion is more accurately estimated with higher coverage and
lower sequence depth. With higher coverage (i.e., more loci across the genome, 4000 loci)
and a lower average sequence depth (1×), the estimates are closer to the simulated truth
for global ancestry over the same data set subsampled to lower coverage (1000 loci) and a
correspondingly higher sequence depth (4×). Admixture proportion estimates and RMSE
values shown here for a continuum between 1× and 4× average sequence depth, with a
corresponding coverage between 1000 loci and 4000 loci.
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Figure 6: Admixture proportion estimates from structure and entropy agree very well
for most the 287 Arabidopsis arenosa individuals from a mixed diploid and autotetraploid
sample of populations across Europe for a K = 6 model with a median sequence depth
of 10× (data from Monnahan et al., 2019). The K = 6 model was the preferred model
in the analysis by Monnahan et al. (2019). The two most notable differences between the
structure and entropy estimates were the labeling of the Pannonian individuals (far left)
as red ancestry by entropy versus a mixture of orange & yellow by structure and the
different contributions to the composition of diploid and tetraploid S. Carpathians in the
entropy and structure analyses.
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Supplementary Material986

Model description987

We present a hierarchical Bayesian model to jointly infer genotypes and admixture propor-988

tions from sequence data of polyploid and mixed-ploidy populations. This model is imple-989

mented in software called entropy. This model is similar to the admixture model presented990

in structure (Pritchard et al., 2000; Falush et al., 2003), but with the exception that our991

model uses genotype likelihood data to incorporate uncertainty arising from sequence data,992

in the estimation of our downstream parameters. A graphical description of the model is993

presented in Figure 1 of the main text. The software to sample from the posterior distri-994

bution of the parameters (using MCMC) was written in C++, using the GNU Scientific995

Library (Galassi et al., 2009) and HDF5 (The HDF5 Group, 2010). The program can be in-996

stalled via the bioconda channel (https://anaconda.org/bioconda/popgen-entropy) or997

from source by cloning the Bitbucket repository (https://bitbucket.org/buerklelab/998

mixedploidy-entropy/), which also houses the on-going developmental code base.999

Below we provide a more detailed description of the model, with information on the1000

sampling distributions and how it differs from the diploid version in Gompert et al. (2014b).1001

We present the two models: the admixture proportion and ancestry complement models, as1002

presented in the main text.1003

Model 1 (admixture proportion model) As described in the main text, the probabil-1004

ity of observing the genotype g is conditional on the unknown population of origin z of each1005

allele that forms the genotype, and the unknown allele frequencies p in the source popula-1006

tions, P (g|z,p). We use genotype likelihoods, L(g|X) ∝ P (X|g) rather than raw sequence1007

data X as model input. The genotype likelihoods are pre-calculated, taking into account1008

the number of reads, number of genotypes, read specific error rate, haplotypic information,1009

etc., given by the sequence data X (using softwares such as from GATK, McKenna et al. 2010,1010

SAMtools, Li 2011, or FreeBayes, Garrison & Marth 2012). The genotype likelihoods were1011

https://anaconda.org/bioconda/popgen-entropy
https://bitbucket.org/buerklelab/mixedploidy-entropy/
https://bitbucket.org/buerklelab/mixedploidy-entropy/
https://bitbucket.org/buerklelab/mixedploidy-entropy/
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normalized to sum to 1.1012

As we restrict our model to work with bi-allelic loci, for an n-ploid individual, we can

expect to see n+ 1 genotypic states or dosage values at each locus j. Each allele at a locus

is encoded as either 0 for the reference or 1 for the alternate. The sum at each locus, across

all allele copies (e.g., four allele copies in a tetraploid), denotes the genotype at that locus.

We can then calculate the probability of each genotype as the product over the probabilities

of each allelic state across all alleles, conditional on z and p. This discrete probability

distribution is given as a Bernoulli distribution with a single draw at each allele, repeated n

times for each locus in an n-ploid individual with probability equal to the allele frequency

of the alternative allele in the population of origin k.

P (gij|pj, zij) =
∏
k

n∏
a=1


p
gija
jk (1− pjk)n−gija when k = zija

1 otherwise

Here, zij = [k1, k2, . . . , kn] denotes the local ancestry of the n allele copies for individual i,1013

and zija denotes the local ancestry of the specific allele copy, a in the individual. The term1014

pjk denotes the corresponding allele frequency in the kth source population.1015

The remainder of our model deviates little from the structure admixture model with1016

correlated allele frequencies presented in Falush et al. (2003). We specify a set of admixture1017

proportions, denoted by q1, q2, . . . , qk to indicate the proportion of the individual’s genome1018

inherited from each of k source populations. These admixture proportions give the prior for1019

the local ancestry z in a simple fashion, i.e., P (zija = k) = qik for a ∈ {0, 1, . . . , n}. We1020

then place a Dirichlet prior on the admixture proportions for each individual with a scale1021

parameter, λ, estimated from the data.1022

The probability of the unobserved allele frequency pjk of locu j in source population

k is calculated assuming an F -model (as presented in Balding & Nichols (1995)), where

the population allele frequency is the result of divergence Fk from an ancestral population,
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characterized by allele frequency πj. We draw pjk from a Beta distribution with shape

parameters πj and (1− πj), both multiplied by (1/Fk − 1). Fk can be seen as a measure of

genetic divergence from the ancestral population, analogous to FST :

P (pjk|πj, Fk) ∼ beta(πj
1− Fk
Fk

, (1− πj)
1− Fk
Fk

)

The allele frequencies πj are obtained from a symmetrical beta distribution, P (πj|α) ∼1023

beta(α, α). The hyperparameter α can be seen as a measure of genetic diversity in the1024

ancestral population, and is drawn from a Uniform distribution, α ∼ Uniform(0, 10, 0000].1025

Fk is assigned an uninformative prior beta(1, 1) to indicate equal support for any value of1026

Fk ∈ [0, 1].1027

We specify the prior probability for the genome-wide admixture proportion vector q1028

with a Dirichlet distribution with parameter vector γ = (γ1, . . . , γK). To assign the same1029

prior probability for each ancestral deme, we specify identical values for all γk. This is1030

appropriate when assuming that neither individuals with ancestry from a single population,1031

nor any particular class of hybrids dominate the hybrid zone. The hyperparameter γk is1032

drawn from a Uniform distribution between 0 and 10.1033

Thus, the posterior probability distribution for the entropy model is given by

P (g, z,p,q, π,F, α, γ|X) ∝ P (X|g)P (g|p, z)P (z|q)P (q|γ)P (p|π,F)P (π|α)P (φ)

where P (φ) is the joint probability of the terminal parameters in the hierarchy.1034

Model 2 (ancestry complement model) This model is almost identical to the pre-1035

vious model, except in the formulation of admixture proportion. Here, we make use of a1036

matrix Q instead of the vector q that is used in structure, called the ancestry complement1037

matrix to specify interspecific (or inter-demic) ancestry at a locus, as we shall see below.1038

This model is only available for diploid individuals.1039



52

We can obtain additional information on genome-wide admixture by considering a com-

bination of ancestry states at each locus, instead of treating each allele copy as being derived

independently from a source population. Therefore, we calculated the probability for locus-

specific ancestry jointly for both allele copies (in a diploid) by working with ancestry zij as

a whole, instead of ancestry for each allele copy zija separately. The ancestral parameter zij

can be seen as a K ×K matrix with all its elements set to zero except the element at row

k = zij1 and column k′ = zij2 set to one. This means that zij is represented as a “one-hot”

vector with the index for the corresponding source population denoted by a one, with the

remaining entries being zero. This indexing of allele copies to a source population lets us

select the corresponding allele frequency for the individual when calculating downstream pa-

rameters. The probability of the locus-specific ancestry is then calculated conditional on the

genome-wide ancestry complement matrix Qi for individual i. Qi is another K ×K matrix

that gives the prior probabilities for genome-wide admixture, or genome composition, for

each of the possible states of zij, with all elements in Qi summing to one. The elements on

and off the main diagonal give the probabilities for intra-source and inter-source ancestry,

respectively. The probability for locus-specific ancestry conditional on genome-wide admix-

ture follows a categorical distribution (or a multinomial distribution with one draw) and is

given by

P (zijkk′ = 1|Qi) = Qikk′

with k and k′ giving the rown and column of the zij and the Qi matrix. The genome-

wide admixture proportion q is not included as a model parameter but can be calculated

marginally from Q within each interation as

qik =
1

2
(
K∑
s=1

Qiks +
K∑
t=1

Qitk)

Similar to the previous model, the γ = (γ11, . . . , γKK) prior is now a matrix instead of a1040

vector, drawn from a Dirichlet distribution with an equal weighting on each ancestral deme.1041
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Thus, the posterior probability distribution for all parameters in this hierarchical Bayesian

model is given by

P (g, z,p,Q, π,F, α, γ|X) ∝ P (X|g)P (g|p, z)P (z|Q)P (Q|γ)P (p|π,F)P (π|α)P (φ)

where P (φ) is the joint probability of the terminal parameters in the hierarchy, with the1042

only replacement being Q for q.1043

MCMC updates1044

Below we describe the process for sampling from the posterior for each of our parameters1045

(using various techniques) given the conditional distributions mentioned above. This process1046

also acts as a proxy for the formulation in code with each update step written into a separate1047

function. We will move downward from the graph presented in Figure 1 of the main text.1048

The following text was adapted from the Supplement of Lindtke et al. (2014), with minor1049

changes for dealing with higher ploidal levels.1050

1. Update g (sampled from the full distribution)1051

2. Update z (sampled from the full distribution)1052

3. Update p (Gibbs sampling)1053

4. Update π (Metropolis sampling)1054

5. Update F (Metropolis sampling)1055

6. Update α (Metropolis sampling)1056

7. Update q/Q (Gibbs sampling)1057

8. Update γ (Metropolis sampling)1058
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To implement this sampling procedure, we cycle through each parameter in the model1059

and run the update step for this parameter by holding all other parameters constant at their1060

current value. Once, we are through all the parameters in the model, we will start back up1061

at the ‘top’ of the hierarchy with the likelihood of the sequence data and run through the1062

same sampling process again. The update steps for each parameter are specified in more1063

detail below:1064

1. Update g:

P (gij|L(gij|xij), zij,pj) =
L(gij|xij)P (pjk|zij, gij)∑1

gij1=0 . . .
∑1

gijn=0 L(gij|xij)P (pjk|zij, gij)

Here, gij = {gij1, . . . , gijn} and L(gij|xij) gives the pre-calculated likelihood of each1065

genotype (the input data). For example, in a triploid (n = 3),1066

gij ∈ {000, 001, 010, 011, 100, 101, 110, 111} for each allele copy.1067

P (pjk|zij, gij) = p
gij1
jk1 (1 − pjk)

1−gij1 . . . p
gijn
jkn (1 − pjkn)1−gijn is the product of the allele1068

frequencies for the first to the nth allele copy in genotype gij in population k1 =1069

zij1, . . . , k
n = zijn, respectively. This update step essentially combines the likelihood1070

of observing a certain genotype given the read data, scaled by the expected frequency1071

of that genotype at that locus (given by the P (p|z,g) term).1072

2. Update z: For the admixture proportion model, we have

P (zijk = 1|gij,pj,qi) =
qiP (pjk|gij)∑K
k=1 qiP (pjk|gij)

where P (pjk|gij) is given in the previous update step (for a certan zijk = 1). Here, we1073

are multiplying two 1-dimensional vectors of length K and dividing each element by the1074

average to obtain normalized values between 0 and 1. This update follows a similar1075

pattern to the update for the genotypes. Here, we sample from a full distribution1076

because we obtain a value for each cluster k in the discrete probability distribution1077
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from 1 through K. From these vector of values, we perform a single multinomial draw1078

(i.e., n = 1) to obtain an index for the putative ancestral cluster.1079

Similarly, for the ancestry complement model, we have

P (zijk = 1|gij,pj,Qi) =
qiP (pjkk′ |gij)∑K

k=1

∑K
k′=1QiP (pjkk′ |gij)

where P (pjkk′ |gij) is given in the previous update step with only two k values since we1080

are dealing with diploid loci and two allele copies, meaning two ancestral populations1081

in k and k′.1082

3. Update p:

P (pjk|zj,gj, Fk, πj) ∼ beta(πj(
1

Fk
− 1) + rijk1, (1− πj)(

1

Fk
− 1) + rijk0)

where

rijk1 =
∑
i

∑
n


gijn when k = zijn,

0 when k 6= zijn

and

rijk0 =
∑
i

∑
n


(1− gijn) when k = zijn,

0 when k 6= zijn

give the counts for the alternate and reference allele copies assigned to an ancestral1083

population k, respectively.1084

4. Update π: Propose a new π′j from

π′j|πj ∼ Uniform(πj − 0.1, πj + 1)

and accept the proposed value as the new update for πj with probability min(1, r) if
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0 < π′j < 1, with

r =
P (π′j|α)

P (πj|α)

Using Bayes’ rule,

r =
P (α|π′j)
P (α|πj)

∏
k

P (π′j, θk|pjk)
P (πj, θk|pjk)

where

P (πj, θk|pjk) =
p
pijθk−1
jk (1− pjk)(1−πj)θk−1

beta(πjθk, (1− πj)θk)

and

P (α|πj) =
πα−1i (1− πj)α−1

beta(α, α)

with θk = 1
Fk
− 1, and the probabilities for π′j are computed in a similar manner.1085

5. Update F: Proposal for a new F ′k from

F ′k|Fk ∼ Uniform(Fk − 0.01, Fk + 0.01)

and accept F ′k as new update for Fk (represented here as θ′k and θk) with probability

min(1, r) if 0 < F ′k < 1, with

r =
∏
j

P (πj, θ
′
k|pjk)

P (πj, θk|pjk)

where P (πj, θk|pjk) is given from the previous update step, with θ′k = 1
F ′
k
− 1.1086

6. Update α: Proposal for a new α′ from

α′|α ∼ Uniform(α− 20, α + 20)
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and accept α′ as new update for α with probability min(1, r) if 0 < α′ ≤ 10000, with

r =
∏
i

P (α′|πj)
P (α|πj)

where P (α|πj) is given from the previous update step.1087

7. Update q/Q: This step involves a simple counting procedure and a single Gibbs update

by multiplying a mulitnomial likelihood with a Dirichlet prior, which gives us a Dirichlet

distribution with updated parameters.

P (qi|zi, γ) ∼ Dirichlet(γ1 +
∑
n

∑
j

zijn1, . . . , γK +
∑
n

∑
j

zijnK)

where zijn1 denotes the local ancestry values (either 0 or 1) for each locus j in an n-

ploid individual i descended from source population k = 1. Similarly, for the ancestry

complement model, we have

P (Qi|zi, γ) ∼ Dirichlet(γ11 +
∑
j

zij11, . . . , γKK +
∑
j

zijKK)

where we sum over the local ancestry values across all loci j in the genome to obtain1088

an estimate for genome-wide admixture proportion.1089

8. Update γ: In the model, all elements of γk are identical (for both matrix and vector

form). We, therefore, propose new γ′ by proposing a single element γ′k from:

γ′k|γk ∼ Uniform(γk − 0.05, γk + 0.05)
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and accept the new update with probability min(1, r) if 0 < γ′k ≤ 10, with

r =
P (γ′k|q)

P (γk|q)

Using Bayes’ rule,

r =
P (q|γ′k)P (γ′k|γk)
P (q|γk)P (γk|γ′k)

r =
∏
i

P (qi|γ′k)
P (qi|γk)

with the probabilities given in the previous update step. Since we adopt a Metropolis1090

sampling scheme (i.e., symmetric proposal distributions with P (γ′k|γk) = P (γk|γ′k)),1091

the second component to our update is equal to 1. This allows us to calculate the1092

probability of acceptance, r, without considering this second term.1093
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proportions. This is shown for the case of sequence depth equal to n× and across various F
values and number of source populations.
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Figure S2: Correlation of estimated genotypes at missing sites to true genotypes over varying
levels of genetic differentiation F (0.05, 0.1, and 0.2; panes of the plot). There was a slight
gain in estimation accuracy when going from 40% missingness to 10% missingness. There
was little or no effect of genetic differentiation on estimation accuracy across ploidy levels.
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Figure S3: Correlation of estimated admixture proportion in individuals over varying levels
of missingness and genetic differentiation F (0.05, 0.1, and 0.2; panes of the plot). The
percentage of missingness was very important for simulations of demes that were geneti-
cally similar (F = 0.05) and hexaploid individuals, but even with high levls of missingness,
more differentiated parental populations supported highly accurate admixture proportion
estimates. The correlation between estimated parameters and the true was very high across
ploidy levels (average ≈ 0.97).
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Figure S4: Mean squared error of admixture proportion across five early generation hybrid
categories and ploidy levels for varying levels of F . Error in estimates decrease with increas-
ing genetic differentiation for all categories of hybrids. The higher overall error with the F3
individuals was because it is harder to estimate the accurate q value given the high realized
variance of individual genetic composition around the expectation.
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Figure S5: Mean squared error for estimation of genotypes in tetraploid individuals across
sequence depths and population differentiation F and number of source populations. The
steepest gradient in error was across the sequence depths (i.e., better estimation with greater
sequence depth and slight improvement with higher values of genetic differentiation). The
lowest error occurred with F = 0.4 and 6× sequence depth.

Figure S6: Consistently high correlation of the estimated tetraploid genotypes across degrees
of data missingness, three levels of genetic differentiation, and number of source populations.
The entropy model estimates had a ≈ 83% correlation with the true genotypes at missing
sites. Correlations were unaffected or increased slightly with higher differentiation and lower
missingness percentage.
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Figure S7: High correlation between estimated and simulated admixture proportion in
tetraploid individuals across missingness percentage and genetic differentiation. The model
estimated ancestry of individuals with high accuracy, across different levels of missingness
in the loci. For example, in a K = 2 simulation with F = 0.05, the correlation between the
true and estimated admixture proportions for individuals with 30% of their sites missing was
0.98. Correlations were lower in simulations with minimal genetic differentiation and high
missingness in the data.
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Figure S8: Admixture proportions of only the 105 diploid A. arenosa individuals for a K=5
model in entropy. The populations in the Pannonian region at the far left (labeled by
SZI, KZL, HNE ) fall into a distinct cluster compared to the rest of the individuals. The
Pannonian cluster ( red ) is genetically the most district from the remaining ancestry groups
and was expected to form a distinct group based on the analysis in Monnahan et al. (2019).
However, this distinction was not found with the structure model applied to the whole
data set with a K=6 model (as seen in Figure S9).
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Figure S9: Admixture proportions of all 287 A. arenosa individuals for a K=6 model run in
entropy plotted with population codes instead of regional codes.
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Figure S10: Admixture proportions of all 287 A. arenosa individuals for a K=7 model run
through entropy. The populations in the Pannonian region to the far left (categorized by
SZI, KZL, HNE ) fell into a distinct cluster ( blue ) compared to the rest of the individuals,
further confirming it as genetically differentiated relative to the other populations in the
data set.
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K=2 & F=0.05 K=3 & F=0.05 K=2 & F=0.1 K=3 & F=0.1
2n 0.106 0.106 0.101 0.100

2n-4n 0.256 0.250 0.248 0.244
4n 0.409 0.407 0.399 0.400

Table S1: Error rates for genotype estimates in mixed diploid-tetraploid populations are
in between the fully diploid (2n) and fully tetraploid (4n) population. This table contains
RMSE values for genotypes in diploid (2n), diploid-tetraploid (2n-4n) and tetraploid (4n)
populations for different numbers of ancestral demes K and levels of evolutionary divergence
F .

Model WAIC lppd neff
K=4 3079.1 -421.5 1118.0
K=5 3056.1 -415.9 1112.1
K=6 3021.5 -411.8 1098.9
K=7 2981.9 -404.4 1086.4
K=8 2963.0 -401.0 1080.5
K=9 2947.3 -399.4 1074.2
K=10 2958.5 -398.1 1081.1

Table S2: Table of WAIC values for various K models for the Arabidopsis arenosa data
set with the best-fit model being K = 9. However, Monnahan et al. (2019) found K = 6
to be the best-fit, informed by a combination of the Bayesian Information Criterion (BIC,
Schwarz et al. 1978) and a similarity index. Similar to other information criteria, the WAIC
value provides the support for a certain value of K and is a combination of the log-predictive
posterior density (lppd, similar to deviance in DIC) and the penalization term for the total
number of effective parameters in the model (neff ).

Assumed
F=0.05 K=1 K=2 K=3 K=4 K=5

K=2 61891.57 61321.97 61373.16 61372.37 61430.01
K=3 61598.17 61179.33 60842.83 60929.4 60931.71

F=0.2 K=1 K=2 K=3 K=4 K=5
K=2 61395.55 59922.69 59892.87 59957.28 59956.59
K=3 62235.11 61187.8 60205.53 60183.08 60203.56

F=0.4 K=1 K=2 K=3 K=4 K=5
K=2 60957.32 53878.83 53888.24 53867.42 53889.24
K=3 63773.64 58131.46 53072.45 53083.38 53052.75

Table S3: The assumed K is found to be equal to the simulated K only 33% of the time for
a tetraploid data set. This table contains WAIC values to infer best-fit K from entropy for
different simulation parameters. There is no apparent effect of F on the ability of our model
to estimate number of demes K. These results differ drastically from the simulated data for
hexaploid individuals presented in Table S4.
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Assumed
F=0.05 K=1 K=2 K=3 K=4 K=5

K=2 240331.5 240496 244859.4 244908.7 243719.5
K=3 241100.1 241432.6 241246.5 242149.9 244027.2

F=0.2 K=1 K=2 K=3 K=4 K=5
K=2 244342 244109.4 244231.7 247922.2 244270.4
K=3 243375.4 243195.5 242924.9 243012 246588.3

F=0.4 K=1 K=2 K=3 K=4 K=5
K=2 264797.5 261440 261647.6 261706.7 261645.4
K=3 267000.9 264881.6 262363.8 262476.6 262560.2

Table S4: The assumed K is found to be equal to the simulated K more than 80% of the time
for a hexaploid data set. This table contains WAIC values to infer best-fit K (for a range)
from entropy for different simulation parameters, and we see that with higher F we capture
‘true’ K, which differs from the results for the simulated tetraploid data set presented in
Table S3.


