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Abstract 11 

This study's objective was to develop a method by which smallholder forest plantations can be 12 

mapped accurately in Andhra Pradesh, India, using multitemporal visible and near-infrared 13 

(VNIR) bands from the Sentinel-2 MultiSpectral Instruments (MSIs). Conversion to agriculture, 14 

coupled with secondary dependencies on and scarcity of wood products, has driven the 15 

deforestation and degradation of natural forests in Southeast Asia. Concomitantly, forest 16 

plantations have been established both within and outside of forests, with the latter (as contiguous 17 

blocks) being the focus of this study. Accurately mapping smallholder forest plantations in South 18 

and Southeast Asia is difficult using remotely sensed data due to the plantations’ small size 19 

(average of 2 hectares), short rotation ages (4-7 years for timber species), and spectral similarities 20 

to croplands and natural forests. Cloud-free Harmonized Landsat Sentinel-2 (HLS) S10 data was 21 

acquired over six dates, from different seasons, over four years (2015-2018). Available in situ data 22 

on forest plantations was supplemented with additional training data resulting in 2,230 high-quality 23 

samples aggregated into three land cover classes: nonforest, natural forest, and forest plantations. 24 

Image classification used random forests on a thirty-band stack consisting of the VNIR bands and 25 

NDVI images for all six dates. The median classification accuracy from the 5-fold cross-validation 26 

was 94.3%. Our results, predicated on high-quality training data, demonstrate that (mostly 27 

smallholder) forest plantations can be separated from natural forests even using only the Sentinel-28 

2 VNIR bands when multitemporal data (across both years and seasons) are used. 29 
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1. Introduction 44 

Conservation of the world’s forests has a renewed importance amid both climate and land 45 

use changes, particularly in tropical ecosystems across the world. There is demand for highly 46 

accurate spatiotemporal quantifications of global forest cover. However, current global models 47 

and many studies fail to distinguish between natural and planted forest types, thus altering the true 48 

measure of forest area (Anil, 2011; Hansen et al., 2013; Kayet and Pathak, 2015; Puyravaud et al., 49 

2010). Separation of forest types is imperative considering the differences of ecological and socio-50 

economic utility among planted and natural forests (Koskinen et al., 2019).  51 

The critical importance of ecosystem services provided by planted forests will increase in 52 

the future due to new opportunities in a globalized market attributed to improvements in wood 53 

products and processing technologies. Sustainable and intensively managed planted forests 54 

continue to support the growing demand for forest products from timber and wood fiber to oils 55 

and fruits (Peterson et al., 2016). In addition to the products extracted from trees, plantations 56 

support several external ecosystem services such as clean water, carbon sequestration, regulation 57 

of the hydrological cycle, connectivity of habitat fragmentation for biodiversity conservation, and 58 

mitigation for deforestation (Kanninen et al., 2010).  59 

Accurate mapping of trees outside forests is important both economically and 60 

scientifically. Expansion of forest area has been identified as a possible natural climate solution 61 

(Griscom et al., 2017), and accurate carbon accounting will require quantification of trees outside 62 

forests as well as those in greenwash areas. Plantation establishment and forest degradation both 63 

affect radiative forcing through changes in albedo and biosphere-atmosphere gas exchange. While 64 

not a focus of this study, improved monitoring of conditions of native forests can assist in 65 

estimation of biodiversity richness and habitat fragmentation (Roy et al., 2013).  66 

Difficulties in separating natural from managed forests are further exacerbated by a certain 67 

degree of definitional differences within the scientific community as to what, precisely, is 68 

considered a forest. This is due to a number of factors, including whether forests are being defined 69 

as a land use or a land cover, how society interacts with the forest, and the wide diversity of forest 70 

ecosystems around the world.  Because of this, the Food and Agriculture Organization Global 71 

Forest Resources Assessment of 2000 (FAO FRA) compiled over 650 definitions of forests used 72 

in developing countries, and attempted to reduce these definitions into a set of global forest classes 73 

that could be applied more consistently (FAO 2001), while still enabling some national 74 

modifications where appropriate. This enables comparison of trends in forest cover across nations, 75 

and a periodic global accounting of forest cover.  As defined by for the FAO FRA 2015, a forest 76 

is land spanning over 0.5 ha with tree height above 5 meters and a 10% or more canopy cover, or 77 

trees that can meet these thresholds in situ. FAO’s definition of forest excludes tree stands in an 78 

agricultural production system like fruit tree plantations, oil palm plantations, olive orchards, and 79 

other agroforestry systems. Their definition of planted forest is “forest predominantly composed 80 

of trees established though planting and/or deliberate seeding.” In the 2017 Forest Survey of India, 81 

the forest class consists of very dense, moderately dense, and open forest including mangrove 82 

cover. However, the land use type “land under miscellaneous tree crops and groves” is not 83 

considered as part of the recorded forest area and small plantations are considered “trees outside 84 

forests” if they fall outside established mapped greenwash areas.  Given the prevalence of 85 

plantations on small land holdings, this definitional exclusion has led to a differential estimation 86 

of tree cover in some regions from both the FAO and Forest Survey of India definitions, which has 87 

implications for carbon accounting and the monitoring of other ecosystem services in India. 88 
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In Southeast Asia, smallholder forest plantations have gained popularity and are replacing 89 

degraded or unproductive crop land, offsetting the demand on primary forests (Binkley, 2003; 90 

Okarda et al., 2018; Puyravaud et al., 2010; Roy et al., 2015; Rudel, 2009). Clonal plantations are 91 

common in planted forests to genetically improve the growing stock and produce a fast, high yield 92 

stock of species such as Eucalyptus globus and Casuarina spp. (Sharma et al., 2018). Also, palm 93 

tree species, notably oil palm and coconut, have rapidly expanded across Southeast Asia due to 94 

global market demand (Kannan et al., 2017; Putra et al., 2019). Smallholder farmers, local people 95 

in the rural tropics cultivating personal land for subsistence and commercial purposes, are known 96 

for their self-initiated forest plantation establishment on plots from one to a few hectares (Pokorny 97 

et al., 2010). Paper industries are also seeking available waste and barren land for forest plantation 98 

establishment (Rudel, 2009; Sharma et al., 2018). This land-use conversion (from marginal 99 

agricultural land to forest plantation) can reduce the exploitation of primary natural forests 100 

(Paquette and Messier, 2010). 101 

 Multitemporal and multispectral remote sensing data have been widely used for land use 102 

and land cover mapping through utilization of relationships between reflectance and vegetation. 103 

However, accurately mapping forest plantations in Southeast Asia using remotely-sensed data has 104 

been historically constrained by the following: (1) many plantations are small (averaging 2 ha) 105 

relative to widely available moderate resolution earth resource satellite data (Lechner et al., 2009), 106 

(2) rotation ages for fiber plantations are short (often just 4-7 years) (Sharma et al., 2018), (3) 107 

newly established or recently harvested plantations are particularly difficult to identify correctly 108 

(FSI, 2013), and (4) the surrounding cropland area is variegated in both time and space. Spatial 109 

resolution has been one of the main limitations to mapping smallholder forest plantations. 110 

Furthermore, while plantations have the potential to be spectrally similar to some agricultural land 111 

uses (Griffiths et al., 2019) and natural forest (Behera et al., 2001), they are harvested less 112 

frequently than crops, but nonetheless on a regular cycle. A natural forest, in contrast, experiences 113 

seasonality but (typically) no harvest. The temporal differences between these two forest types 114 

appear tailor-made for interannual multitemporal analysis of remotely sensed data.  115 

On satellite imagery the canopy of a mature forest plantation looks visually similar to a 116 

natural forest and a young plantation appears similar to many crop types. All vegetative land use 117 

and land cover types act very differently across time, and current models fail to differentiate 118 

smallholder forest plantations from natural forest and cropland (Anil, 2011; Hansen et al., 2013; 119 

Kayet and Pathak, 2015; Reddy et al., 2016b). Different approaches to mapping forest plantations 120 

have tradeoffs considering the wide variety of freely available remotely sensed data and land use 121 

and cover modeling algorithms. MODIS has been commonly used in land use and land cover 122 

analysis due to the high frequency of image acquisitions, although a significant limitation is the 123 

spatial resolution (250 m) that does not permit detection of smallholder forest plantations, shifting 124 

focus to only large-scale plantations. Remotely sensed data has been used across numerous studies 125 

for forest plantation mapping using optical imagery from Landsat (Coleman et al., 1990; Nooni et 126 

al., 2014;  Kayet and Pathak, 2015; Peterson et al., 2016) and MODIS (le Maire et al. 2011; 127 

Miettinen et al., 2012; Jia et al., 2016). There has also been a large body of work in which optical 128 

imagery was fused with radar data from ALOS PALSAR (L-band) or Sentinel-1 (C-band; Pin Koh 129 

et al., 2011; Tobrick et al., 2016; Koskinen et al., 2019; Poortinga et al., 2019). Peterson et al., 130 

(2016) tabulate previous studies mapping forest plantations (mainly oil palm), including their 131 

methods, imagery, and accuracy percentages. The two with the highest accuracies (albeit with no 132 

focus on smallholders) use a supervised decision tree classifier with 30 m Landsat imagery 133 

(Miettinen et al. 2012; Nooni et al., 2014).  134 



 

 

3 
 

 

Except for oil palm (because of the characteristic backscatter response of palm canopies; 135 

Descals et al., 2019), there is often little synergism to be gained from combining optical and radar 136 

data for tree plantation detection. Mercier et al. (2019) used Sentinel-1 and Sentinel-2 data (each 137 

alone and in combination) to map seven classes (bare soils, artificial surfaces, water bodies, 138 

forested areas, croplands, pastures, and secondary forests) in forest-agriculture mosaics in Spain 139 

(temperate) and Brazil (tropical). The maps produced using the optical (Sentinel-2) data were 140 

superior to those produced using the radar (Sentinel-1) data with respect to classification accuracy. 141 

However, the combination of the two data sources yielded a very slight increase in classification 142 

accuracy over the optical data alone only for the temperate site. In the tropics, there was no 143 

statistical difference between the classification accuracies that used the combined dataset versus 144 

use of the optical data alone. As such, it appears that Sentinel-2 data are an excellent choice for 145 

the classification of forest-agriculture mosaics in the tropics. 146 

The National Remote Sensing Centre (NRSC) in India produces a periodic land cover 147 

classification model for the Forest Survey of India (FSI) using LISS-III data (23.5 m spatial 148 

resolution). Their current classification protocol uses satellite imagery from October to December 149 

using the green, red, NIR, and SWIR bands. Post monsoonal data is optimal, considering low cloud 150 

cover and the post monsoonal flush of leaves which enhances detection of the vegetation types. 151 

Identified limitations to forest plantation detection in this assessment include the following: low 152 

spatial resolution compared to the average plantation size, non-availability of appropriate seasonal 153 

data, mixed classes with forest areas adjacent to cropland, young plantations and trees with less 154 

chlorophyll due to low leaf area index and transmittance, and high heterogeneity of tree species 155 

(FSI, 2017). 156 

Tree cover in the FSI consists of forest patches less than one hectare in extent that are 157 

outside the recorded forest area (FSI, 2019). Tree cover is enumerated using a stratified random 158 

sampling approach (with a panel design in which grids are apportioned to a given survey year). 159 

Sentinel-2 VNIR data are used to identify linear and block forest plantations as well as scattered 160 

trees (which become the strata) in the chosen sample grids. A random sample of points is chosen 161 

from each stratum for field verification and inventory. This robust methodology has a reported 162 

standard error of the estimate of just 6% (FSI, 2019). There are substantial differences from state 163 

to state however, ranging from under 4% in Gujarat to over 14% in Arunachal Pradesh, constrained 164 

by (1) the accuracy with which forest plantations are mapped in the first instance and (2) the 165 

representativeness of the grids for each biennial assessment and state. High-accuracy wall-to-wall 166 

identification of FSI tree cover strata would likely improve statistical efficiency of the tree cover 167 

estimates.  168 

Because of their inherent suitability Sentinel-2 data have been used in a few studies to map 169 

nonindustrial forest plantations, primarily those producing non-timber forest products. Descals et 170 

al. (2019), as earlier noted, were able to successfully identify smallholder palm plantations in 171 

Sumatra using a combination of Sentinel-1 and Sentinel-2 data. Nomura and Mitchard (2018) used 172 

Sentinel-2 data alone (all 10-20 m bands plus NDVI and the standard deviation of NDVI) from 173 

images acquired in February, 2017; February, 2018; and March, 2018 to separate forest plantations 174 

(oil palm, rubber, and betel nut; no timber species) from natural forest and nonforest land uses in 175 

Myanmar. Smallholdings, on average, are larger in Myanmar (2-5 ha) than in India (under 2 ha) 176 

(Lowder et al., 2016; Nomura and Mitchard, 2018) enabling use of the reduced 20 m resolution. 177 

Mercier et al. were able to map secondary forest (including forest plantations) using a 'single-date' 178 

mosaic (with acquisitions only 12 days apart) using all 10-20 m Sentinel-2 bands. The use of the 179 

SWIR bands was again feasible because of very large agriculture holdings (20-100 ha.; Nomura 180 
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and Mitchard, 2018). With the exception of FSI mapping of tree cover strata, to our knowledge no 181 

prior effort has used multitemporal VNIR data to map the very small forest plantations, comprised 182 

in part of timber species, that exist outside greenwash areas in India. 183 

 High spatial resolution data are clearly needed. However, while licensed very high spatial 184 

resolution data are available from numerous commercial or state entities, only Sentinel-2 VNIR 185 

data, at 10 m resolution, have strong potential for smallholder plantation mapping at no cost for 186 

the data. Sentinel-2 VNIR data are widely used in land cover and land use change (LCLUC) 187 

science for vegetation mapping (Immitzer et al., 2016; Pesaresi et al., 2016; Thanh Noi and 188 

Kappas, 2017; Belgiu and Csillik, 2018; Khaliq et al., 2018; Jin et al., 2019), but, as noted above, 189 

SWIR bands are commonly used by FSI and other entities to separate plantations from other land 190 

uses. However, use of multitemporal data to capture spectral variability across seasons (e.g., 191 

Poortinga et al., 2019) and years has the potential to obviate the challenges associated with use of 192 

the VNIR data alone. 193 

The objective of this study was to develop a method by which smallholder forest 194 

plantations can be mapped accurately in Andhra Pradesh, India using multitemporal (intra- and 195 

inter-annual) visible and near-infrared (VNIR) bands from Sentinel-2.  196 

 197 

2. Study Area 198 

In this study we focus on the two districts in Andhra Pradesh, India surrounding the 199 

Godavari River: East Godavari and West Godavari (See Figure 1). The total area is of both districts 200 

combined is 18,501 km2 and it is located in the southeast region of India between 16o15’ N and 201 

18o00’ N latitude and 81o00’ E 82o20’E longitude. This tropical region experiences three different 202 

seasons: winter (October-February), summer (March-June), and monsoon (July-September). 203 

During the monsoon season, these districts receive rainfall from the southwest monsoon from June 204 

to September, as well as the northeast monsoon through October and into November (Reddy et al., 205 

2016a). Rainfall exceeds 1,100 mm during the monsoon season, while only 30 mm of rain can be 206 

expected to fall between December and March. The annual average temperature is 31.5 oC, with 207 

the cooler winter months averaging around 28 oC and the hot, humid summer months reaching 40 208 
oC (Pike, 2018). The northern part of East and West Godavari is home to the discontinuous hills 209 

of India’s Eastern Ghats.  210 

With a population of 49.4 million, Andhra Pradesh is prone to population growth furthering 211 

urbanization that is expected to exacerbate deforestation. Nevertheless, the region experienced an 212 

increase in recorded forest area for the 2017 assessment due to plantation and conservation 213 

activities (FSI, 2017; Anil, 2011). Andhra Pradesh’s forest cover area in the state, including forest 214 

cover within and outside recorded forest area, is 37,258 km2 which is 22.9% of the total state area 215 

(FSI, 2017). The dominant forest types in this region include a majority of southern tropical mixed 216 

moist deciduous forests, with some patches of semi-evergreen forests (Aditya and Ganesh, 2018). 217 

Between the districts, East Godavari has higher total forest cover at 4,726 km2. This is due in part 218 

to the presence of a natural forest reserve of over 1,000 km2 in the northern region of the district, 219 

known as the Papikondalu National Park (FSI, 2017). At the top of the Eastern Ghats, Papikondalu 220 

National Park is known for its densely forested hills, valleys, deep gorges, and streams supplying 221 

life to a rich biodiversity of flora and fauna.  222 

  223 
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3. Materials and Methods 224 

This study applies a commonly used supervised machine learning method, random forests, to 225 

map smallholder forest plantations using remotely sensed data. This machine learning approach 226 

includes preparation and processing of the satellite imagery, creation of a training and validation 227 

dataset, construction and implementation of the classification model, and an assessment of model 228 

accuracy. A flow chart illustrating the sequential production and processing of this land cover 229 

classification effort is shown as Figure 2. 230 

 231 

3.1. Model Implementation Overview 232 

Target (land cover class) and predictor (VNIR reflectances and NDVI for six Sentinel 233 

dates) variables were required for training and validation of the random forest classification 234 

(Breiman, 1999). The target land cover classes were nonforest, natural forest, and forest 235 

plantation. The predictor variables were composited into an image stack of the 30 bands of VNIR 236 

and NDVI values from all dates. Training and validation data consisted of 2,230 land cover 237 

points. Five-fold cross validation was used for accuracy assessment, in which each fold had 446 238 

samples.  239 

 240 

3.2. Harmonized Landsat Sentinel S10  241 

High spatial resolution was a necessity for this study given that the average plantation size is 242 

2 ha. As such, we used the S10 data product from the NASA Harmonized Landsat Sentinel (HLS) 243 

program (hls.gsfc.nasa.gov). The S10 product provides Sentinel-2 MultiSpectral Instrument (MSI) 244 

imagery in a UTM grid with BRDF-corrected surface reflectance at full resolutions (10 m, 20 m, 245 

60 m) obtained from L1C products processed by the ESA. The term harmonized signifies the use 246 

of a common gridding system (resolution, projection, and spatial extent), radiative transfer 247 

algorithm to atmospherically correct to surface reflectance (multiplied by 10,000 and represented 248 

as a signed 16-bit integer), nadir view geometry normalized by bidirectional reflectance 249 

distribution function (BRDF) estimation, and a spectral bandpass adjustment. Along with the 250 

atmospheric correction is a series of cloud metrics integrated into the metadata attributes to 251 

estimate percent cloud cover for an image (Claverie et al., 2018). Sentinel-2 MSI (10 m) was used 252 

instead of Landsat 8 OLI (30 m) because its finer spatial resolution was preferable for smallholder 253 

forest plantation detection (See Figure 3).  254 

The time at which imagery is acquired plays a key role in land use and land cover 255 

classification, considering factors like cloud cover and seasonality of crops (Matton et al., 2015; 256 

Morin et al., 2019; Nitze et al., 2014; Zhang et al., 2009). All HLS S10 images covering the study 257 

area were acquired from 2015-2018. Our study area covered six of the S10 tiles based on the 258 

Sentinel-2 MSI tiling system: T44QNE, T44QND, T44QME, T44QMD, T44QPE, and T44QPD. 259 

The data came in the JPG 2000 file type. A MATLAB script was written to convert the files to 260 

GeoTIFF format using the image metadata while concomitantly stacking the VNIR (10 m) bands 261 

and mosaicking the tiles together. Another MATLAB script sorted through the TIFF files to 262 

distinguish images with less than 20% cloud cover using the cloud cover attribute. These images 263 

were then visually interpreted in ENVI to select images with zero cloud cover across all tiles. The 264 

following dates were chosen:  December 28, 2015; November 22, 2016; November 2, 2017; 265 

December 22, 2017; March 1, 2018; and June 15, 2018. An NDVI layer was calculated from each 266 
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of the six HLS images in ENVI using Band Math. NDVI was multiplied by 10,000 and represented 267 

as a signed 16-bit integer to correspond with the reflectance representation. 268 

All optical imagery from HLS, plus the six NDVI bands, was combined into a single image 269 

stack consisting of 30-bands. Using ERDAS Imagine, the HLS images and NDVI layers were 270 

chronologically ordered into a 30-band image stack; five bands across all six dates. Each of the 271 

layers in the 30-band image stack were named by band and date (year and day of year). The final 272 

image stack was then clipped to a shapefile of the study area.  273 

 274 

3.3. Training and validation data 275 

 Construction of the training dataset required multiple, extensive random point assessments 276 

to achieve complete and clear representation of land cover classes in this region of study, resulting 277 

in a final training dataset of 2,230 points aggregated into three main land cover classes: nonforest, 278 

natural forest (includes mangroves), and forest plantation (includes palm and pulp wood species) 279 

(See Table 1). In situ data was collected by our team during several weeks of field work in 280 

December 2018. Collaborators from International Paper assisted in identification of forest 281 

plantation types in this region. Points were created in ArcMap using the Random Points tool and 282 

loaded into Google Earth Pro using available high-resolution imagery (sub-meter resolution from 283 

Digital Globe) for visual interpretation. Data quality was insured by multiple analyst data-284 

cleansing procedures in Google Earth Pro to mitigate subjectivity of training classification and 285 

identify inconsistent plots with the classification scheme. 286 

 Our classification required consideration of the multitemporal nature of the image data and 287 

phenological and spectral variability within a main class, therefore photo-interpretation of the 288 

high-resolution imagery from Google Earth Pro required the following rules: each point had to be 289 

consistently the same sub-class through time (2015-2018), a 10-meter buffer surrounding the point 290 

avoided edge pixels, and each point was not mixed with any other subclass. The resulting land 291 

cover subclasses include agriculture, aquaculture, ground, sand, urban, shrub/scrub, water, natural 292 

forest, mangrove, palm plantations, and forest plantations.  293 

  294 

3.4. Connecting spectral response to land cover class predictors 295 

An R script was used to extract the 30 band / NDVI values for each sample point, resulting 296 

in a comma-separated values (CSV) file. Each row represented one sample point, and contained 297 

the aggregate (target) class, subclass, X location, Y location, and the 30 column reflectance / NDVI 298 

vector.  299 

 300 

3.5. Separation of vegetation type using NDVI 301 

Vegetation indices (VIs) derived from remotely sensed data enable separation of vegetated 302 

from non-vegetated land use and land cover classes. Spectral reflectance is sensitive to 303 

photosynthetic activity in the visible and near infrared bands (Morin et al., 2019). The normalized 304 

difference vegetation index (NDVI) is widely used in forest remote sensing because of its 305 

association with leaf area and canopy cover, enabling mapping of forests and their condition (le 306 

Maire et al., 2011; Nitze et al., 2014; Zhu and Liu, 2014). NDVI uses two bands, red and near 307 

infrared, in an equation to produce a single value between -1 and 1. The NDVI provides a 308 

differencing numerator and a normalizing denominator as shown in equation 1: 309 

 310 
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𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
(Eq. 1) 311 

 312 

Given the similarities in vegetation spectral signatures, the spectral responses from 313 

different crop types and natural forest can be confused with planted forests (Morin et al., 2019; 314 

Nitze et al., 2015). NDVI values from a single agriculture and forest plantation (Casuarina spp.) 315 

training and validation point were graphed across the HLS dates used in the random forest model 316 

(See Figure 4). Another analysis using NDVI was performed on all training points included in the 317 

two forest type classes: natural forest (mangrove and natural forest) and plantation (fiber and palm 318 

plantation). A box plot was implemented to assess the distribution of NDVI values across HLS 319 

dates within the two forest type classes (See Figure 5). 320 

3.6. Partitioning and separability of the spectrum  321 

For remote sensing land use and land cover classification, it is good practice to optimize 322 

partitioning and separability among predictor and response variables (Campbell and Wynne, 323 

2011). For this study, our predictor variables are the three main land cover classes and the response 324 

variables are the spectral responses in the visible and near-infrared bands along with NDVI across 325 

all six dates. A feature space image comparing the reflectance responses of the red and NIR bands 326 

by land cover class from the first date in 2015 is shown as Figure 6, indicating very good to 327 

excellent partitioning. Presence of slight class confusion for the forest plantation class is resolved 328 

with use of seasonal and interannual multitemporal data as shown in the canonical plot using all 329 

30 VNIR and NDVI bands (See Figure 7). 330 

  331 

3.7. Random forests 332 

Multiple machine learning algorithms, including random forests, CART, and SVM, were 333 

tested on the dataset. A random forest classifier proved optimal for this large, variegated area. 334 

(Pelletier et al., 2016) The Julia programming language (version 1.3.0) was chosen for this analysis 335 

due to its efficiency and robust memory management. The DecisionTree.jl (version 0.10.0; 336 

https://github.com/bensadeghi/DecisionTree.jl) package was used to implement random forests. 337 

The classification model used in this analysis includes parameters such as pre-pruning (max depth, 338 

min leaf size), post pruning (pessimistic pruning), multi-threaded bagging (random forests), 339 

adaptive boosting (decision stumps), and cross validation (n-fold). A random forest with 50 trees 340 

was selected after an iterative parameter optimization. Table 2 presents the parameters and 341 

descriptions used for our model assessment.  342 

 343 

3.8. Accuracy assessment 344 

Model accuracy was estimated from the training and validation dataset using a 5-fold cross-345 

validation, with 446 samples per fold. The error matrix and resulting summary statistics (overall 346 

accuracy, kappa, class-specific user’s and producer’s accuracies) were calculated using standard 347 

techniques (Campbell and Wynne, 2011).   348 

  349 

https://github.com/bensadeghi/DecisionTree.jl
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4. Results 350 

4.1. Classification map 351 

The supervised random forest classifier using the Julia DecisionTree.jl package produced 352 

a classification map with 10 m resolution over East and West Godavari separated into 3 land cover 353 

classes: nonforest (tan), natural forest (dark green), and forest plantation (light green) (See Figure 354 

8). The nonforest class includes the majority of the land cover classes present in this region and 355 

accounted for 74.5% of total area. Natural forest, including conserved forest in the north and 356 

mangroves along the coast, is estimated at 14.5% of total area. The target class, forest plantation, 357 

includes palm and other tree plantations and amounts to 11% of total area. Model performance 358 

was visually assessed at a fine scale using HLS images, classification output, and a high-resolution 359 

base map in ArcGIS Pro by zooming into areas with known land use and land cover. Figure 9, for 360 

example, shows the result of this process for forest plantations training points in East Godavari. 361 

Figure 10 shows another example of the results of the model classification in separating a natural 362 

forest area from forest plantations within a cropland forest mosaic in West Godavari. Figure 11 363 

shows the classification output, high-resolution imagery from Google Earth, and HLS images for 364 

all land cover classes. 365 

 366 

4.2. Accuracy assessment 367 

 The validation results are shown using a confusion matrix (See Table 3), and accuracy 368 

summary statistics (See Table 4) from the 5-fold cross-validation, 446 samples per fold. As shown 369 

in Figures 4 through 7, all utilized dates and bands were important, and iterative, selective 370 

elimination of any one date or band produced an evident decrease in model performance. Average 371 

overall accuracy across the five folds was 94.3%. The target class, forest plantation, was 372 

successfully classified, but was slightly confused with nonforest. The nonforest class had the 373 

highest class-specific accuracies, presumably due to its spectral dissimilarity from forest in the 374 

aggregate (excluding agriculture) and its preponderance (65.8% of sample points) in the random 375 

(but therefore unbalanced) sample.  376 

 377 

5. Discussion 378 

Using both intra- (Jia et al., 2016) and interannual (Poortinga et al., 2019) temporal 379 

variation to separate otherwise similar spectral signatures was the cornerstone of this successful 380 

classification (see also, e.g., the differences in class separability between Figures 4 and 5). Figure 381 

11 captures the visual spectral variation in false-color HLS image snapshots of different land cover 382 

classes compared to the ground reference and model classification. Even a given vegetation type 383 

can have different temporal and spectral responses due to differences in local land management, 384 

genetic features, site conditions, and many other environmental factors. As such, sampling such 385 

that the spectro-temporal feature space is well-partitioned is vital. The use of temporal information 386 

enables differentiation of vegetative types using differences in seasonal cycles and vegetation 387 

phenology (Griffiths et al., 2019; Zhang et al., 2009). 388 

Capturing the variability of vegetation phenology (Zhang et al 2009) and intra-annual 389 

seasonal growing characteristics (Griffiths et al., 2019) is essential when modeling the separation 390 

of cropland and planted forest types (le Maire et al., 2011; Nitze et al., 2014). Clear sky 391 

observations during the monsoon season are rare to non-existent. As such, the dates used in this 392 

analysis include the prominent winter months, where vegetation is at its peak in this region due to 393 
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water availability, and the summer months to capture vegetation prior to the rainy season when it 394 

may be dry or unhealthy. Use of winter and summer dates optimizes separability of vegetation 395 

types because the phenology is more stable during these seasons (Morin et al., 2019; Behera et al., 396 

2001). 397 

The model proved successful in separating forest plantations from agriculture in part using 398 

(indirectly) the harvest cycles for different crop types with an enhancement from using a seasonal 399 

NDVI time series (Zhu and Liu, 2014). Figure 4 shows harvest and regeneration for an agriculture 400 

point, while the forest plantation point grows over time and levels off in the dryer season (summer) 401 

when the trees may not be at peak vigor. In this figure the NDVI values for the two planted types 402 

do not converge. This specific case was corroborated via preliminary analyses using Sentinel-2 403 

MSI.  404 

Across years and time natural forests have, in general, higher NDVIs than forest plantations 405 

(Figure 5). NDVI variability is also greater in forest plantations for all dates except March 2018. 406 

The wide variability of plantation NDVIs is likely due to the different types and ages of stands 407 

within the plantation class (see the top row of Figure 9 for an example of the change in appearance 408 

of plantations from establishment to maturity). However, even given this variability, it is clear 409 

from Figure 5 that the plantation and natural forest classes are generally separable using NDVI 410 

alone.  411 

At the study design phase, we tested imagery from the Landsat 8 Operational Land Imager 412 

(30 m) and from the 20-m Sentinel-2 MSI bands (SWIR and red edge). However (see, e.g., Figure 413 

3), neither of these sensors had sufficient resolution to detect smallholder forest plantations as trees 414 

outside forests. Even the inclusion of the SWIR bands (both sensors) and red-edge bands (Sentinel-415 

2 MSI) could not compensate for the decreased spatial resolution. Keep in mind, however, that 416 

this preliminary analysis was focused on just the identification of forest plantations without 417 

attempting greater categorical specificity (such as species or other taxonomic groupings). 418 

Discrimination of tree species in the tropics has been shown to improve using the SWIR (Ferreira 419 

et al., 2015).   420 

Forest expansion occurs from two main causes: forest plantation establishment or the 421 

spontaneous reforestation of abandoned land (Mather, 2007). For LCLUC science, defining what 422 

type of forest is expanding will be vital for ecological and economic modeling. As such, our study 423 

focused on three main land cover classes in a hierarchical sampling design: nonforest, natural 424 

forest, and forest plantation. This now vetted approach to forest plantation detection can be further 425 

utilized in subsequent efforts that map natural vs. planted forests.  426 

  High frequency of temporal coverage and high spatial resolution are both imperative for 427 

quantifying different forest types across a heterogeneous landscape, where natural forests and 428 

plantations are woven in and around each other (Roy et al., 2015). Sentinel-2 data proved sufficient 429 

to the task for block forest plantations in this instance. However, there are other realizations of 430 

trees outside forests, namely windbreaks, scattered trees, and linear plantations (Rawat et al., 2003) 431 

that will likely require higher resolution imagery for accurate quantification.  432 

Conversion to agriculture, coupled with secondary dependencies on and scarcity of wood 433 

products, has driven the deforestation and degradation of natural forests in Southeast Asia 434 

(Paquette and Messier, 2010), thus mapping planted forests and natural forests separately will 435 

better document the distribution of natural versus anthropogenic systems. This unsupervised 436 

machine learning approach using remotely sensed data for land use and land cover mapping can 437 

be utilized as a baseline for forest analysis by providing a means for separation of the different 438 
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uses that trees are subject to, that could be further utilized to increase levels of categorical 439 

specificity within the forest plantation class.  440 

 Finally, while we were successful in using supervised machine learning via the commonly 441 

utilized random forests algorithm, deep learning is also gaining popularity in remote sensing 442 

science. It has strong potential for mapping at this and, in particular, increased levels of 443 

categorical specificity (Ienco, 2017), which requires a substantial increase in training data. 444 

 445 

 446 

6. Conclusions 447 

 Intra- and interannual VNIR reflectance data from Sentinel-2 MSI, coupled with high 448 

quality training data that capture spectro-temporal variability, enable fine-scale forest plantation 449 

detection in Andhra Pradesh using a common machine learning approach. The spatial resolution 450 

and radiometric quality of the Sentinel-2 data, coupled with their availability at no-cost, make them 451 

particularly suitable to mapping trees outside forests. Quantifying the ecosystem services provided 452 

by smallholder plantation forests in South and Southeast Asia will require regular, accurate 453 

mapping to capture both status and change. These future efforts, whether by state or non-state 454 

actors, will be engendered by building on the lessons learned from this case study in Andhra 455 

Pradesh.  456 

 457 
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Tables 652 

Table 1. In situ data on forest plantations provided by collaborators was supplemented with additional training 653 
data points and aggregated into 3 classes: nonforest, natural forest, and forest plantation. 654 

Land Cover Class Number of Points Aggregate Class 

Agriculture 555  

 

Nonforest 

n = 1,467 

Aquaculture 153 

Ground (or barren) 81 

Sand 110 

Urban 119 

Shrub/Scrub 224 

Water 225 

Natural Forest 241 Natural Forest 

n = 299 Mangrove 58 

Forest Plantation 253 Forest Plantation 

n = 464 Palm Plantation 211 

 655 

Table 2. Julia DecisionTree.jl random forest classifier parameter values and descriptions. 656 

Parameter Value Description 

num_folds 5 Number of cross validation iterations 

num_subfeatures -1 Number of features to select at random 

num_trees 50 Number of individual decision trees 

sampling_proportion .7 Proportion of samples per tree 

max_tree_depth -1 Maximum depth of the decision tree, grown to maximum 

extent 

min_leaf_samples 10 Minimum number of samples each leaf needs to have 

min_samples_split 5 Minimum number of samples in needed for a split 

purity_increase_min 0.0 Minimum purity needed for a split used for post-pruning 

 657 
Table 3. Average error matrix from the 5-fold cross-validation, n = 446 samples/fold. Note the lowest values of 658 
confusion are present between natural forest and plantation, while the highest values are separation of the forest 659 

classes from nonforest, which is expected considering presence of trees along croplands and urban mosaics. 660 

 
Nonforest Natural Forest Forest Plantation 

Nonforest 282.4 7.4 3.6 

Natural Forest 3.4 54.6 1.8 

Forest Plantation 7.2 .4 85.2 

 661 

           662 

 663 
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Table 4. Accuracy summary statistics calculated from average error matrix. 664 

Land Cover 

Class 

User’s 

Accuracy 

Producer’s 

Accuracy 

Overall 

Accuracy 

Kappa 

Nonforest 96 96.1  

 

94.3 

 

 

88.7 Natural Forest 92 86.3 

Forest Plantation 90.1 94 

 665 


