Reference
Ainsworth E.A., & Long S.P. (2005).
What have we learned from 15 years of free-air CO2 enrichment (FACE)? A
meta-analytic review of the responses of photosynthesis, canopy
properties and plant production to rising CO2. New Phytologist, 165(2),
351-372. doi:10.1111/j.1469-8137.2004.01224.x
Ainsworth E.A., & Rogers A. (2007). The response of photosynthesis and
stomatal conductance to rising [CO2]: mechanisms and environmental
interactions. Plant, Cell and Environment, 30(3), 258-270.
doi:10.1111/j.1365-3040.2007.01641.x
Albert K.R., Mikkelsen T.N., Michelsen A., Ro-Poulsen H., & van der
Linden L. (2011). Interactive effects of drought, elevated CO2 and
warming on photosynthetic capacity and photosystem performance in
temperate heath plants. Journal of Plant Physiology, 168(13), 1550-1561.
Baker N. (2008). Chlorophyll Fluorescence: A Probe of Photosynthesis In
Vivo. Annual review of plant biology, 59, 89-113.
doi:10.1146/annurev.arplant.59.032607.092759
Baker N.R., & Oxborough K. (2004). Chlorophyll fluorescence as a probe
of photosynthetic productivity. In Chlorophyll a Fluorescence (eds
Papageorgiou GC & Govindjee), pp. 65-82. Springer.
Björkman O., & Demmig B. (1987). Photon yield of O2 evolution and
chlorophyll fluorescence characteristics at 77 K among vascular plants
of diverse origins. Planta, 170(4), 489-504. doi:10.1007/bf00402983
Demmig-Adams B., Ebbert V., Zarter C.R., & Adams W.W. (2008).
Characteristics and species-dependent employment of flexible versus
sustained thermal dissipation and photoinhibition. In Photoprotection,
photoinhibition, gene regulation, and environment (eds: Demmig-Adams B.,
Adams WW., Mattoo AK.), pp. 39-48. Springer.
Faseela P., Sinisha A., Brestič M., & Puthur J.J.P. (2019). Chlorophyll
a fluorescence parameters as indicators of a particular abiotic stress
in rice. Photosynthetica, 57, 108-115.
Feng B., Liu P., Li G., Dong S.T., Wang F.H., Kong L.A., & Zhang J.W.
(2014). Effect of Heat Stress on the Photosynthetic Characteristics in
Flag Leaves at the Grain-Filling Stage of Different Heat-Resistant
Winter Wheat Varieties. Journal of Agronomy and Crop Science, 200(2),
143-155. doi:10.1111/jac.12045
Fricke W., & Peters W.S. (2002). The biophysics of leaf growth in
salt-stressed barley. A study at the cell level. Plant Physiology,
129(1), 374-388.
Gao M., Qi Y., Song W., & Xu H. (2016). Effects of di-n-butyl phthalate
and di (2-ethylhexyl) phthalate on the growth, photosynthesis, and
chlorophyll fluorescence of wheat seedlings. Chemosphere, 151, 76-83.
doi:10.1016/j.chemosphere.2016.02.061
Holland V., Fragner L., Jungcurt T., Weckwerth W., & Brüggemann W.
(2016).
Girdling
interruption between source and sink in Quercus pubescens does not
trigger leaf senescence. Photosynthetica, 54(4), 589-597.
doi:10.1007/s11099-016-0646-3
Huang L.F., Zheng J.H., Zhang Y.Y., Hu W.H., Mao W.H., Zhou Y.H., & Yu
J.Q. (2006). Diurnal variations in gas exchange, chlorophyll
fluorescence quenching and light allocation in soybean leaves: The cause
for midday depression in CO2 assimilation. Scientia Horticulturae,
110(2), 214-218. doi:https://doi.org/10.1016/j.scienta.2006.07.001
Ibaraki Y., Iwabuchi K., & Okada M. (2005). Chlorophyll Fluorescence
Analysis for Rice Leaves Grown under Elevated CO2 Conditions. Journal of
Agricultural Meteorology, 60, 641-644. doi:10.2480/agrmet.641
Jiang H.X., Chen L.S., Zheng J.G., Han S., Tang N., & Smith B.R.
(2008). Aluminum-induced effects on Photosystem II photochemistry in
citrus leaves assessed by the chlorophyll a fluorescence transient. Tree
Physiology, 28(12), 1863-1871. doi:10.1093/treephys/28.12.1863
Kalaji H.M., Govindjee., Bosa K., Kościelniak J., & Żuk-Gołaszewska K.
(2011). Effects of salt stress on photosystem II efficiency and CO2
assimilation of two Syrian barley landraces. Environmental and
Experimental Botany, 73, 64-72.
doi:https://doi.org/10.1016/j.envexpbot.2010.10.009
Kalaji H.M., Rastogi A., Živčák M., Brestic M., Daszkowska-Golec A.,
Sitko K., . . . Cetner M.D. (2018). Prompt chlorophyll fluorescence as a
tool for crop phenotyping: an example of barley landraces exposed to
various abiotic stress factors. Photosynthetica, 56(3), 953-961.
doi:10.1007/s11099-018-0766-z
Kalaji H.M., Schansker G., Ladle R.J., Goltsev V., Bosa K.,
Allakhverdiev S.I., . . . Zivcak M. (2014). Frequently asked questions
about in vivo chlorophyll fluorescence: practical issues. Photosynthesis
Research, 122(2), 121-158. doi:10.1007/s11120-014-0024-6
Klironomos J.N., Allen M.F., Rillig M.C., Piotrowski J., Makvandi-Nejad
S., Wolfe B. E., & Powell J.R. (2005). Abrupt rise in atmospheric CO2
overestimates community response in a model plant-soil system. Nature,
433(7026), 621-624. doi:10.1038/nature03268
Lawlor D.W., & Tezara W. (2009). Causes of decreased photosynthetic
rate and metabolic capacity in water-deficient leaf cells: a critical
evaluation of mechanisms and integration of processes. Annals of Botany,
103(4), 561-579. doi:10.1093/aob/mcn244
Leakey A.D., Ainsworth E.A., Bernacchi C.J., Rogers A., Long S.P., &
Ort D.R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and
water relations: six important lessons from FACE. Journal of
Experimental Botany, 60(10), 2859-2876. doi:10.1093/jxb/erp096
Lepeduš H., Brkić I., Cesar V., Jurković V., Antunović J., Jambrović A.,
. . . Šimić D. (2012). Chlorophyll fluorescence analysis of
photosynthetic performance in seven maize inbred lines under
water-limited conditions. Periodicum Biologorum, 114(1), 73-76.
LI X., LIU YL., JIAO DM. (2002). The Relationship between Diurnal
Variation of Fluorescence Parameters and Characteristics of Adaptation
to Light Intensity in Leaves of Different Rice Varieties with High Yield
(Oryza sat iva L.). ACTA AGRONOMICA SINICA 28 : 145-153
(in Chinese with English abstract).
Li X., Ulfat A., Lv Z., Fang L., Jiang D., & Liu F. (2019). Effect of
multigenerational exposure to elevated atmospheric CO2 concentration on
grain quality in wheat. Environmental and Experimental Botany, 157,
310-319.
Li Y., Song H., Zhou L., Xu Z., & Zhou, G. (2019). Vertical
distributions of chlorophyll and nitrogen and their associations with
photosynthesis under drought and rewatering regimes in a maize field.
Agricultural and Forest Meteorology, 272-273, 40-54.
doi:https://doi.org/10.1016/j.agrformet.2019.03.026
Lichtenthaler H. K., Buschmann C., & Knapp M. (2005). How to correctly
determine the different chlorophyll fluorescence parameters and the
chlorophyll fluorescence decrease ratio RFd of leaves with the PAM
fluorometer. Photosynthetica, 43(3), 379-393.
doi:10.1007/s11099-005-0062-6
Logan B.A., Demmig-Adams B., Rosenstiel T.N., & Adams III W.W. (1999).
Effect of nitrogen limitation on foliar antioxidants in relationship to
other metabolic characteristics. Planta, 209(2), 213-220.
doi:10.1007/s004250050625
Long S.P., Ainsworth E.A., Rogers A., & Ort D.R. (2004). Rising
atmospheric carbon dioxide: plants FACE the future. Annual Review of
Plant Biology, 55, 591-628. doi:10.1146/annurev.arplant.55.031903.141610
Martínez-Carrasco R., Pérez P., & Morcuende R. (2005). Interactive
effects of elevated CO2, temperature and nitrogen on photosynthesis of
wheat grown under temperature gradient tunnels. Environmental and
Experimental Botany, 54(1), 49-59.
doi:https://doi.org/10.1016/j.envexpbot.2004.05.004
Maxwell K., & Johnson G.N. (2000). Chlorophyll fluorescence—a
practical guide. Journal of Experimental Botany, 51(345), 659-668.
https://doi.org/10.1093/jexbot/51.345.659
Xie R., Peng M., Wang T., Li T., & Meng F. 2018. Effect of High
CO2 Concentration on Four Populus by the Fast
Fluorescence Rise OJIP. Current Trends in Forest Research, CTFR-124.
Naumburg E., Loik M.E., & Smith S. (2004). Photosynthetic responses of
Larrea tridentata to seasonal temperature extremes under elevated CO2.
New Phytologist, 162(2), 323-330.
Pan C., Ahammed G.J., Li X., & Shi K. (2018). Elevated CO2 Improves
Photosynthesis Under High Temperature by Attenuating the Functional
Limitations to Energy Fluxes, Electron Transport and Redox Homeostasis
in Tomato Leaves. Frontiers in plant science, 9, 1739.
doi:10.3389/fpls.2018.01739
Panda D. (2011). Diurnal variations in gas exchange and chlorophyll
fluorescence in rice leaves: the cause for midday depression in CO2
photosynthetic rate. Journal of Stress Physiology & Biochemistry, 7(4),
175-186.
Papageorgiou G.C. & Govindjee. (2007). Chlorophyll a fluorescence: a
signature of photosynthesis (Vol. 19): Springer Science & Business
Media.
Pfündel E. (1998). Estimating the contribution of Photosystem I to total
leaf chlorophyll fluorescence. Photosynthesis Research, 56(2), 185-195.
doi:10.1023/A:1006032804606
Poorter H., Niinemets Ü., Ntagkas N., Siebenkäs A., Mäenpää M.,
Matsubara S., & Pons,T. (2019). A meta-analysis of plant responses to
light intensity for 70 traits ranging from molecules to whole plant
performance. New Phytologist, 223(3), 1073-1105. doi:10.1111/nph.15754
Robredo A., Pérez-López U., Lacuesta M., Mena-Petite A., & Muñoz-Rueda
A. (2010). Influence of water stress on photosynthetic characteristics
in barley plants under ambient and elevated CO2 concentrations. Biologia
Plantarum, 54(2), 285-292. doi:10.1007/s10535-010-0050-y
Roden J.S., & Ball M.C. (1996). The Effect of Elevated [CO2] on
Growth and Photosynthesis of Two Eucalyptus Species Exposed to High
Temperatures and Water Deficits. Plant physiology, 111(3), 909.
doi:10.1104/pp.111.3.909
Ruhil K., Sheeba, Ahmad A., Iqbal M., & Tripathy B.C. (2015).
Photosynthesis and growth responses of mustard (Brassica junceaL. cv Pusa Bold) plants to free air carbon dioxide enrichment (FACE).
Protoplasma, 252(4), 935-946. doi:10.1007/s00709-014-0723-z
Shanmugam S., Kjaer K.H., Ottosen C., Rosenqvist E., Sharma D.K.,
Wollenweber B.C. (2013). The Alleviating Effect of Elevated CO2 on Heat
Stress Susceptibility of Two Wheat (Triticum aestivum L.) Cultivars.
Journal of Agronomy and Crops Science, 199(5), 340-350.
Strasser R.J., Srivastava A., Tsimilli-Michael M. (2000). The
fluorescence transient as a tool to characterize and screen
photosynthetic samples. In Probing Photosynthesis: Mechanism, Regulation
and Adaptation (eds: Yunus M., Pathre U., & Mohanty P), pp. 443–480
London, UK.
Strasser R.J., Tsimilli-Michael M., & Srivastava A. (2004). Analysis of
the chlorophyll a fluorescence transient. In Chlorophyll a fluorescence
(eds Papageorgiou GC., & Govindjee), pp. 321-362, Springer.
Taiz L., & Zeiger E. (2010). Plant Physiology, Sinauer Associates.
Taub D.R., Seemann J.R., Coleman J. (2000). Growth in elevated CO2
protects photosynthesis against high-temperature damage. Plant Cell and
Environment, 23(6), 649-656.
Tsimilli-Michael M. (2019). Revisiting JIP-test: An educative review on
concepts, assumptions, approximations, definitions and terminology.
Photosynthetica, 57, 90-107. doi:10.32615/ps.2019.150
Wu L., Shen S., Wang R., & Shu Q. (2007).The diurnal variation of
photosynthesis of a xantha mutant in rice (Oryza sativaL.). Journal of Nuclear Agriculture Science, 21, 425-429 (in Chinese
with English abstract).
Zhou R., Wu Z., Wang X., Rosenqvist E., Wang Y., Zhao T., & Ottosen CO.
(2018). Evaluation of temperature stress tolerance in cultivated and
wild tomatoes using photosynthesis and chlorophyll fluorescence.
Horticulture, Environment, and Biotechnology, 59(4), 499-509.
doi:10.1007/s13580-018-0050-y
Zhu X., Liu S., Sun L., Song F., Liu F., & Li X. (2018). Cold Tolerance
of Photosynthetic Electron Transport System Is Enhanced in Wheat Plants
Grown Under Elevated CO2. Frontiers in plant science, 9, 933-933.
doi:10.3389/fpls.2018.00933
Ziska L. H., & Teramura A. H. (1992). CO2 Enhancement of Growth and
Photosynthesis in Rice (Oryza sativa) : Modification by Increased
Ultraviolet-B Radiation. Plant physiology, 99(2), 473-481.
doi:10.1104/pp.99.2.473
Zong Y.Z., Wang W.F., Xue Q.W., & Shangguan Z.J.P. (2014). Interactive
effects of elevated CO2 and drought on photosynthetic capacity and PSII
performance in maize. Photosynthetica, 52(1), 63-70.